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Abstract
In this paper, parametrized motion planning algorithms for a fiberwise space X → P
over a poset P are studied. Such an algorithm assigns paths in a space X decomposed
into subspaces with the index set P , that do not cross the boundaries of the separated
regions. We compute the parametrized topological complexity of X → P , which is
one less than the minimal number of local parametrized motion planning algorithms
used for designing non-cross-border robot motions in X .

Keywords Parametrized topological complexity · Poset-stratified space · Fiberwise
space · Robot motion planning

Mathematics Subject Classification 55M30 · 06A07

1 Introduction

The robotic motion planning problem considers how robots move from an initial point
to a final point. The central theme in the motion planning problem is to assign a path
that connects x and y to each pair (x, y) of points in the space.

Farber introduced anumerical invariantTC(X) (Farber 2003), called the topological
complexity of a space X , which indicates the complexity of the design of motion
planning algorithms in X . The equality TC(X) = n implies that we need at least n+1
local motion planning algorithms to move robots in X .
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Fig. 1 Standard and
parametrized motion

In contrast, various efficient motion planning algorithms such as symmetric motion
(Farber and Grant 2007; Basabe et al. 2014), monoidal (reserved) motion (Iwase
and Sakai 2010, 2012), equivariant motion (Colman and Grant 2012; Dranishnikov
2015), and directed motion planning algorithms (Goubault et al. 2020; Borat and
Grant 2020) have been developed. Recently, Cohen, Farber, and Weinberger intro-
duced parametrized motion planning algorithms for fibrations to study collision-free
motion planning (Cohen et al. 2021), [CFW]. The original definition of parametrized
topological complexity TC(π) of a fibration π : E → B was defined as the sec-
tional category of the associated fibration � : E I

B → E2
B , �(γ ) = (γ (0), γ (1)).

Here, E2
B = E ×B E is the fiberwise product over B, and E I

B consists of paths
γ : I = [0, 1] → E such that π ◦ γ is constant, i.e., γ maps into the fiber π−1(b) for
some b ∈ B. In other words, TC(π) is defined as one less than the smallest number
of open sets covering E2

B with local homotopy sections of �.
A more general setting for fiberwise spaces (not necessarily fibrations) was con-

sidered by García-Calcines [Gar]. The parametrized topological complexity TC(π) in
his sense agrees with the one given by Cohen, Farber, and Weinberger when π is a
fibration.

In this study, we focus on parametrized motion planning algorithms for a fiber-
wise space over a poset regarded as a T0-Alexandroff space. Such a fiberwise space
π : X → P is called a stratified space over P , and ep = π−1(p) is called a stratum of
p ∈ P . Typical examples of poset-stratified spaces include simplicial complexes or,
more generally, (normal) CW complexes with the face posets. A parametrized motion
planning algorithm for a poset-stratified space π : X → P assigns a path I → X in
a stratum ep to each pair (x, y) of points in ep.

This algorithm effectively works for motion planning in a local area. For example,
whenwe go on domestic travel in a country, a parametrizedmotion planning algorithm
on the Earth (decomposed into countries) proposes a route in the country that does
not cross the border, while a standard motion planning algorithm may suggest a route
through a different country. In recent years, the spread of COVID-19 has imposed
severe restrictions on cross-border travel. Parametrizedmotion planning algorithms on
poset-stratified spaces can contribute to the design of intra-country routes for regional
tourism.

In this study, we compute several examples of TC for poset-stratified spaces. We
show that TC(π) = 0 for the stratified space π : X → P(X) associated with a simpli-
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cial complex, or more generally, a regular CW complex X with the face poset P(X).
Furthermore, the parametrized topological complexity of a couple of fundamental
stratifications on the cone and the suspension of a space is considered. As a result,
TC(X → P(X)) = ∞ for some familiar CW complexes, such as; sphere Sn , bouquet
Bk = ∨k S1, torus T n = ∏n S1, and real (complex) projective space RPn (CPn) with
the canonical (minimal) cell decomposition (Example 3.7).

This is caused by the definition of TC(π : E → B) using open sets that cover the
fiberwise product E2

B . We can not construct a parametrized motion planning algorithm
on an open neighborhood of a 0-cell in the above case of non-regular CW complexes.
In order to consider algorithms on more flexible regions, we compute the general-
ized version TCg(π) of TC(π) using arbitrary sets that separate E2

B . For example,
TCg(π : X → P(X)) becomes finite for any finite CW-complex X , unlike the case
of the non-generalized version TC.

The paper is organized as follows. Section 2 recalls the idea of parametrized topo-
logical complexity based on the papers (Cohen et al. 2021)[CFW, Gar]. Furthermore,
we review a reconstruction method for stratified spaces from their combinatorial data
(Tamaki 2018) to compute TC and TCg .

In Sect. 3, we compute TC for poset-stratified spaces including simplicial com-
plexes, regular CW complexes, cones, and suspensions. We show that TC(X →
P(X)) = ∞ for some non-regular CW complexes X .

In Sect. 4, we compute TCg for the poset-stratified spaces given in Sect. 3.

2 Preliminaries

This section briefly reviews the definitions and properties on parametrized topological
complexity and stratified spaces. We deal only with path-connected spaces in this
paper.

2.1 Parametrized topological complexity

First we review the definition and properties on parametrized topological complexity
based on prior papers (Cohen et al. 2021) [CFW, Gar].

For a fiberwise space π : E → B, we consider the subspace

E I
B = {γ : I → E | π ◦ γ = c}

of the path space of E , where c is the constant path at a point in B. For the fiberwise
product

E2
B = E ×B E = {(x, y) ∈ E × E | π(x) = π(y)},

we have � : E I
B → E2

B given by �(γ ) = (γ (0), γ (1)). For a subspace U of E2
B ,

a continuous (strict) local section U → E I
B of � is called a parametrized motion

planning algorithm on U .
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The original idea of parametrized topological complexity was defined as the sec-
tional category of the associated map � for fibrations (Cohen et al. 2021)[CFW].

Definition 2.1 Let p : E → B be a fiberwise space. The sectional category secat(p)
of p is theminimal number n such that B is covered by n+1 open subsetsU0, · · · ,Un ,
where each Ui admits a homotopy local section of p. That is, we have si : Ui → E
such that p ◦ si is homotopic to the inclusion Ui ↪→ B. If no such number exists, we
set secat(p) = ∞.

If p : E → B is a (Hurewicz) fibration, the sectional category above agrees with
one less than the minimal number of open sets covering B with strict local sections of
p.

Example 2.2 Several topological invariants are expressed as sectional categories.

(1) For a space X with a base point x0, the based path space PX = {γ : I → X |
γ (0) = x0} is equipped with a fibration ev1 : PX → X given by ev1(γ ) = γ (1).
The sectional category secat(ev1) agrees with the LS(Lusternik-Schnirelmann)
category cat(X) originally defined as the minimal number n such that X is covered
by n+1 categorical open sets. Here, a subset A of X is categorical if the inclusion
A ↪→ X is null homotopic.

(2) For a space X , the free path space X I = {γ : I → X} is equipped with a fibra-
tion ev : X I → X2 = X × X given by ev(γ ) = (γ (0), γ (1)). The topological
complexity TC(X) is defined as the sectional category secat(ev) (Farber 2003).

The parametrized topological complexity of a fibration π is defined as secat(�) in
Cohen et al. (2021). It should be noted that the associated map � always becomes a
fibration if π is a fibration.

