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ABSTRACT

Objective: The study sought to evaluate the expected clinical utility of automatable prediction models for in-

creasing goals-of-care discussions (GOCDs) among hospitalized patients at the end of life (EOL).

Materials and Methods: We built a decision model from the perspective of clinicians who aim to increase

GOCDs at the EOL using an automated alert system. The alternative strategies were 4 prediction models—3 ran-

dom forest models and the Modified Hospital One-year Mortality Risk model—to generate alerts for patients at

a high risk of 1-year mortality. They were trained on admissions from 2011 to 2016 (70 788 patients) and tested

with admissions from 2017-2018 (16 490 patients). GOCDs occurring in usual care were measured with code sta-

tus orders. We calculated the expected risk difference (beneficial outcomes with alerts minus beneficial out-

comes without alerts among those at the EOL), the number needed to benefit (number of alerts needed to in-

crease benefit over usual care by 1 outcome), and the net benefit (benefit minus cost) of each strategy.

Results: Models had a C-statistic between 0.79 and 0.86. A code status order occurred during 2599 of 3773

(69%) hospitalizations at the EOL. At a risk threshold corresponding to an alert prevalence of 10%, the expected

risk difference ranged from 5.4% to 10.7% and the number needed to benefit ranged from 5.4 to 10.9 alerts. Us-

ing revealed preferences, only 2 models improved net benefit over usual care. A random forest model with di-

agnostic predictors had the highest expected value, including in sensitivity analyses.

Discussion: Prediction models with acceptable predictive validity differed meaningfully in their ability to im-

prove over usual decision making.

Conclusions: An evaluation of clinical utility, such as by using decision curve analysis, is recommended after

validating a prediction model because metrics of model predictiveness, such as the C-statistic, are not informa-

tive of clinical value.
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INTRODUCTION

End-of-life (EOL) conversations and shared decision making between

clinical staff and hospitalized patients can improve the quality of EOL

care.1,2 In the hospital setting, these conversations inform goals-of-care

(GOC) documentation, particularly code status orders (CSOs), which

encode the essential preferences for life-supporting therapy.3 Hospitaliza-

tions are frequent at the EOL, and in which the need to plan for future

care is matched by the opportunity to do so.4 However, hospitalized

patients with a poor prognosis do not benefit from EOL conversations

or GOC documentation as often as they should.5 Closing this gap is

challenged by workload constraints and difficulty in prognostication.6

Clinical decision support systems (CDSSs) that integrate automated

prediction models may help increase the prevalence of GOC discussions

by generating computerized alerts for patients with a high risk of mortal-

ity.2,7 The rationale is that physicians, when explicitly alerted to the

poor prognosis of a patient in their care, will initiate a discussion about

GOC if one is appropriate and has not already occurred.

In the translational pathway of prediction models, an increas-

ingly recognized step is the assessment of clinical utility,8 which

should occur before a prospective evaluation of clinical impact.9,10

CDSSs, particularly those with machine learning (ML) models, are

potentially costly to implement11,12 and their impact highly subject

to local factors,13 giving reason to assess clinical value before inves-

ting in application. Decision-analytic methods for this assessment

using observational data are accessible10,14–16 but are rarely used for

prediction models prompting palliative and EOL care (PEOLC)

interventions, resulting in poor evidence of value.17,18 A few deci-

sion analyses in this area of research have assessed system-

perspective monetary value19,20; a decision-analytic evaluation of

clinical benefits and harms from the perspective of patient-centered

quality improvement has remained elusive.

In this study, we evaluated the clinical utility of locally applica-

ble prediction models using a routinely collected measure of GOC

discussions, CSOs in the electronic health record (EHR). Our pri-

mary objective was to compare the expected clinical value of a novel

ML model with that of a published model21 and models requiring

fewer types of predictors. In the process, we demonstrate innovative

strategies to increase the applicability of simple decision-analytic

techniques for assessing the utility of automatable prediction models

before implementation.

