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Predicting cardiorespiratory instability
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Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
medicine 2016. Other selected articles can be found
online at http://www.biomedcentral.com/collections/
annualupdate2016. Further information about the
Annual Update in Intensive Care and Emergency
Medicine is available from http://www.springer.com/
series/8901.
the use of the existing severity scoring systems or com-
puter‐based treatment protocols, are unlikely to improve
Background
Identification of patients with overt cardiorespiratory insuf-
ficiency or at high risk of impending cardiorespiratory in-
sufficiency is often difficult outside the venue of directly
observed patients in highly staffed areas of the hospital,
such as the operating room, intensive care unit (ICU) or
emergency department. And even in these care locations,
identification of cardiorespiratory insufficiency early or
predicting its development beforehand is often challenging.
The clinical literature has historically prized early recogni-
tion of cardiorespiratory insufficiency and its prompt cor-
rection as being valuable at minimizing patient morbidity
and mortality while simultaneously reducing healthcare
costs. Recent data support the statement that integrated
monitoring systems that create derived fused parameters of
stability or instability using machine learning algorithms,
accurately identify cardiorespiratory insufficiency and can
predict their occurrence. In this overview, we describe inte-
grated monitoring systems based on established machine
learning analysis using various established tools, including
artificial neural networks, k‐nearest neighbor, support vec-
tor machine, random forest classifier and others on rou-
tinely acquired non‐invasive and invasive hemodynamic
measures to identify cardiorespiratory insufficiency and
display them in real‐time with a high degree of precision.
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The implications of these approaches for all healthcare
monitoring across the spectrum of in‐patient to chronic
care is clear, even though the need may appear more
pressing for the acute care setting to those of us whose
daily life is centered there. The underlying assumption
of these approaches is that measured changes in easily
acquired physiologic variables reflect complex patient‐
specific interactions amongst multiple regulatory auto-
nomic, hormonal and metabolic systems. Accordingly,
simple algorithm approaches to such interactions, like

outcomes other than by standardizing therapies. Poten-
tially, by using functional hemodynamic monitoring
principles, previously described and validated, we can
predict with a high degree of accuracy volume respon-
siveness and central arterial tone in all patients. But one
needs to identify who is unstable or going to be unstable
before applying these functional hemodynamic monitor-
ing approaches.

Integrated monitoring systems improve diagnosis of
cardiorespiratory insufficiency and treatment
effectiveness
Current resuscitation decisions are typically made in re-
sponse to a falling blood pressure (BP), persistently high
heart rate (HR) or arterial desaturation [1]. Individual vital
signs (BP, HR, respiratory rate, pulse oximeter oxygen sat-
uration [SpO2], and end‐tidal CO2) are usually assessed as
mean values and interpreted independently. These point
estimates may not reach an actionable level until the pa-
tient has already progressed to late (or decompensated)
cardiorespiratory insufficiency. Alternatively, an integrated
monitoring system can use fused data, collected and
synthesized to identify physiologic patterns, which are
predictive of instability in real‐time and before overt
clinical deterioration [2]. To see whether such an inte-
grated monitoring system could identify overt cardiorespi-
ratory insufficiency earlier in its course and reduce overall
patient instability, we used a Food and Drug Administra-
tion (FDA)‐approved Visensia™ monitor (OBS Medical,
Carmel, IN) that amalgamates non‐invasive vital signs
(BP, HR, respiratory rate, SpO2) and derives a calculated
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index score (vital signs index [VSI]) between zero and ten
using an artificial neuronet approach [3]. Using our 600
step‐down unit (SDU) patient cohort as a calibration set,
we recalibrated the VSI algorithm to fit our cohort,
wherein VSI values of > 3.2 correlated significantly with
independently estimated instability based on clinical as-
sessment (r = 0.815) [4]. An example of one patient who
progressively deteriorated over a 6 h period is shown in
Fig. 1. Note that deterioration is not steady but phasic
(blue arrows) with periods of failed recovery ending in col-
lapse (black arrow). Furthermore, when the VSI alert was
coupled with an effector arm of direct immediate nursing
bedside activation and protocolized treatment, overall
instability decreased by 150 % and the progression
from mild to severe instability was reduced by 300 %
[5, 6]. Importantly, the VSI alert occurred before clinic-
ally‐apparent instability in 80 % of cases, with an advance
time of 9.4 ± 9.2min. Thus, such bedside‐displayed VSI
data can often detect the onset of cardiorespiratory
insufficiency before overt symptoms are present and
when coupled to appropriate immediate treatment
plans markedly reduces patient instability.
Demographic and clinical characteristics are useful in