García-Calcines considered the topological complexity for general fiberwise spaces
including non-fibrations [Gar].

Definition 2.3 Let π : E → B be a fiberwise space. The parametrized topological
complexity TC(π) is the minimal number n such that E2

B is covered by n + 1 open
subsetsU0, · · · ,Un , where eachUi admits a parametrizedmotion planning algorithm.
If no such number exists, we set TC(π) = ∞.

Remark 2.4 Our TC(π) in Definition 2.3 agrees with the one given byGarcía-Calcines
[Gar] for fiberwise spaces which are not necessarily fibrations. When π is a fibration,
our TC(π) also agrees with the one given by Cohen et al. (2021) [CFW]. Moreover,
when the base space B = ∗ consists of a single point, the parametrized topological
complexity TC(π) agrees with the standard topological complexity TC(E) of the total
space introduced in Farber (2003).

The fundamental properties of the parametrized topological complexity were com-
piled in Cohen et al. (2021) [Gar].

Proposition 2.5 (Corollary 15 of [Gar]) Let π : E → B be a fiberwise space and let
f : B ′ → B be a continuous map. For the pullback f ∗(π) : B ′ ×B E → B ′ of p
along f , we have TC( f ∗(π)) ≤ TC(π).
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A special case of the above proposition is the following corollary.

Corollary 2.6 Let π : E → B be a fiberwise space. For a subspace B ′ ⊂ B and the
restriction π ′ = π|π−1(B′) : π−1(B ′) → B ′, we have TC(π ′) ≤ TC(π). In particular,
we have TC(π−1(b)) ≤ TC(π) for each b ∈ B.

The next property is the homotopy invariance of TC(π). We consider the following
commutative diagram with a map f between fiberwise spaces:

E ′ f

π ′

E

π

B.

Even if π ′ and π are not fibrations, the next proposition holds by the same argument
in the proof of (Cohen et al. 2021 Proposition 5.2).

Proposition 2.7 Let π : E → B and π ′ : E ′ → B be fiberwise spaces, and let
f : E ′ → E be a homotopy equivalence over B (satisfying π ◦ f = π ′). If we have
a map g : E → E ′ of f over B with a fiberwise homotopy g ◦ f �B idE ′ , then
TC(π ′) ≤ TC(π).

Corollary 2.8 If fiberwise spaces π : E → B and π ′ : E ′ → B are fiberwise homo-
topy equivalent, then TC(π ′) = TC(π).

The topological complexity TC(X) = 0 if and only if X is contractible. A similar
property of the parametrized topological complexity was studied in Cohen et al. (2021)
[Gar] for fibrations or fiberwise pointed spaces.

Proposition 2.9 (Proposition 4.5 of Cohen et al. (2021))Letπ : E → B be a fibration,
and let E2

B have the homotopy type of a CW complex. The parametrized topological
complexity TC(π) = 0 if and only if TC(X) = 0 for the fiber X of π .

Proposition 2.10 (Corollary 12 of [Gar])Letπ : E → B be a fiberwise pointed space.
The parametrized topological complexity TC(π) = 0 if and only if E is fiberwise
contractible.

Unfortunately, a poset-stratified space is neither a fibration nor a fiberwise pointed
space in general. For a general fiberwise space π : E → B, a condition equivalent to
TC(π) = 0 can be described as follows:

Proposition 2.11 Let π : E → B be a fiberwise space. The parametrized topological
complexity TC(π) = 0 if and only if the diagonal�(E) = {(e, e) ∈ E2} is a fiberwise
deformation retract of E2

B over B.

Proof We assume that TC(π) = 0. We have a global section s : E2
B → E I

B of �. A
fiberwise homotopy H : E2

B × I → E2
B defined by H(x, y, t) = (x, s(x, y)(1 − t))

presents a fiberwise deformation retraction H1 : E2
B → �(E) over B. Conversely, let

123
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H : E2
B × I → E2

B be a fiberwise homotopy associated with a deformation retraction
over B that satisfies H(x, y, 0) = (x, y) and H(x, y, 1) ∈ �(E). We have a section
s : E2

B → E I
B of �, defined as

s(x, y)(t) =
{
H1(x, y, 2t) 0 ≤ t ≤ 1

2 ,

H2(x, y, 2 − 2t) 1
2 ≤ t ≤ 1,

where H(x, y, t) = (H1(x, y, t), H2(x, y, t)). Hence, TC(π) = 0. �


2.2 Poset-stratified spaces

This subsection reviews the definition and properties on poset-stratified spaces.
Aposet-stratified space is roughly a space decomposed into subspaces (called strata)

with the index poset P such that the inclusion relation on the closures of strata cor-
responds to the partial order on P . Detailed observations on decompositions and
poset-stratified spaces can be found in Tamaki and Tanaka (2019), Yokura (2020).

A poset P can be regarded as a T0-Alexandroff space whose open sets are closed
under infinite intersection. Open sets of P are filters (upper sets) of P , that is, subsets
closed under the upper order. Conversely, a T0-Alexandroff space X can be regarded
as a poset with the partial order x ≤ y defined by x ∈ Oy , where Oy is the minimal
open neighborhood of y (the intersection of all open sets including y). From this
perspective, we identify T0-Alexandroff spaces with posets.

We focus on fiberwise spaces π : X → P over posets P . The following definition
of poset-stratified spaces is essentially based on Tamaki and Tanaka (2019).

Definition 2.12 A stratified space over a poset P is an open surjective continuous map
π : X → P such that each stratum ep = π−1(p) is connected and locally closed.

Remark 2.13 Our stratified space π : X → P is required to be an open map because
of the compatibility of the orders. Let π : X → P be a fiberwise space over a poset
P . The map π is further an open map if and only if it satisfies the following condition:
ep ⊂ eq if and only if p ≤ q for any p, q ∈ P (Remark 2.2 Tamaki 2018).

A CW complex X has a natural map π : X → P(X) to the face poset P(X) given
by π(x) = e if x ∈ e. Here, the face poset P(X) consists of (open) cells of X with
the relation e ≤ e′ if, and only if, e ⊂ e′. This map π is not always continuous;
however, the normality (the axiom of the frontier) makes π continuous. Recall that
a CW complex is normal if each pair of cells ep, eq satisfying ep ∩ eq �= ∅ implies
ep ⊂ eq . It should be noted that the above term “normal” is a different concept from
a space satisfying Axiom T4.

Proposition 2.14 (Corollary 3.7 of Tamaki and Tanaka (2019)) If X is a normal CW
complex, then the canonical map X → P(X) to the face poset is a stratified space.

Whenwe deal with stratified spaces with infinite strata, the CWcondition is a useful
property in homotopy theory, as is the case with cell complexes.
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Definition 2.15 A stratified space π : X → P is CW if it satisfies the following two
conditions:

(1) The boundary ∂ep of a stratum ep is covered by a finite number of strata.
(2) The space X has the weak topology with respect to the closures of strata {ep | p ∈

P}.
A stratified space π : X → P is called locally finite if every point x ∈ X has an

open neighborhood U intersecting with a finite number of strata.

Lemma 2.16 (Proposition 2.21 of Tamaki (2018)) Any locally finite stratified space
π : X → P is CW.

2.3 Stellar stratified spaces and cylindrical structures

We present an overview of the paper (Tamaki 2018) about a reconstruction method
of stellar stratified spaces by the face categories. This reconstruction method plays a
central role in computing the parametrized topological complexity of poset-stratified
spaces in this paper.