MATERIALS AND METHODS

This retrospective study comparing prediction models includes

methods for the development, validation, and decision-analytic eval-

uation of prediction models. We conform to the TRIPOD (Trans-

parent Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis) guidelines22 for reporting prognostic model-

ling methods, and to the relevant aspects of the CHEERS (Consoli-

dated Health Economic Evaluation Reporting Standards)

guidelines23 for reporting decision-analytic methods. The study took

place at an integrated university hospital network with 2 sites and

about 700 acute care beds in the city of Sherbrooke, Quebec, Can-

ada (details in the Supplementary Appendix). Institutional Review

Board approval was obtained prior to data collection (Institutional

Review Board of the CIUSSS de l’Estrie—CHUS #2018-2478 ).

Source of data and participants
All predictor data in the study was collected from the institutional

data warehouse, which combines EHR and administrative data. All

adult hospitalizations admitted to a nonpsychiatric service between

July 1, 2011, and June 30, 2018, were included in the overall cohort,

except for admissions to rarely admitting specialties (eg, genetics) or

admissions with a legal context (eg, court ordered). Mortality

records were sourced from the Quebec vital statistics registry and

considered complete until June 30, 2019 (additional details in the

Supplementary Appendix).

The overall cohort was split temporally, with a training cohort

defined as admissions occurring between July 1, 2011, and June 30,

2016, inclusively, and a testing cohort defined as hospital admis-

sions occurring between July 1, 2017, and June 30, 2018, inclu-

sively. This split was designed to simulate the prospective evaluation

of a given model had it been trained with all available data just be-

fore midnight on June 30, 2017, and then applied prospectively for

1 year at our institution. Hospitalizations that occurred between

July 1, 2016, and June 30, 2017, inclusively, were excluded to pre-

vent any unrealistic leakage of outcome information between the

training and testing cohort.

For the evaluation of clinical utility, our population of interest

was all hospitalizations in which there was enough time for a GOC

discussion to occur and in which it was not inappropriate or unnec-

essary given the information available to a CDSS at the point of

care. We defined a CDSS-eligible cohort by excluding hospitaliza-

tions from the testing cohort that did not have overnight stay or that

were admissions in obstetrics or palliative care.

Prediction models
We developed a ML model using the random forest (RF) algorithm

that includes administrative, demographic, and diagnostic predictors

accessible at the time of hospital admission to predict 1-year mortal-

ity (RF-AdminDemoDx, 244 predictors). As an alternative strategy,

we updated the Modified Hospital One-year Mortality Risk

(mHOMR) model21 for local application (9 predictors). In addition,

we specified 2 simplified versions of the RF-AdminDemoDx model:

one in which no diagnostic variables were included (RF-Admin-

Demo, 12 predictors) and one in which only 4 variables—age, sex,

admission service, and admission type—were included (RF-Mini-

mal). All 4 prediction models were feasible to operationalize with

the existing informatics infrastructure, though had different require-

ments in terms of data access and implementation (Table 1). Data

generation processes were investigated to align retrospectively

extracted variables with what would be available within a few

minutes of hospital admission. The models were trained with the

training cohort, their temporal validity evaluated with the testing co-

hort, and their clinical utility evaluated with the CDSS-eligible co-

hort. Model development, specification, and validation is fully

described in the Supplementary Appendix.

Perspective
The evaluation of clinical utility was conducted from the perspective

of a clinician-led quality improvement team that aims to implement

a CDSS to increase the prevalence of GOC discussions for patients

with a poor prognosis: a promising initiative3 for a well-established

problem.5 A necessary component of GOC discussions for hospital-

ized patients are discussions about code status, the documentation

of which had been standardized as CSOs in the institutional EHR

since 2015. The documentation of resuscitation preferences for a

hospitalized patient with a poor prognosis is a positively valued,

patient-centered outcome in the context of EOL communication,24

and its absence for the same population is considered a potentially
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harmful medical error.2,25 The main objective of decision analysis

was to identify the prediction model that maximized this quality in-

dicator. The secondary objective was evaluating the net benefit

(NB)14,15 of prediction models.