predicting mortality for groups of patients using static
snapshot models such as APACHE III [7] or IV [8], and
also help to predict mortality when added to intermit-
tent vital sign amalgamation. Smith et al. [9] determined
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Fig. 1 Screen display of physiologic data stream of a patient with progress
Blue arrows mark times when the fused instability index (vital signs index [V
emergency response team activation occurred. HR: heart rate; RR: respirator
that adding age to a single‐parameter instability‐concern
model (RR < 5 or > 36/min, HR < 40 or > 140/min, sys-
tolic BP < 90 mmHg, sudden fall in level of conscious-
ness) or the intermittently determined Modified Early
Warning System (MEWS) improved mortality predic-
tion. Patients ≥ 80 years of age with a RR of 24–25 per
minute had 4 times the mortality of patients 40–64 years
of age, and those ≥ 80 years of age with a systolic BP of
90–94mmHg had 10 times the mortality of those aged
40–64 years of age. Higher age also increased mortality
prediction as MEWS score increased. We subsequently
validated this improved predictive index in our SDU co-
hort, wherein adding low frequency data (demographics)
markedly improved the predictive value of the VSI alerts
in SDU patients [10].

Advanced signal processing improves predictive value of
HR for identifying impending instability
Batchinsky et al. showed that advanced signal processing
R‐R intervals could be used to predict trauma survivor-
ship [11]. They then showed clear differences in HR
complexity in 31 pre‐hospital trauma patients during
their helicopter transport to a level 1 trauma center who
survived (20 survived) or died (11 died) after admission.
Although mean HR was not different between groups
(117 ± 9 vs. 100 ± 4/min, non‐survivors vs. survivors),
their HR variability, quantified by the instantaneous R‐R
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interval changes on a beat‐to‐beat basis were clearly differ-
ent. They quantified HR variability by assessing approxi-
mate entropy (ApEn), sample entropy (SampEn) and
similarity of distributions. Traditionally, heart rate vari-
ability, estimated, as the standard deviation of the R‐R
interval, requires at least 800 beats to derive robust values.
However, these authors showed that by using these de-
rived parameters of variability, SampEn not only displayed
clear separation of values between survivors and non‐sur-
vivors, but the strength of the discrimination persisted
even when the datasets were reduced from 800 to 100 R‐R
intervals [11]. Furthermore, these electrocardiographic
(EKG)‐derived signal differences were also associated with
the need for life‐saving interventions in these same trauma
patients [12]. Finally, they verified the above findings in a
mixed cohort of prehospital trauma patients [13]. Thus,
readily available vital sign data can be used to derive
clinically‐relevant prediction parameters with precision
and a markedly reduced lead time.

Advanced signal processing of physiologic variable time
series identifies those SDU patients who will become
unstable from those who will not
Using the above SDU patient data series [5, 6], we ana-
lyzed HR variability parameters similar to those described
by Batchinsky et al. [11–13]. We created a HR variability
index based on HR autocorrelation, standard deviation,
high frequency power of HR frequency spectrum and
ApEn. The resulting fused parameter was significantly dif-
ferent for the 80 patients in the 307 patient cohort who
experienced at least one cardiorespiratory insufficiency
episode. Importantly, when displayed as 5min epochs
moving backward from the instability event or discharge
in the two groups, HR variability discriminated between
the two groups > 48 h before these events (Fig. 2) [14].
Thus, advanced signal processing of clinical data can iden-
tify instability before it becomes clinically apparent, often
with many hours of lead time.