A stellar stratified space is a generalized idea of CW complex introduced in Tamaki
(2018), Tamaki and Tanaka (2019). A CW complex is constructed by gluing disks
along the boundaries. On the other hand, a stellar stratified space is constructed by
attaching star-shaped cells.

Let S be a space. The cone CS = S × I/S × {1} is expressed as the join S�{v},
where v is the top vertex [s, 1]. An element x ∈ CX is denoted by (1 − t)y + tv for
some y ∈ S and 0 ≤ t ≤ 1.

Definition 2.17 Let S be a space. A subset D ⊂ CS is an aster if for any x ∈ D,
the line segment between v and x is contained in D. That is, if x is described as
x = (1 − t)y + tv, then (1 − s)y + sv ∈ D for any t ≤ s ≤ 1. The boundary ∂D of
an aster D denotes the intersection D ∩ S. An aster D is called thin if D = ∂D�{v}.
Definition 2.18 Letπ : X → P be a stratified space.A characteristicmap of a stratum
ep is a continuous map ϕp : Dp → ep from an aster Dp ⊂ CSp for some space Sp
that satisfies the following conditions:

(1) ϕp is a quotient map.
(2) (ϕp)|Int(Dp) : Int(Dp) → ep is a homeomorphism.

A stratum ep is called thin if the domain of the characteristic map Dp → ep is a thin
aster.

A stellar stratified space X is a stratified space X → P with a family of charac-
teristic maps {ϕp}p∈P such that the boundary ∂ep = ep − ep of each stratum ep is
covered by the strata indexed by P<p = {q ∈ P | q < p}. A stellar stratified space is
called a stellar complex if all of the strata are thin.

Definition 2.19 Let π : X → P be a stellar stratified space. A stratum ep is regular
if the characteristic map ϕp : Dp → ep is a homeomorphism. When all of the strata
are regular, π is called regular.
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For a stratified space π : X → P and a subposet Q ⊂ P , we consider the stratified
subspace πQ = π|π−1(Q) : π−1(Q) → Q. Even if π admits a stellar structure, the
restriction may not present a stellar structure on πQ . This is because the restriction
does not preserve quotient maps in general (see Tamaki 2018 Section 6). However,
the restriction preserves regular stellar structures because the restriction of a homeo-
morphism is again a homeomorphism onto its image (and a quotient map).

Lemma 2.20 Let π : X → P be a regular stellar stratified space, and let Q ⊂ P be
a subposet. The restriction πQ : π−1(Q) → Q is again a regular stellar stratified
space.

Proof The assumption ensures that the characteristic map ϕp : Dp → ep of π is a

homeomorphism for each p ∈ P . For q ∈ Q ⊂ P , let eQq denote the closure of eq
in π−1(Q) and DQ

q denote the inverse image ϕ−1
q (eQq ) ⊂ Dq . Note that D

Q
q is again

an aster because it is obtained by removing a part of the boundary ∂Dp from Dp. We
have a homeomorphism

ϕq |DQ
q

: DQ
q −→ eQq

for each q ∈ Q. It provides a regular stellar structure on πQ . �

A typical example of stellar stratified space is a cell complex.

Example 2.21 A cell complex X is a special case of stellar complex. An n-cell e is
equipped with a characteristic map ϕ : Dn → e, and an n-disk Dn can be regarded as
a thin aster Dn = Sn−1�{0} with the boundary ∂Dn = Sn−1.

For a poset P , the nerve semi-simplicial setN P consists of totally ordered subsets
in P:

Nn P = {p0 < · · · < pn | pi ∈ P}

with the face maps deleting elements. The geometric realization ofN P is denoted by
BP , and is called the classifying space or order complex of P . This is a special case
of the classifying space of a loop-free top-enriched category in Definition 2.28.

Any point in BP is uniquely expressed as a pair of a ∈ Int(�n) and a totally
ordered subset p0 < p1 < · · · < pn in P for some n ≥ 0. The classifying space BP
is equipped with a natural continuous map τ : BP → P defined by τ(a, p0 < · · · <

pn) = pn . We can naturally consider BP as a stratified space over P by τ .

Definition 2.22 A poset P is locally finite if both P≤p = {q ∈ P | q ≤ p} and
P≥p = {q ∈ P | q ≥ p} are finite for all p ∈ P .

Lemma 2.23 If P is a locally finite poset, then τ : BP → P is a locally finite stratified
space.

Proof Any point x ∈ BP belongs to a unique open simplex indexed by a totally
ordered subset p0 < · · · < pn in P . The open neighborhood x ∈ U = τ−1(P≥pn )

consists of a finite number of strata. Thus, τ is locally finite. �
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The classifying space BP has a natural stellar structure. More generally, stellar
structures on the classifying spaces of loop-free top-enriched categories have been
considered in Tamaki and Tanaka (2019).

Example 2.24 (Section 4.1 in Tamaki and Tanaka (2019)) The stratified space
τ : BP → P over a locally finite poset P admits a stellar structure as follows: A
stratum ep consists of open simplices indexed by a totally ordered subset with the
maximal element p. The classifying space B(P≤p) can be expressed as B(P<q)�{p},
and we have a natural homeomorphism B(P≤p) ∼= ep. Lemmas 2.23 and 2.16 imply
that τ is a regular CW stellar stratified space.

It is well known that a regular CW complex X is homeomorphic to the classifying
space BP(X) of the face poset. However, the face poset is not sufficient to recover the
topology or homotopy type of a non-regular CW complex. We need more informative
structures than posets to recover the original non-regular CW complexes.

A category enriched by topological spaces is referred to as a top-enriched category
in this study. A top-enriched category T consists of a set of objects T0 and a space of
morphisms T (x, y) for each pair of objects x, y with a continuous composition. T is
called loop-free (or acyclic) if it satisfies the following two conditions:

(1) T (x, x) consists of only the single identity morphism idx for each object x .
(2) T (x, y) = ∅ if T (y, x) �= ∅ for x �= y.

A poset is a special case of loop-free top-enriched category with at most onemorphism
between two objects. For a loop-free top-enriched category T , we have the underlying
poset P(T ) defined as P(T ) = T0 with the partial order x ≤ y given by T (x, y) �= ∅.
Furthermore, we have a natural functor ρT : T → P(T ) preserving the objects.

Definition 2.25 Let π : X → P be a stellar stratified space with characteristic maps
{ϕp : Dp → ep}. The naive face category F(X) is a loop-free top-enriched category
defined as follows: The set of objects F(X)0 = P and the space of morphisms
F(X)(p, q) consists of continuous maps Dp → Dq that are compatible with the
characteristic maps ϕp and ϕq for p < q. We set F(X)(p, p) = {idDp } and the
composition is given by the composition of maps.

A map f ∈ F(X)(p, q) makes the following diagram commute for p < q:

Dp
f

ϕp

Dq

ϕq

ep eq .

The bottom inclusion maps into the boundary ∂eq ; thus, f also maps into ∂Dq .
Therefore, F(X)(p, q) is the subspace of the mapping space Map(Dp, ∂Dq) with
the compact open topology for p < q.

Definition 2.26 Let π : X → P be a stellar stratified space with characteristic maps
{ϕp : Dp → ep}. A cylindrical structure on π consists of a loop-free top-enriched
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category C(X) (called the face category) with a continuous functor b : C(X) → F(X)

satisfying the following conditions:

(1) C(X)0 = P and b preserves the set of objects, that is, b(p) = p for all p ∈ P .
(2) Let b̃p,q : C(X)(p, q) × Dp → Dq denote the adjoint map to bp,q . The restric-

tion of b̃p,q to C(X)(p, q) × Int(Dp) is a homeomorphism onto its image
e′
p = b̃p,q(C(X)(p, q) × Int(Dp)) ⊂ ∂Dq for p < q.