Alternative strategies
We simulated the operation of a CDSS that uses alternative predic-

tion models for triggering an alert. Conceptually, alerts would sug-

gest discussing GOC, including cardiopulmonary resuscitation

(CPR) preferences, if appropriate,7 and remind physicians to docu-

ment CPR preferences in a CSO. The system would generate alerts

after midnight for eligible patients admitted the previous day having

a predicted risk greater or equal to a certain risk threshold. Because

intervention harm was minimal and time constraints were known to

limit GOC discussions,2,6 we considered the proportion of admis-

sions with an alert, or alert prevalence, to be the most appropriate

criteria for determining risk thresholds. For example, if it was pref-

erable for alert prevalence to be 10%, then we would set the risk

threshold of each prediction model to be the 90th percentile of pre-

dicted risk: 10% of cases would have a risk higher than the thresh-

old, leading to an alert. We set an alert prevalence of 10% as a point

of reference and expected 5% to 20% to be an appropriate range

for sensitivity analyses.

The alternative strategies under consideration were the 4 mortal-

ity alert rules that resulted from applying to each prediction model

an alert prevalence–fixed risk threshold.

Outcome definitions
Electronic CSOs were linked to hospitalizations in the testing cohort

after model development and did not have any role in predictive val-

idation. These orders could convey 1 of 3 resuscitation preferences:

wants all resuscitation measures (Full code), does not want CPR but

wants endotracheal intubation if necessary (do not resuscitate

[DNR]/Intubation-OK), and does not want CPR or intubation

(DNR/DNI [do not intubate]). We considered a CSO to have oc-

curred during a hospitalization if at least 1 was documented between

1 week before the admission date and the discharge date, inclusively.

The extra week was added to associate a hospitalization with any

CSOs documented during observation in the emergency department

prior to hospital admission. The main outcome was a hospitaliza-

tion with a CSO among those for patients at the EOL, which we de-

fined as death within 1 year of admission.

Decision trees
We modeled 2 decision trees in which alerts led to the desired action

(Figure 1). The first was based on the conventional assumptions of deci-

sion analysis for prediction models,26,27 in which alerts lead to action

and the absence of an alert leads to inaction. The second was a scenario-

appropriate adaptation that allowed assessing expected utility relative to

a strategy of usual care, in which alerts lead to action and the absence of

an alert leads to usual care: either action or inaction depending on what

had factually occurred for the alert-negative case. For both trees, the ben-

efit to patients of discussing and documenting GOC2 was attributed to

Table 1. Predictors included in automatable prediction models

Variablea Type Description

Ageb,c,d Integer Age at admission in full years since birth

ED visitsb,d Integer Visits to the emergency department in the year before admission

Ambulance admissionsb,d Integer Admissions to the hospital by ambulance in the year before admission

Weeks recently hospitalizedb Integer Full weeks hospitalized in the 90 d before admission

Sexb,c,d Categorical Female or male

Living statusb,d Categorical Chronic care hospital, nursing home, home, or unknowne

Admission typeb,c Categorical Urgent, semi-urgent, elective, or obstetric

Admission serviceb,c,d Categorical Cardiac surgery, cardiology, critical care, endocrinology, family medicine, gastroenter-

ology, general surgery, gynecology, hematology-oncology, internal medicine, maxillo-

facial surgery, nephrology, neurosurgery, neurology, obstetrics, ophthalmology,

orthopedic surgery, otorhinolaryngology, palliative care, plastic surgery, respirology,

rheumatology, thoracic surgery, trauma, urology, or vascular surgery

Admission diagnosis Binary set Free-text diagnosis on admission order form mapped to 147 binary variables using regu-

lar expressions (see Supplementary Appendix)

Comorbidity groups Binary set ICD-10 codes from hospital discharge abstracts and ED information systems mapped to

84 binary variables (see Supplementary Appendix)

Visible comorbidities Binary If a previous hospitalization occurred between 5 y and 6 mo before admission or if a pre-

vious ED visit occurred between 6 mo and 2 wk before admission

Flu seasonb,f Binary If the current admission is in the month of December, January, or February

ICU admissionb,d Binary If the current admission is a direct admission to the ICU

Urgent 30-d readmissionb,d Binary If the current admission is an urgent readmission within 30 d of a previous discharge

Ambulance admissionb,d Binary If the current admission is via ambulance

ED admissiond Binary If the current admission is via the ED

See Supplementary Appendix for additional details.