Advanced monitoring‐derived comprehensive libraries
It is not enough to use existing data streams to predict in-
stability. One must also create physiological libraries of
complex and dynamic states, such as hemorrhage, sepsis,
pump failure, or evolving acute lung injury (ALI). Normal
physiological reflexes aggressively support blood flow to
the heart and brain and thus may well obfuscate bedside
assessment. We used highly instrumented animal models
to define high fidelity physiologic patterns of individual
animal response to disease. We studied these patterns of
response in compensated trauma/hemorrhagic shock,
both during the progression to cardiovascular collapse
and its response to resuscitation therapies. As with the
above vital sign analysis, we note not only the absolute
values of measured hemodynamic variables ascertained
from non‐invasive and minimally invasive biosensors, but
also their dynamic response to prescribed physiological
challenges. Compensation, exhaustion and response to
therapy reflect the three primary processes studied.
The experimental hemorrhage protocol is designed to

simulate a dynamically changing clinical situation by
modifying a Wigger’s model using several discrete bleed-
ing episodes based on the animal’s physiologic response.
Lightly anesthetized swine followed an arterial pressure‐
driven experimental hemorrhage protocol to a mean ar-
terial pressure (MAP) of 30 mmHg, held there for a
maximum of 90 min then resuscitated. The porcine
trauma/hemorrhagic shock model plays into the unique
nature of each test animal by having the level of bleed
defined by the subsequent MAP and not by the amount
of blood shed. This allowing us to examine the specific
compensating mechanisms, unique measures of decom-
pensation and tissue viability and response to therapy
[15]. High fidelity (256 Hz) hemodynamic waveform col-
lection and low frequency endocrine, metabolic and im-
munologic parameters can also be recorded throughout
the experiment. Instrumentation with additional biosen-
sors to assess tissue O2 saturation (StO2), tissue CO2

and pH, capillary blood flow and mucosal NADH2 levels
were also performed as well as dynamic stress tests de-
scribed below. The partial list of ‘non‐traditional’ biosen-
sors we have used in this model and that can be used
clinically going forward is given in Table 1.
The cause of cardiovascular collapse from compen-

sated trauma/hemorrhagic shock appears to be related
to failure of compensatory response mechanisms rooted
in autonomic balance. Trauma/hemorrhagic shock acts
as a trigger for a cascade of post‐traumatic events in-
volving hemodynamic, neuro‐endocrine and inflamma-
tory systems interactions, among others. Such varied
multifactorial interactions lend themselves to complexity
modeling because analyses performed to identify the on-
set of cardiovascular collapse reflect variable interactions
rather than single parameter changes. Thus, the intrinsic
variability of response among subjects that makes linear
analysis of trauma/hemorrhagic shock difficult is actually
a desired quality to build a predictive complexity model.
The normal interaction between measured variables will
be altered by responses to pathological insults. For ex-
ample, failure of sympathetic drive and related endocrine
response to trauma/hemorrhagic shock account for
refractoriness to conventional resuscitation [16–21].
Failure of sympathetic/endocrine coupling effectors (e.g.,
epinephrine) and vascular endothelial‐smooth muscle
coupling may explain cardiovascular refractoriness and
cardiovascular collapse in trauma/hemorrhagic shock
[22]. Cellular energetic failure through impaired mito-
chondrial oxidative phosphorylation may further explain
the vasodilatation seen in late stages of hemorrhagic
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shock similar to that reported in septic shock [23, 24].
Elevated NADH2 levels mirror hypotension but often
persist for several minutes during resuscitation despite
restoration of MAP [25].

Extending biosensor utility using functional
hemodynamic monitoring for prediction
Fully half of all hemodynamically unstable ICU patients
are not volume‐responsive [26]. Estimates of preload (e.g.,
right [RV] or left [LV] ventricular volumes, intrathoracic
blood volume or ventricular filling pressures) do not
predict volume‐responsiveness. Functional hemodynamic
monitoring overcomes this limitation of traditional
hemodynamic monitoring [27, 28]. In this case, func-
tional hemodynamic monitoring uses a small volume
Table 1 FDA‐approved non‐invasive non‐traditional biosensors avai

Sensor name Parameters measured

Trendcare Multiparameter Tissue PCO2, PO2, pH

CritiView CRV3 Mitochondrial function (NA
blood flow, volume and ox

InSpectra Tissue O2 saturation

CV InSight Vascular tone

Microscan Microcirculatory flow

Cytoscan Microcirculatory flow

Clearsight finger plethysmograph Blood pressure and cardiac

CNAP finger plethysmograph Blood pressure and cardiac

NICOM Cardiac output, stroke volu

Navigator‐1 Mean systemic pressure, ca
loading challenge to perturb the cardiovascular auto-
regulatory function. Examples of preload challenges
validated in multiple clinical trials include small rapid
bolus volume infusions (i.e., fluid challenge), positive‐
pressure breathing [29] and passive leg‐raising (PLR)
to 30° [30]. If LV stroke volume increases transiently
with these maneuvers, then cardiac output will also in-
crease with subsequent fluid infusion. The degree of in-
crease is quantified as the ratio of the maximal change in
pulse pressure or stroke volume over 4–5 breaths or with
PLR to the mean pulse pressure or stroke volume, referred
to as pulse pressure variation (PPV) or stroke volume
variation (SVV), respectively. The disadvantages of a
traditional fluid challenge are that it takes time, often
is given too slowly, thus masking volume responders,
lable and previously used by us