(3) The boundary of Dq is decomposed

∂Dq =
⋃

p<q

e′
p

as a stratified space over P<q for each q.

A stellar stratified space with a cylindrical structure is called a cylindrically normal
stellar stratified space.

Example 2.27 A regular stellar stratified space π : X → P has a natural cylindrical
structure with C(X) = F(X) = P because a map f : Dp → Dq compatible with the
characteristic maps ϕp and ϕq is uniquely expressed as ϕ−1

q ◦ ϕp.

The classifying space construction of posets can be naturally extended to top-
enriched categories (more generally, topological categories, which are internal
categories in topological spaces). See (Segal 1968) for the construction of the classi-
fying spaces for topological categories.

Definition 2.28 For a loop-free top-enriched category T , the classifying space BT is
the geometric realization of the semi-simplicial space N T defined by

NkT =
∐

x0,...,xk

T (xk−1, xk) × T (xk−2, xk−1) × · · · × T (x0, x1).

For a cylindrical structure on a stellar stratified space π : X → P(X) with face
category C(X), the classifying spaceBC(X) has a wealth of topological (homotopical)
information about X . The following theorem was proved by Tamaki (2018). See also
(Furuse et al. 2015; Tamaki and Tanaka 2019).

Theorem 2.29 (Theorem 5.16 in Tamaki (2018)) Let π : X → P be a cylindrically
normal CW stellar stratified space with face category C(X). Then, we have a natural
embedding ι : BC(X) → X over P. Here, we regard BC(X) as a stratified space over
P by τ ◦ B(ρ) : BC(X) → P for the natural functor ρ : C(X) → P = P(C(X)).
Furthermore, if π is a stellar complex, then ι is a homeomorphism.

The embedding ι : BC(X) → X is constructed by gluing maps

C(X)(pk−1, pk) × · · · × C(X)(p0, p1) × �k −→ Dpk

ϕpk−→ X

defined inductively on totally ordered subsets p0 < · · · < pk in P (see the proof of
Theorem 5.16 in Tamaki (2018)). Hence, ι is a map over P .
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Moreover, if π is regular, ι embeds BC(X) into X as a deformation retract. Tamaki
proved it in more general setting than regular stellar stratified space (Corollary 5.19
in Tamaki (2018)). The idea of the construction of a deformation retraction and a
homotopy is essentially the same as ι. A deformation retraction X → ι(BC(X)) and
a homotopy X × I → X can be taken as maps over P because these are constructed
by homotopies Dp × I → Dp for p ∈ P (see the proof of Theorem 2.50 in Furuse
et al. (2015)).

Theorem 2.30 (Theorem 2.50 in Furuse et al. (2015)) Let π : X → P be a regular
CW stellar stratified space with face category C(X). The map ι embeds BC(X) into X
as a fiberwise deformation retract over P.

Many examples of cylindrically normal stellar stratified spaces were introduced in
Tamaki (2018), Tamaki and Tanaka (2019). In particular, the face categories associated
with natural cylindrical structures on some familiar CW complexes are described as
follows. These face categories are used in Sect. 4 for the calculation of the generalized
version of TC.

Example 2.31 (Tamaki (2018)) The following CW complexes admit cylindrical struc-
tures:

(1) A sphere Sn = e(0) ∪ e(n); the face category C(Sn) has morphisms

C(Sn)(e(0), e(n)) = Sn−1.

(2) A bouquet Bk = ∨k S1 = e(0) ∪ e(1)
1 ∪ · · · e(1)

k ; the face category C(Bk) has

morphisms C(Bk)(e(0), e(1)
i ) = S0 for each i .

(3) A torus T n = ∏
n S

1 with the product cell structure of S1 = e(0) ∪ e(1); the face
category C(T n) = C(S1)n is the product of copies of the face category given in
(1).

(4) A real projective space RPn = e(0) ∪ e(1) ∪ · · · ∪ e(n); the face category C(RPn)
has morphisms C(RPn)(e(i), e( j)) = S0 for i < j with the composition given by
the multiplication on Z2 = S0.

(5) A complex projective space CPn = e(0) ∪ e(2) ∪ · · · ∪ e(2n); the face category
C(CPn) has morphisms C(CPn)(e(2i), e(2 j)) = S1 for i < j with the composition
given by the multiplication on U (1) = S1.

3 Parametrized topological complexity of poset-stratified spaces

This section is devoted to the computation of the parametrized topological complexity
for simplicial complexes, regular CW complexes, cones, and suspensions.

3.1 Simplicial complexes and regular CW complexes

A typical example of poset-stratified space is a normal CW complex X with the face
poset P(X). We will show the equality TC(X → P(X)) = 0 for a locally finite
regular CW complex X .
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First, we consider the simple case of simplicial complexes. For a convex set X ,
we have the linear motion planning algorithm L : X2 → X I given by L(x, y)(t) =
(1 − t)x + t y for t ∈ I .

Proposition 3.1 For any simplicial complex K , we have TC(K → P(K )) = 0.

Proof For a point (x, y) in K 2
P(K )

, both x and y are contained in the same simplex.

We have a global section s : K 2
P(K )

→ K I
P(K )

of � defined as s(x, y) = L(x, y).
Hence, TC(K → P(K )) = 0. �


Recall that the classifying space BP of a poset P is considered a stratified space
over P by τ : BP → P . Let us compute TC(τ ). Note that the face poset of BP is not
P (but the barycentric subdivision of P), and τ is different from the canonical map
BP → P(BP). Each stratum ep of τ consists of open simplices indexed by totally
ordered sequences that have the maximal element p. This is not convex in general;
thus, the linear motion planning algorithm does not work.

Furthermore, we notice that ep is contractible to p, and a contraction presents a
motion planning algorithm on ep. However, this algorithm only works continuously
for each ep (cannot be extended globally).

Proposition 3.2 For a locally finite poset P, we have TC(τ : BP → P) = 0.

Proof We have a homeomorphism ϕ : B(P2) → (BP)2 over P2, which is induced
from the projections P2 → P . By Example 2.24, τ : B(P2) → P2 has a regular
stellar structure. Consider the following pullback diagram:

B�(P2) B(P2)

P
�

P2.

The restriction of ϕ induced the following homeomorphism over P:

ϕ|B�(P2) : B�(P2) −→ (BP)2P .

Lemma 2.20 guarantees that B�(P2) has a regular stellar structure. Hence, Example
2.27 and Theorem 2.30 imply that ι = � : BP → B�(P2) = (BP)2P is a fiberwise
deformation retract of (BP)2P over P . Proposition 2.11 ensures that TC(τ ) = 0. �


Next, we focus on regular CWcomplexes. Our aim is to show the equality TC(X →
P(X)) = 0 for a locally finite regular CW complex X with the face poset P(X).
Before discussing the general case, we observe the case of canonical regular CW
decompositions on spheres.