ED: emergency department; ICD-10: International Classification of Diseases–Tenth Revision; ICU: intensive care unit.
aAll variables except ED admission included in the RF-AdminDemoDx model.
bIncluded in the RF-AdminDemo model.
cIncluded in the RF-Minimal model.
dIncluded in the Modified Hospital One-year Mortality Risk model. For variable transformations and interaction terms, see original specification by

Wegier et al.21

eUnknown if no previous hospitalization between 5 years and 6 months before admission.
fModels were developed prior to the COVID-19 (coronavirus disease 2019) pandemic; future revisions will likely exclude this variable.
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true positives (TPs). The cost of this action is spending clinical time,2

which was attributed to false positives (FPs). Our valuation procedure

and assumptions are further explained in the Supplementary Appendix.

To distinguish the effect of model-based predictions from the ef-

fect of simply generating alerts, we included a fifth model of uni-

formly random numbers between 0 and 1. We did not expect alerts

from such a model to cause physicians to act in the same way as the

validated prediction models, but it would serve to make explicit a

side effect of the assumption that all alerts would cause the desired

action of a CSO.

Statistical analysis
We described cohort characteristics stratified by EOL and CSO sta-

tus. We assessed model discrimination using the C-statistic and its

calibration using a calibration plot.8 To assess construct validity of

predictions, we regressed DNR preference against predicted risk in

the CDSS-eligible cohort.

Our primary measure of expected clinical utility was the

expected risk difference (eRD) compared with usual care of the

main outcome, calculated for each rule as

eRD¼P(Alert or CSO j EOL)-P(CSO j EOL)

This metric is based on the intention-to-treat estimator10 and

answers the hypothetical question: if every alert based on rule R had

led to the desired action (a CSO), how many more hospitalizations

at the EOL (as a proportion of all hospitalizations at the EOL)

would have had a CSO?

For contextualizing the eRD, we calculated the number needed

to benefit (NNB):

NNB¼P(Alert)PAlert & EOL-P(Alert & EOL & CSO)
The NNB is the number of alerts needed to increase benefit by

one outcome over usual care, assuming that every alert leads to ac-

tion. It is the reciprocal of the difference in risk of benefiting with a

model-based strategy minus the risk of benefiting with usual care

(among those identified by an alert): P(EOL j Alert) – P(EOL &

no Alert → UC

Alert → CSO
EOL

not EOL

Strategy=UC

Strategy=R
EOL

not EOL

EOL

not EOL

CSO

no CSO

EOL

not EOL

EOL

not EOL
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Strategy=UC
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EOL

not EOL

EOL

not EOL

CSO

no CSO

EOL
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no Alert → no CSO

TP: P(Alert & EOL | R)
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TN: P(no Alert & not EOL | R)

TP: P(CSO & EOL | UC)
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TPUC: P(no Alert & CSO & EOL | R)

FPUC: P(no Alert & CSO & not EOL | R)

FN: P(no Alert & no CSO & EOL | R)

TN: P(no Alert & no CSO & not EOL | R)

TPR: P(Alert & EOL | R)

FPR: P(Alert & not EOL | R)
TP: (TPR or TPUC) =
  P([Alert or CSO] & EOL | R)

FP: (FPR or FPUC) =
  P([Alert or CSO] & not EOL | R)

Decision tree 1

Decision tree 2

Figure 1. Strategic decision tree models. Two decision trees modelling the potential outcomes of each hospitalization in the clinical decision support system

(CDSS)–eligible cohort under alternative strategies. The strategy of an alert rule, R, implies that a CDSS is implemented and uses R to generate alerts. In the strat-

egy of usual care (UC), code status orders (CSOs) occur as they factually did between July 2017 and July 2018 in the 2 hospitals of Sherbrooke, Quebec, Canada.