Manufacturer

Diametrics Medical

DH2 fluorescence), microcirculatory
ygenation

CritiSence Inc.

Hutchinson Industry

iNTELOMED

Microvision Medical

Cytometrics

output Edwards Lifesciences

output cnsystems

me variation, thoracic fluid Cheetah Medical

rdiac power Applied Physiology
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and is irreversible. Functional hemodynamic monitor-
ing techniques give reliable predictions of preload re-
sponse immediately and do not require fluid infusions
to make this prediction. Both positive‐pressure venti-
lation by physically decreasing venous return with in-
spiration and leg‐raising by transiently increasing
venous return fulfill these criteria [29, 30]. PPV and
SVV can be easily monitored using several FDA‐ap-
proved minimally invasive monitoring devices. Thus,
in patients receiving positive‐pressure breathing, sim-
ple inspection of the arterial PPV will continuously
define volume responsiveness. The magnitude of PPV
and SVV during ventilation will also be a function of
the size of the tidal breath [31], thus this approach is
only useful during controlled mechanical ventilation
at a fixed tidal volume, which is not the case in spon-
taneously breathing patients. Furthermore, PPV and
SVV do not reflect volume responsiveness in patients
with atrial fibrillation where R‐R intervals vary widely.
However, a PLR maneuver with leg elevation to 30°
displays the same predictive information in all patients
[30]. We and others have extensively documented that a
PPV > 13 % or a SVV > 10 % at a tidal volume of 7ml/kg
or a maximal increase in mean cardiac output > 10 % dur-
ing a PLR maneuver are predictive of preload responsive-
ness (> 90 % sensitivity and specificity) [32]. Several
minimally‐invasive devices report cardiac output, PPV and
SVV during positive‐pressure breathing or change in car-
diac output with PLR using arterial waveform analysis
(e.g., PiCCO plus™ [Pulsion Medical Systems], LiDCO
plus™ and LiDCO rapid™ [LiDCO Group Plc] and Flo-
Trac™ [Edwards Lifesciences]). We have previously defined
the operating characteristics and reliability of all these de-
vices [33, 34]. Finally, the PPV/SVV ratio reflects central
arterial elastance and can be used to monitor changes in
vasomotor tone [12].
Importantly, FDA‐approved non‐invasive surrogate esti-

mates of arterial pulse pressure and stroke volume exist,
including pulse oximetry signal, bioreactance (NICOM,
Cheetah) and transthoracic ultrasound (USCom) tech-
niques. Pulse oximetry density profiles derived from the
unprocessed pulse oximetry plethysmographic waveform
amplitude (Nonin, Nelcor and Massimo), and pressure‐
sensitive optical sensors (BMEYE, Edwards Lifesciences)
can be featurized to estimate pulse pressure, stroke vol-
ume and changing vasomotor tone [35]. The BMEYE
pressure-sensitive, high fidelity, rapid‐response optic sen-
sor has the ability to track the arterial pressure profile to
measure instantaneous cardiac output [36] and, along with
the pulse oximetry plethysmographic profile, reflect two
real‐time waveform signals that we can use to extract pre-
dictive features of the cardiovascular system. Importantly,
these non‐invasive waveform data can be analyzed inde-
pendent of their mean values and expand the utility of
these analyses and predictive modeling beyond invasive
monitoring to less invasive monitoring environments,
markedly increasing generalizability of this featurized
approach.