Example 3.3 For an n-sphere Sn (n ≥ 1), we have the canonical regular cell decom-
position with (2n + 2) cells

{
e(0)
+ , e(0)

− , · · · , e(n)
+ , e(n)

−
}

,
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where

e(k)
+(−) = {(x0, · · · , xk, 0, · · · , 0) ∈ Sn | xk > 0(< 0)}

denotes the k-dimensional upper(lower) hemisphere. The face poset R = P(Sn)
consists of 2n + 2 points, and the fiberwise product (Sn)2R consists of pairs of points
lying in the same cell. According to Farber’s computation of TC(Sn) (Farber 2003),
the shortest arc provides a motion planning algorithm s onU = Sn × Sn −{(x,−x)}.
The restriction of s to (Sn)2R ⊂ U maps into (Sn)IR . Thus, TC(Sn → R) = 0 for any
n ≥ 1, while the usual topological complexity

TC(Sn) =
{
1 for n odd,

2 for n even.

Theorem 3.4 For a locally finite regular CW complex X, we have TC(X → P(X)) =
0.

Proof The product X2 is a regular CW complex because of the local finiteness. Simi-
larly to the discussions inTheorem3.2, the fiberwise product X2

P is a regularCWstellar
stratified space over the face poset P = P(X), and the diagonal � : X ∼= BP → X2

P
is a fiberwise deformation retract of X2

P . Our desired result follows from Proposition
2.11. �


3.2 One-point stratification on cone and suspension

The cone CX and the suspension 
X of a space X admit stratifications CX = {v} ∪
(CX −{v}) and
X = {v}∪ (
X −{v}), where v is the top vertex. The stratifications
are quite simple, however, we will show that TC becomes infinite when X is not
contractible. As a result, TC(X → P(X)) also becomes infinite for some non-regular
CW complex X (see Example 3.7).

Let J denote the poset {0 < 1}. A fiberwise space X → J corresponds to choosing
an open set (or closed set) in X . We consider the stratified space πJ : CX → J on
the cone CX = X�{v}, where πJ (v) = 0 for the top vertex v and πJ (Ĉ X) = 1 for
Ĉ X = CX − {v}.
Theorem 3.5 For πJ : CX → J , we have

TC(πJ ) =
{
0 if X is contractible,

∞ otherwise.

Proof First, we assume that X is contractible. A contraction on X implies that CX
and I are fiberwise homotopy equivalent over J , where we regard I as a fiberwise
space πI : I → J given by πI (1) = 0 and πI [0, 1) = 1. Corollary 2.8 ensures the
equality TC(πJ ) = TC(πI ) = 0 because I has the linear motion planning algorithm
that is parametrized with respect to πI .
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Next, we consider a non-contractible space X . If we assume that TC(πJ ) < ∞, we
have an open set (v, v) ∈ U ⊂ (CX)2J with a parametrized motion planning algorithm
s : U → (CX)IJ . For a sufficiently small ε > 0, we have a neighborhood of v as

V = {(1 − t)x + tv ∈ CX | 1 − ε ≤ t ≤ 1, x ∈ X}

such that (v, v) ∈ V 2
J ⊂ U . Here, we regard V as a fiberwise subspaceπV : V → J of

πJ .We have a deformation retraction r : CX → V over J given by r((1−t)x+tv)) =
(1 − ε)x + εv for t < 1 − ε, and the motion planning algorithm s on U provides a
global parametrizedmotion planning algorithm s′(x, y) = r ◦s(x, y) on V .πJ andπV

are fiberwise homotopy equivalent by the fiberwise deformation retraction r . Hence,
Corollary 2.8 ensures the equality TC(πJ ) = TC(πV ) = 0. However, the assumption
implies TC(X) > 0. Corollary 2.6 shows the following inequalities:

TC(πJ ) ≥ TC(π−1
J (1)) = TC(Ĉ X) = TC(X) > 0.

This is a contradiction; thus, TC(πJ ) = ∞. �

We also consider the suspension 
X = X × [−1, 1]/∼, where (x, t)∼(y, s) if,

and only if, either t = s = 1 or t = s = −1. Let us consider πJ : 
X → J given by
πJ (v) = 0 for the top vertex v = [x, 1] and πJ (
̂X) = 1 for 
̂X = 
X − {v}.
Theorem 3.6 For πJ : 
X → J , we have

TC(πJ ) =
{
0 if X is contractible,

∞ otherwise.

Proof When X is contractible, we can show the equality TC(πJ ) = 0 by the same
argument in the proof of Theorem 3.5. For a non-contractible space X , we assume that
TC(πJ ) < ∞. By the same argument in the proof of Theorem 3.5, we have a small
neighborhood V of v as

V = {(1 − t)x + tv ∈ 
X | 1 − ε ≤ t ≤ 1, x ∈ X},

with a parametrized motion planning algorithm s : V 2
J → (
X)IJ . Moreover, we can

choose a small ε > 0 such that the path s(y, z) never passes through the bottom
vertex w = [x,−1] for any (y, z) ∈ V 2

J because s is continuous and s(v, v) is
the constant path at v. Hence, s maps into (
X − {w})IJ . A deformation retraction

X − {w} → V and s present a parametrized motion planning algorithm on V .
The equality TC(πV : V → J ) = 0 leads to the same contradiction as the proof of
Theorem 3.5. Hence, TC(πJ : 
X → J ) = ∞. �

Example 3.7 We compute the parametrized topological complexity of some CW com-
plexes given in Example 2.31.

(1) TC(Sn → {e(0) < e(n)}) = ∞ by Theorem 3.6.
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(2) TC(Bk → P(Bk)) = ∞ because Corollary 2.6 shows

TC(Bk → P(Bk)) ≥ TC(S1 → {e(0) < e(1)}) = ∞.

(3) TC(T n → P(T n)) = ∞ because Corollary 2.6 shows

TC(T n → P(T n)) = TC(T n → Jn) ≥ TC(S1 → {e(0) < e(1)}) = ∞.

(4) TC(RPn → P(RPn)) = ∞ because Corollary 2.6 shows

TC(RPn → P(RPn)) ≥ TC(S1 → {e(0) < e(1)}) = ∞.

(5) TC(CPn → P(CPn)) = ∞ because Corollary 2.6 shows

TC(CPn → P(CPn)) ≥ TC(S2 → {e(0) < e(2)}) = ∞.

The CW complexes X given in the above example have infinite TC(X → P(X)).
This is because TC uses open sets that cover the fiberwise product. If we use arbitrary
subspaces instead of open sets with parametrized motion planning algorithms, we
can consider the generalized version TCg of TC, and obtain a different result from
Example 3.7 (see Example 4.20).

Remark 3.8 Several properties of parametrized topological complexity in Cohen et al.
(2021) may not hold for non-fibrations by Theorems 3.5 and 3.6.

(1) For a fibration π : E → B, the inequality TC(π) ≤ cat(E2
B) holds, as mentioned

in (Section 7 Cohen et al. 2021). However, it is not true for general fiberwise
spaces. For a non-contractible space X and the stratified space πJ : CX → J ,
the fiberwise product (CX)2J is contractible to (v, v) by the contraction induced
from the natural linear contraction on CX to v. Thus, cat((CX)2J ) = 0, whereas
TC(πJ ) = ∞.

(2) Proposition 2.9 is not true for general fiberwise spaces. For a circle S1 with the
minimal cell decomposition S1 → J , the fiberwise product

(S1)2J = T 2 − (e(0) × e(1) ∪ e(1) × e(0))

is a toruswith twoopen1-cells removed, and is homotopy equivalent to S1∨S1∨S1.
Each stratum is a contractible open cell; however, TC(S1 → J ) = ∞.