In both trees, an alert always implies a CSO (Alert ! CSO; the arrow notation expresses a strategy: if Alert, then do CSO). The difference between the 2 trees is

how outcomes unfold in the absence of an alert. In decision tree 1, no alert results in no action (no Alert! no CSO: if no alert, then do no CSO). In decision tree 2,

no alert results in the action that occurred retrospectively in usual care (no Alert! UC: if no alert, then do usual care). The first tree models the conventional sce-

nario of decision curve analysis in which a prediction rule aims to reduce intervention-related harm, while the second models the scenario of a CDSS that aims to

increase a routine good practice that is constrained by time. A true positive (TP) outcome occurs when a CSO is documented during a hospitalization for a patient

who died within 1 year of admission (end-of-life [EOL] status). A false positive (FP) outcome occurs when a CSO is documented during a hospitalization for a pa-

tient who survives more than a year (“not EOL” status). A false negative (FN) outcome occurs when no CSO is documented during an EOL hospitalization. A true

negative (TN) occurs when no CSO is documented for a “not EOL” hospitalization. The formulas to calculate the expected probability of each outcome for a given

strategy are provided to the right of each terminal node.
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CSO j Alert). Conceptually, it incorporates both the number needed

to screen, 1/P(EOL j Alert), and the number needed to treat, 1/P(no

CSO j EOL), as originally described,16 but it was calculated without

assuming conditional independence: the subset of patients at the

EOL successfully screened with an alert would not necessarily have

the same chance of beneficial treatment (the counterfactual outcome

in the event of “no CSO”) as the set of all patients at the EOL.

Our secondary measure of expected clinical utility was the NB,

calculated for each strategy, S, as

NBS¼PTP S)-PFP S)�Exchange Rate
In our scenario, the risk threshold was based on estimated avail-

ability of clinical time, not necessarily patient-provider preference

for CSO. This made the risk threshold potentially unsuitable to in-

form the exchange rate, calculated in conventional decision curve

analysis as Risk Threshold/(1-Risk Threshold).15,27 The exchange

rate represents the theoretical ratio between the harm of inappropri-

ate inaction (false negative [FN]) and the harm of inappropriate ac-

tion (FP), which can be obtained by various means14; the threshold

method is a convenient simplification in the absence of other utility

estimates in the validation set.27 We calculated a model-independent

exchange rate using observed actions of clinicians (ie, using their

revealed preferences)14 who implicitly decide under uncertainty be-

tween the harm of inaction and the time cost of action:

Observed Exchange Rate¼P(TP j Usual care)P(FP j Usual care)

Substituting equation 4 in equation 3 results in a NB of zero for

the default strategy S ¼ Usual care. We plotted decision curves for

both decision trees and for both a threshold-based and observed ex-

change rate. A visual guide to interpreting the eRD, NNB, and ob-

served exchange rate is provided in the Supplementary Appendix

(Supplementary Figure S1 ).

We performed a 2-way sensitivity analysis14 between alert preva-

lence and the exchange rate in subgroups of service type and hospital

site. We assessed subgroup heterogeneity using a forest plot of the

expected relative risk (the ratio of the terms in the eRD) in relevant

inpatient populations.

Consistent with the decision-analytic design, no P-valued signifi-

cance tests were performed between the alternative strategies.28 We

bootstrapped 95% confidence intervals (CIs) for estimates of predic-

tive accuracy.8,29 To verify the potential influence of including all

hospitalizations in the CDSS-eligible cohort, rather than sampling

unique patients, we repeated analyses using the first, last, and a ran-

dom hospitalization per patient. All statistical analyses were per-

formed with R version 3.6.3 (R Foundation for Statistical

Computing, Vienna, Austria) (relevant extensions and details in the

Supplementary Appendix).30

RESULTS

Sample and model description
The participant flow diagram is presented in Figure 2. Between July

1, 2011, and June 30, 2018, there were 175 041 hospitalizations for

adults in a nonpsychiatric service at our institution (93 295

patients). After excluding 76 hospitalizations with rare circumstan-

ces, the training cohort included 122 860 hospitalizations between

July 1, 2011, and June 30, 2016 (70 788 patients), and the testing

cohort included 26 291 hospitalizations between July 1, 2017, and

June 30, 2018 (20 012 patients). There were 22 034 hospitalizations

(16 490 patients) in the CDSS-eligible cohort. Patient-

hospitalization characteristics are presented for the CDSS-eligible

cohort in Table 2 (description of other cohorts in the Supplementary

Appendix). Prediction models had acceptable temporal validity (Ta-

ble 3; Supplementary Figure S2). When sampling over unique

patients, the C-statistic ranged from 0.84 to 0.89 in the testing co-

hort and lowered to 0.79 to 0.86 in the CDSS-eligible cohort. Fig-

ure 3 describes EOL process indicators as a function of model-

175014 hospitalizations assessed for eligibility
July 1st 2011 to June 30th 2018
93295 patients