Non‐invasive measures of oxygen sufficiency
An unanswered question in shock resuscitation is the
relationship between tissue perfusion and wellness.
Neither MAP, cardiac output or mixed venous oxygen sat-
uration (SvO2) define tissue oxygenation. Near infra‐red
spectroscopy (NIRS) permits continuous, non‐invasive
measurement of StO2. Although StO2 values do not de-
crease until tissue perfusion is very low, StO2 becomes
more sensitive and specific when monitoring its change in
response to a vascular occlusion test (VOT) (Fig. 3). If the
StO2 probe is placed on the thenar eminence and a down-
stream arm blood pressure cuff is inflated to a pressure
higher than systolic arterial pressure and held there, total
ischemia occurs. The occlusion is sustained until StO2 de-
creases to < 40 % and then the cuff rapidly deflated. The
StO2 down slope is dependent on local metabolic rate and
blood flow distribution. The StO2 recovery rate assesses
cardiovascular reserve, as we validated in trauma and sep-
tic patients compared to normal volunteers [37].

Predicting the need for life‐saving interventions in stat
medevac air transport
We assessed the predictive value of the VOT StO2 and
spot lactate levels in trauma patients during emergency air
transport from an accident site. All patients were moni-
tored using 3‐lead EKG, non‐invasive BP, HR, SpO2, and
when intubated, end‐tidal CO2 capnography. These single
vital signs are not sensitive at identifying shock until ad-
vanced [38]. Protocol‐based algorithms typically rely on
individual vital signs or clinical parameters (e.g., cyanosis,
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altered mental status) to identify the need for life‐saving
interventions [39, 40] and subjective measures (mental
status changes) are difficult to standardize [41]. We
hypothesized that in‐flight measures of VOT StO2

and lactate would identify shock trauma subjects in
need of life‐saving interventions [42, 43]. We studied
400 transported trauma patients with lactate sampling
and 194 patients also with VOT StO2. Patients with
pre‐hospital lactate levels > 4 mmol/l had greater need
for emergent operation, intubation, and vasopressor
(p = 0.02). This association persisted after adjustment for
age, Glasgow Coma Scale (GCS) score and initial vital
signs. The VOT StO2 deoxygenation slopes were predict-
ive of the need for life‐saving interventions (p = 0.007),
while a delayed reoxygenation slope was predictive of
mortality (p = 0.006) [44]. These data collectively
document that the measurement of readily available
physiological variables when coupled to functional
hemodynamic monitoring principles (PLR and VOT)
can predict clinically relevant physiological states and
the subsequent need for life‐saving interventions.

Using machine learning principles to define health and
disease
One never truly sees hypovolemia, sepsis, heart failure
or ALI in the critically ill patients under our care, one
sees the phenotypic physiological response of the host to
these pathological processes. Thus, a fundamental aspect
of both traditional monitoring and any novel approach
is to identify normal biological variability and separate it
out from adaptive/reflexive responses and pathological
sequelae of these primary processes. For identification
and predictive purposes this is very useful because most
pathological process presenting as circulatory shock and
respiratory insufficiency evolve over time. For example,
hypovolemia in the setting of active intravascular volume
loss starts with no measurable changes because the vol-
ume loss is so small. However, with progressive volume
loss by any mechanism (hemorrhage, 3rd space loss,
diarrhea), adaptive processes and hemodynamic pheno-
typic signatures evolve which may not be easily identi-
fied early on using primary mean hemodynamic values.
However, derived parameters, based on validated ma-
chine learning approaches, such as the artificial neuronet
of interacting variables or SampEn of time series single
source data, can markedly improve the early identification
of critical illness. Thus, we hypothesize that by advanced
analysis of existing biological data series, one can detect
adaptive and maladaptive processes earlier than we pres-
ently do such that definitive therapy can be started to re-
verse these processes before they become severe, induce
remote organ injury or become irreversible. For example,
an acute asthma attack can often be easily reversible with
simple inhalational bronchodilators, whereas if the same
process is left untreated until severe status asthmaticus,
much more aggressive therapies need to be given to
reverse the same process. And this disease and those
required therapies (e.g., steroids) markedly increase
morbidity and mortality.
Thus, the process of creating accurate sensitive and

specific alerts and decision support systems is both itera-
tive and based on creating libraries of ‘normal’ and ‘not‐
normal’ physiological interactions or ‘behaviors’, and to
have a deeper understanding of the fuzziness of the
boundary of normality for each of these behaviors. For
example, one could use the previously described baseline
porcine data prior to trauma/hemorrhagic shock to
‘train’ the model as to normal biological variability. We
will then use the bleeding time, changes in endotoxin in-
fusion, burn or smoke inhalation as time‐dependent
pathological stressors to calibrate the ‘not‐normal’ states,
as described below. We then use these relatively pure
pathological insults to define process‐specific signatures
of disease to identify both the pathological process and
its severity. Inherent in this analysis is that if therapy re-
verses these pathological processes, the derived measure
of disease also decreases.
Three major barriers arise when iterating clinical data