3.3 Equatorial stratification on cone and suspension

With another stratification on the cone CX over J , we have πE : CX → J , defined
by πE (X) = 0 for X = X × {0} and πE (CX+) = 1 for CX+ = CX − X . In this
subsection, we will show that TC(πE ) equals to TC(X) or TC(X) + 1.

Lemma 3.9 We have TC(X) ≤ TC(πE ) ≤ TC(X) + 1.
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Proof It is obvious that TC(X) = TC(π−1
E (0)) ≤ TC(πE ) by Corollary 2.6. We show

the other inequality TC(πE ) ≤ TC(X) + 1. Let U be an open subset of X2 with a
motion planning algorithm s : U → X I . We consider an open set

Ũ = {((1 − t)x + tv, (1 − u)y + uv) ∈ (CX)2J | (x, y) ∈ U , t, u ∈ [0, 1)}

and a parametrized motion planning algorithm s̃ : Ũ → (CX)IJ , given by

s̃(((1 − t)x + tv, (1 − u)y + uv))(r) = (1 − L(t, u)(r))s(x, y)(r) + L(t, u)(r)v,

where L(t, u)(r) = (1 − r)t + ru for r ∈ I .
In contrast, the open setCX2+ = CX+ ×CX+ ⊂ (CX)2J admits a motion planning

algorithm given by a contraction on CX+. This is a parametrized motion planning
algorithm CX2+ → (CX)IJ because it only works in CX+.

If TC(X) = m with open setsU0,U1, · · · ,Um covering X2, where eachUi admits
a motion planning algorithm, then Ũ0, · · · , Ũm , and CX2+ constitute an open cover of
(CX)2J with parametrized motion planning algorithms. Hence, TC(πE ) ≤ m + 1 =
TC(X) + 1. �


A natural question to ask at this point is whether TC(πE ) = TC(X) or TC(πE ) =
TC(X) + 1. We have not completely solved the problem, but some cases show
TC(πE ) = TC(X).

Proposition 3.10 If X is contractible, then TC(πE ) = TC(X) = 0.

Proof The cone CX is fiberwise homotopy equivalent to C{0} = I over J . The
interval I admits the linearmotion planning algorithm, which is a parametrizedmotion
planning algorithm. Hence, TC(πE ) = TC(I → J ) = 0. �


For example, in the case of non-contractible space X = Sn shows TC(πE ) =
TC(X). In this case, the cone CSn = Dn+1 is convex, and we can extend motion
planning algorithms in Sn to parametrized ones in Dn+1 using linear combinations.

Proposition 3.11 If the cone CX is homeomorphic to a convex set inRn, then we have
TC(πE ) = TC(X).

Proof It is sufficient to show the inequality TC(πE ) ≤ TC(X). Assume that TC(X) =
m with open sets U0, · · · ,Um covering X2, where each Ui admits a motion planning
algorithm. It should be noted that CX and the product (CX)2 are metrizable. Further-
more, X2 is normal (satisfying Axiom T4). Thus, we can take an open set V ⊂ U0
such that V ⊂ U0 and V ,U1, · · · ,Um cover X2.We extend V to an open set in (CX)2J
as follows:

W = {((1 − t)x + tv, (1 − u)y + uv) ∈ (CX)2J | (x, y) ∈ V , t, u ∈ [0, 1/2)}.

We have a separating function f : (CX)2J → I satisfying f (W ) = 0 and f (Ũ c
0 ) = 1,

where Ũ c
0 denotes the complement of Ũ0 with respect to (CX)2J . Recall that the open
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set

Ũ0 = {((1 − t)x + tv, (1 − u)y + uv)) ∈ (CX)2J | (x, y) ∈ U0, t, u ∈ [0, 1)}

admits a parametrized motion planning algorithm s̃ : Ũ0 → (CX)IJ in the proof
of Lemma 3.9. Furthermore, the contractible space CX also has a motion planning
algorithm (not necessarily parametrized) h : (CX)2 → (CX)I . We can construct the
following motion planning algorithm:

γ : (CX)2J → (CX)I

given by γ (a) = (1 − f (a))s̃(a) + f (a)h(a). The restriction of γ to W ∪ CX2+ is a
parametrized motion planning algorithm. The open sets Ũ1, · · · , Ũm , and W ∪ CX2+
cover (CX)2J with parametrized motion planning algorithms. Hence, TC(πE ) ≤ m =
TC(X). �


The next computation immediately follows from Proposition 3.11.

Example 3.12 Consider the stratified space πE : Dn → J for an n-disk Dn = CSn−1

(n ≥ 2). Then we have

TC(πE ) = TC(Sn−1) =
{
1 for n even,

2 for n odd.

For the general case, we leave it as a conjecture.

Conjecture 3.13 TC(πE : CX → J ) = TC(X) for any space X.

In contrast, the suspension 
X is separated into three strata: the upper open cone
CX+, equator X , and lower open cone CX−. This is a stratified space πE : 
X → E
over the poset E = {−1 > 0 < 1} defined by πE (CX+) = 1, πE (X) = 0, and
πE (CX−) = −1. Note that the previous stratified space πE : CX → J is a stratified
subspace of πE : 
X → E .

Proposition 3.14 TC(πE : 
X → E) = TC(πE : CX → J ) for any space X.

Proof It is obvious that

TC(πE : 
X → E) ≥ TC(πE : π−1
E (J ) → J ) = TC(πE : CX → J ).

We will show the converse inequality. Let U be an open set in (CX)2J with a
parametrized motion planning algorithm s : U → (CX)IE . For a point a = [x, t] ∈

X , let −a ∈ 
X denote the vertically symmetrical point [x,−t]. We consider the
open sets

−U = {(a, b) ∈ (
X)2E | (−a,−b) ∈ U },
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and Ũ = U ∪ (−U ). The parametrized motion planning algorithm s on U can be
extended to s̃ on Ũ as follows: s̃(a, b)(t) = −s(−a,−b)(t) for (a, b) ∈ −U , and
t ∈ I . Hence, TC(πE : 
X → E) ≤ TC(πE : CX → J ). �

Example 3.15 Consider the stratified spaceπE : Sn → E for ann-sphere Sn = 
Sn−1

(n ≥ 2). Then we have that

TC(πE ) = TC(Sn−1) =
{
1 for n even,

2 for n odd,

by Proposition 3.14 and Example 3.12.

4 Generalized version of parametrized topological complexity

Example 3.7 suggests that it is impossible to construct parametrized motion planning
algorithms on open sets covering the fiberwise product of some CW complexes. How-
ever, we can separate the fiberwise product into a finite number of subspaces (not
necessarily open sets) with parametrized motion planning algorithms for finite CW
complexes. From this perspective, we can consider another version of parametrized
topological complexity.

4.1 Generalized parametrized topological complexity

We briefly review the generalized version of parametrized topological complexity.
This concept was considered for fibrations in Cohen et al. (2021).

Definition 4.1 For a fiberwise space π : E → B, the generalized parametrized topo-
logical complexity TCg(π) is defined as the minimal number n such that the fiberwise
product E2

B admits a partition into n + 1 subsets

E2
B = U0 
U1 
 · · · 
Un, (Ui ∩Uj = ∅, i �= j).

where each Ui admits a parametrized motion planning algorithm. In particular, when
B = ∗ consists of a single point, TCg(π) = TCg(E) is called the generalized topo-
logical complexity of E .

Clearly, the inequality TCg(π) ≤ TC(π) always holds for any fiberwise space π .
The converse inequality also holds for nice fiberwise spaces.

Theorem 4.2 (Proposition 4.7 in Cohen et al. (2021), Corollary 2.8 in García-Calcines
(2019)) For a locally trivial fibration π : E → B between metrizable separable ANR
spaces E and B, we have TCg(π) = TC(π). In particular, TCg(X) = TC(X) for a
space X having the homotopy type of a CW complex.

Unfortunately, a poset-stratified space X → P is not a fibration, and the base poset
P is not an ANR space in general. The above equality fails for X → P(X), which
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is associated with the CW complexes X with the face poset P(X) given in Examples
3.7 and 4.20.

Remark 4.3 For a fiberwise space π : E → B, TC(π) = 0 indicates that there exists
a global section of � : E I

B → E2
B . Hence, TC(π) = 0 if and only if TCg(π) = 0.

A similar equality to Theorem 4.2 holds for LS category and its generalization. The
generalized LS category catg(X) is defined as the minimal number n such that X is
separated into n + 1 categorical subspaces.

Theorem 4.4 (Corollary 2.10 in García-Calcines (2019)) catg(X) = cat(X) for a
space X having the homotopy type of a CW complex.

As seen in Section 2.1, some fundamental properties of TC(π) also hold for TCg(π)

because they do not depend on open sets.

Proposition 4.5 Let π : E → B be a fiberwise space.

(1) TCg( f ∗π) ≤ TCg(π) for the pull-back f ∗π : E ×B X → X for a map f : X →
B. In particular, TCg(π |π−1(A)) ≤ TC(π) for A ⊂ B.

(2) TCg(π
′) ≤ TCg(π) for a fiberwise space π ′ : E ′ → B with fiberwise maps

f : E ′ → E and g : E → E ′ satisfying g ◦ f �B idE ′ . In particular, TCg(π
′) =

TCg(π) if π and π ′ are fiberwise homotopy equivalent.

4.2 Generalized parametrized topological complexity of poset-stratified spaces

We will deal with the computation of TCg(π) for poset-stratified spaces π : X → P
given in Sect. 3.

The inequality TCg(π) ≤ TC(π) implies that TCg(X → P(X)) = 0 for a locally
finite regular CW complex X with the face posetP(X). Furthermore, TCg(τ : BP →
P) = 0 for a locally finite poset P .

Let us recall the stratifications πJ : CX → J and πJ : 
X → J respectively on
the cone CX and the suspension 
X given in Sect. 3.2.

Theorem 4.6 For πJ : CX → J , we have TCg(πJ ) = TCg(X).

Proof It is obvious that TCg(πJ ) ≥ TCg(π
−1
J (1)) = TCg(Ĉ X) = TCg(X). We

will show the converse inequality. Let TCg(X) = m with subspaces U0, · · · ,Um

separating X2 with motion planning algorithms si : Ui → X I . Recall the proof of
Lemma 3.9. We extend Ui to a subspace Ũi in (Ĉ X)2 and si to a motion planning
algorithm s̃i : Ũi → (Ĉ X)I . Furthermore, V = Ũ0 ∪ {(v, v)} admits a parametrized
motion planning algorithm s : V → (CX)IJ given by

s((1 − t)x + tv, (1 − u)y + uv))(r) = (1 − L(t, u)(r))s0(x, y)(r) + L(t, u)(r)v,

because s(v, v)(r) = v for any r ∈ I . Hence, (CX)2J is separated intom+1 subspaces

(CX)2J = {(v, v)} 
 (Ĉ X)2 = V 
 Ũ1 
 · · · 
 Ũm

with parametrized motion planning algorithms, and TCg(πJ ) ≤ m = TCg(X). �
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If P is a finite poset, then X is separated into finite strata and X2
P = 
p(ep)2. The

next lemma follows immediately from this fact.

Lemma 4.7 For a stratified space π : X → P over a finite poset P, we have

TCg(π) ≤
∑

p∈P

(
TCg(ep) + 1

) − 1.

Theorem 4.8 For πJ : 
X → J , we have

TC(πJ ) =
{
0 if X is contractible,

1 otherwise.

Proof The contractible case can be shown by the same argument in the proof of
Theorem 3.6. For a non-contractible space X , assume that TCg(πJ ) = 0. Remark
4.3 implies TC(πJ ) = 0; however, this is a contradiction by Theorem 3.6. Therefore,
TCg(πJ ) > 0. Moreover, 
X is separated into two contractible strata {v} and 
̂X =

X − {v}; therefore, TCg(πJ ) ≤ 1 by Lemma 4.7. Hence, TCg(πJ ) = 1. �


Next, we consider TCg for the stratifications πE : CX → J and πE : 
X → E
given in Sec. 3.3.

Lemma 4.9 For πE : CX → J , we have TCg(X) ≤ TCg(πE ) ≤ TCg(X) + 1.

Proof The essential argument here is the same given in Lemma 3.9; however, the proof
is simpler because we do not need open sets. We have

TCg(X) = TCg(π
−1
E (0)) ≤ TCg(πE ).

Therefore, we will show the inequality TCg(πE ) ≤ TCg(X) + 1. Let TCg(X) = m
and let X2 be separated into m + 1 subspaces U0, · · · ,Um with motion planning
algorithms. The open cone CX+ is contractible and TCg(CX+) = 0. Lemma 4.7
provides

TCg(πE ) ≤ (TCg(X) + 1) + (TCg(CX+) + 1) − 1 = m + 1 = TCg(X) + 1.

�

We have the following conjecture similar to Conjecture 3.13.

Conjecture 4.10 TCg(πE : CX → J ) = TCg(X) for any space X.

If Conjecture 3.13 is true, the above conjecture is also true for spaces having the
homotopy type of a CW complex as the following result asserts.

Proposition 4.11 Let X be a space having the homotopy type of a CW complex. If
TC(πE : CX → J ) = TC(X), then we have that TCg(πE : CX → J ) = TCg(X).
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Proof Theorem 4.2 provides the following inequalities:

TC(X) = TCg(X) ≤ TCg(πE ) ≤ TC(πE ).

Thus, TC(πE ) = TC(X) implies TCg(πE ) = TCg(X). �

The following equality follows from the argument in the proof of Proposition 3.14.

Proposition 4.12 TCg(πE : 
X → E) = TCg(πE : CX → J ) for any space X.

4.3 Generalized parametrized topological complexity of CW-complexes

In this subsection, we will compute TCg(X → P(X)) for the non-regular CW com-
plexes X given in Example 3.7. While TC(X → P(X)) = ∞, the calculation shows
that TCg(X → P(X)) = cat(X) in this case.

A CW complex X is separated into contractible open cells (strata). Lemma 4.7
implies the following proposition.

Proposition 4.13 For a finite CW complex X with the face poset P(X), we have
TCg(X → P(X)) ≤ P(X)� − 1, where P(X)� stands for the cardinal of P(X).

Proposition 4.14 For a finite-dimensional CW complex X with the face poset P(X),
we have TCg(X → P(X)) ≤ dim X.

Proof We consider the subset

Un =
⋃

dim e=n

(e × e) ⊂ X2
P(X).

Each e is contractible; hence, we have a section Un → X I
P(X)

of �. Thus, we have

X2
P(X) = U0 
U1 
 · · · 
Udim X

and TCg(X → P(X)) ≤ dim X . �

Using the results given above we are able to compute TCg of some CW complexes

given in Example 3.7.