based on animal experimental data. First, our patient co-
horts are often not previously healthy and then sub-
jected to a defined relatively pure insult. They arrive in
varying states of illness, preexisting co‐morbidities and
ongoing therapies. Using a young trauma cohort for ini-
tial model development may minimize this effect. Sec-
ond, human data are typically not as rich in terms of
frequency and number of variables collected given field
conditions and other pragmatic reasons. Patients get dis-
connected from monitoring devices for various reasons
(e.g., X‐rays, turning), EKG electrodes and pulse oxim-
eter probes fall off and primary signals can be inaccurate
(clotted catheter). Thus, an initial data processing aspect
of any model building needs to review these data
streams and identify gaps in data flow and artifacts.
Finally, one cannot truly define ‘normal’ in our critically ill
patients, only normal behavior. For example, an animal in
hemorrhagic shock may appear to be normal based on
measured variables and derived parameters if they are also
getting vasopressor therapy. Thus, the best we can do
across all pathophysiological domains is to report not‐nor-
mal and stability, both of which must be interpreted
within the context of therapy.
Within these constraints, one must first determine the

minimal data set (independent monitored signal, sampling
frequency and lead time) required to identify not‐normal
with an acceptable level of false alerts and long enough
lead time to overt disease expression as to be clinically
relevant. We refer to this approach as “hemodynamic
monitoring parsimony”. Intuitively, one expects tradeoffs
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between parsimony, lead time and accuracy. Initially,
a 15 min advanced warning may be the minimal lead
time for cardiorespiratory instability to be clinically
relevant. Once an alert of not‐normal is made, one
may sequentially insert additional measures to deter-
mine their ability to improve sensitivity and specificity
of these alerts in defining specific disease processes
so as to guide therapy. The concept of monitoring
parsimony extends beyond hemodynamic monitoring.
As the ability to merge hemodynamic data with other
clinically relevant data streams, it is expected that a
parsimonious set of clinical features useful to cardio-
respiratory instability detection and prediction will in-
clude non‐hemodynamic data as well.
How do we put all of this together? At the mathemat-

ical level there are two main problems. The first is how
to predict the occurrence of events in data rich scenar-
ios, such as in our porcine data, and the second is how
to do the same in humans, which usually will involve
only a few biomarkers. In addition, why do we need ani-
mal models to predict human behavior? Cannot this
analysis be done completely on the human data using
only a few biomarkers such as BP, HR, respiratory, SpO2

and minimally invasive measures? Our preliminary ana-
lysis of the porcine dataset, which involves many bio-
markers, and VSI human data involving the four
physiological variables mentioned above [4–6] suggest
that our insight can be improved tremendously by using
the animal data. It is possible that the variables we use
now from the animal trauma/hemorrhagic shock model
are not the best for human instability prediction. For ex-
ample, the grouping and its variation over time is not
apparent in the small human dataset we collected of
trauma SDU patients [6]. The animal models that are
very close to human disease will allow us to gain a much
better understanding of the dynamic features and which
of these are the important players at different stages of
stress, compensation, resuscitation, recovery and death.
These animal analyses may also suggest which variables
can be omitted in certain cases, and what omission
implies about disease level and adaptation, etc. We
hypothesize that data‐driven prediction modeling ap-
proaches will enable healthcare professionals both at the
bedside and in remote settings to predict those patients
most likely to develop future instability. We also
hypothesize that dynamic systems modeling will further
improve prediction, including the provision of various
signatures for instability subtype. This is and will continue
to be an amazing and informative journey.

Conclusions
Machine learning principles when coupled with a know-
ledge of human physiology, pathophysiology can create
highly informative displays and alerts. Such informaiot
can be in the form of anomaly detection, defining the
switch from health to disease, may also be disease
specific and can track responses to treatment and time.
The goals of these efforts is to glean knowledge from
data to improve patient care across the spectrum of
patient monitoring environments. The future will need
to focus on creating a common dictionary for healthcare,
common data elements and methods of structuring the
data and ways of sharing large data sets that retain
patient confidentiality without sacrificing detail.
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