Example 4.15 The minimal cell decomposition on a sphere Sn consists of two cells.
Proposition 4.13 provides TCg(Sn → P(Sn)) ≤ 1. Moreover, TC(Sn → P(Sn)) =
∞ in Example 3.7 implies that there is no global section of �. Hence, TCg(Sn →
P(Sn)) = 1.

Example 4.16 For a bouquet Bk = ∨k S1 with the cell decomposition given in Exam-
ple 3.7, Proposition 4.14 provides TCg(Bk → P(Bk)) ≤ 1. Moreover, TC(Bk →
P(Bk)) = ∞ in Example 3.7 implies that there is no global section of �. Hence,
TCg(Bk → P(Bk)) = 1.
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We now focus on lower bounds of TCg . For a fiberwise pointed space π : E → B
with a section s : B → E , García-Calcines presented a fiberwise LS lower bound of
TC(π). We can similarly show the generalized version by the same argument in the
proof of Proposition 13 in [Gar].

A subspace U of E is called fiberwise categorical over B if the inclusion U ↪→ E
is fiberwise homotopic to s ◦ p|U . The fiberwise LS category catB(E) is the smallest
number n such that E is covered by n + 1 fiberwise categorical open subsets over
B. Similarly, the generalized fiberwise LS category catBg (E) is the smallest number n
such that E is separated into n + 1 fiberwise categorical subspaces over B.

Proposition 4.17 (Proposition 13 of [Gar]) For a fiberwise pointed space π : E → B,
we have catB(E) ≤ TC(π) and catBg (E) ≤ TCg(π).

Proposition 4.17 provides a lower bound of TC and TCg respectively for fiberwise
pointed space. However, a poset-stratified space is not a fiberwise pointed space, that
is, it does not admit a section in general.

Lemma 4.18 Let P be a finite connected poset and let X be a T1 space. Any continuous
map P → X must be constant.

Proof Let f : P → X be a continuous map. For a comparable pair p < q in P ,
we assume that f (p) �= f (q) in X . We can take an open set f (p) ∈ U such that
f (q) /∈ U . The open set V = f −1(U ) includes p while q /∈ V . However, the
minimal open neighborhood P≥p of p includes q. Hence, V must include q. This
contradiction implies that f (p) = f (q) for any comparable pair p, q. If P is a finite
connected poset, then any two points p, q in P are connected by comparable pairs:
p = p0, p1, p2, · · · , pn = q, such that pi ≤ pi+1 or pi ≥ pi+1 for each i . Thus,
f (p) = f (q) for any p, q, and f is constant. �

The above lemma suggests that the fiberwise space X → P(X) associated with

a connected normal finite CW complex X is not pointed, except when X is a single
point. It is difficult to construct a section of a continuous map X → P for a poset P
and a Hausdorff space X . However, it may be possible for the classifying space BP
instead of P .

Theorem 4.19 Let X be a cylindrically normal CW complex with face category C =
C(X). If the canonical functor ρ : C → P to the face poset P = P(X) has a section
and BP is contractible, then

(1) cat(X) ≤ TC(π),
(2) cat(X) = catg(X) ≤ TCg(π),

for the stratified space π : X → P.

Proof (1) Our aim is to show the following inequalities:

TC(π) ≥ TC(τ ∗(π)) ≥ catBP (X ×P BP) ≥ cat(X ×P BP) ≥ cat(X).

Let us focus on each of the inequalities.
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(i) First we consider the pullback τ ∗(π) : X ×P BP → BP of π along the natural
map τ : BP → P . Proposition 2.5 ensures TC(τ ∗(π)) ≤ TC(π).

(ii) Let s : P → C denote a section of ρ : C → P and ι : BC → X denote the
natural homeomorphism in Theorem 2.29. We notice that τ ∗(π) is a fiberwise
pointed space over BP because we have a section BP → X ×P BP of τ ∗(π)

sending a to (ι(Bs(a)), a). Hence, catBP (X×PBP) ≤ TC(τ ∗(π)) by Proposition
4.17.

(iii) Fiberwise categorical subsets in a space over the contractible classifying space
BP are categorical subsets in the standard sense. Thus, we have cat(X ×P BP) ≤
catBP (X ×P BP).

(iv) The first projection X ×P BP → X has a section X → X ×P BP sending x to
(x,Bρ(ι−1(x))). This implies cat(X) ≤ cat(X ×P BP).

(2) Similarly, we can show catg(X) ≤ TCg(π). Theorem 4.4 shows the equality
catg(X) = cat(X). Thus, cat(X) ≤ TCg(π). �


Now, using all the machinery we have developed above, we are able to compute
TCg for the CW complexes given in Example 3.7.

Example 4.20 Let us recall the cylindrically normal CW complexes X and their face
categories C(X) given in Example 2.31. The canonical functor ρ : C(X) → P(X)

admits a section and BP is contractible in each example. Hence, Theorem 4.19 and
Propositions 4.13, 4.14 provide

cat(X) ≤ TCg(π) ≤ min{P(X)� − 1, dim X}.

These inequalities determine TCg of the following CW complexes:

(1) The canonical functor C(Sn) → P(Sn) admits a section by choosing a point in
Sn−1, and B(P(Sn)) ∼= I is contractible. Hence, TCg(Sn → P(Sn)) = 1, as
shown in Example 4.15.

(2) The canonical functor C(Bk) → P(Bk) admits a section by choosing a point S0,
and B(P(Bk)) ∼= ∨k I is contractible. Hence, TCg(Bk → P(Bk)) = 1, as shown
in Example 4.16.

(3) The canonical functor C(T n) → P(T n) admits a section as the product of sections
of C(S1) → P(S1), and B(P(T n)) ∼= I n is contractible. Hence, TCg(T n →
P(T n)) = n.

(4) The canonical functor C(RPn) → P(RPn) has a section given by the unit element
in Z2, and B(P(RPn)) ∼= �n is contractible. Hence, TCg(RPn → P(RPn)) = n.

(5) The canonical functor C(CPn) → P(CPn) has a section given by the unit element
in U (1), and B(P(CPn)) ∼= �n is contractible. Hence, TCg(CPn → P(CPn)) =
n.

Conclusion and future work

We have computed the (generalized) parametrized topological complexity of various
poset-stratified spaces compiled in the following Table 1.
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Examples 3.7 and 4.20 display TC(X → P(X)) and TCg(X → P(X)) for some
non-regular CW complexes X with the face posets P(X), and exhibit that TCg is far
different from TC in this case. On the other hand, TC(X → P(X)) = TCg(X →
P(X)) = 0 for any locally finite regular CW complex X (Theorem 3.4). Hence,
TC(X → P(X)) and TCg(X → P(X)) strongly depend on the cell decomposition
on X .

A natural question to ask is whether there is a non-regular CWcomplex X satisfying
TC(X → P(X)) = 0 or not. If TC(X → P(X)) = 0 is equivalent to the regularity
of X , we can say that the (generalized) parametrized topological complexity for CW
complexes measure the difference from regularity.

Furthermore, in order to better understand the characteristics ofTCandTCg for non-
regularCWcomplexeswith the face posets,we needmore computational examples.As
seen in Example 3.7, TC(X → P(X)) = ∞ for various non-regular CW complexes.
Moreover, all examples in Example 4.20 show that TCg(X → P(X)) = cat(X). It
may be interesting to find non-regular CW complexes X with TC(X → P(X)) < ∞,
or TCg(X → P(X)) �= cat(X).
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