122860 included in training cohort
July 1st 2011 to June 30th 2016
70788 patients

26291 included in testing cohort
July 1st 2017 to June 30th 2018
20012 patients

25787 excluded to prevent outcome leakage
July 1st 2016 to June 30th 2017

76 excluded due to special circumstances
43 with legal context
34 with rare admission service

4257 ineligible for CDSS
3191 obstetric admissions
101 palliative care admissions
1014 admissions with same-day discharge

22034 included in CDSS-eligible cohort
16490 patients

Figure 2. Participant flow diagram. CDSS: clinical decision support system.
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Table 2. CDSS-eligible cohort characteristics

Overall (N¼ 22 034) With CSO (n¼ 7648) Hospitalizations at EOL (n ¼ 3773)

With CSO (n ¼ 2599) Without CSO (n ¼ 1174)

Age, y 68 (57-78) 77 (67-85) 78 (69-87) 69 (60-78)

Female 10 473 (48) 3817 (50) 1212 (47) 509 (43)

Hospital site

A 13 350 (61) 3867 (51) 1455 (56) 909 (77)

B 8684 (39) 3781 (49) 1144 (44) 265 (23)

Service type

Medical 12 187 (55) 6246 (82) 2135 (82) 658 (56)

Surgical 9266 (42) 1023 (13) 312 (12) 484 (41)

Critical carea 581 (3) 379 (5) 152 (6) 32 (3)

Admission type

Nonelective 16 780 (76) 7298 (95) 2525 (97) 917 (78)

Elective 5254 (24) 350 (5) 74 (3) 257 (22)

Living status at dischargeb

Home 11 205 (51) 2663 (35) 467 (18) 507 (43)

Home with health center (CLSC) liaison 6115 (28) 1656 (22) 482 (19) 404 (34)

Short-term transitional care 1354 (6) 717 (9) 201 (8) 99 (8)

Nursing home 1612 (7) 1143 (15) 296 (11) 57 (5)

Chronic care hospital 528 (2) 454 (6) 200 (8) 24 (2)

Otherc 291 (1) 151 (2) 89 (3) 18 (2)

Death in hospital 929 (4) 864 (11) 864 (33) 65 (6)

ED visitsd

0 12 786 (58) 3 457 (45) 956 (37) 608 (52)

1-2 6476 (29) 2620 (34) 941 (36) 383 (33)

3 or more 2772 (13) 1571 (21) 702 (27) 183 (16)

Admissions by ambulanced

0 18 547 (84) 5432 (71) 1644 (63) 964 (82)

1-2 2891 (13) 1760 (23) 738 (28) 180 (15)

3 or more 596 (3) 456 (6) 217 (8) 30 (3)

Weeks recently hospitalizede

0 18 601 (84) 5925 (77) 1774 (68) 815 (69)

1-2 2617 (12) 1237 (16) 571 (22) 281 (24)

3 or more 816 (4) 486 (6) 254 (10) 78 (7)

ED admission 12 711 (58) 6329 (83) 2155 (83) 566 (48)

Ambulance admission 7418 (34) 4536 (59) 1628 (63) 297 (25)

Urgent 30-d readmission 2396 (11) 1205 (16) 596 (23) 210 (18)

ICU admission 1036 (5) 454 (6) 171 (7) 51 (4)

ICU stay during hospitalization 3512 (16) 1616 (21) 538 (21) 152 (13)

Hospital length of stay, d 4 (2-8) 7 (4-15) 9 (4-17) 4 (2-8)

Code status preferencef

Full code 2323 (11) 2323 (30) 285 (11) 0 (0)

DNR/Intubation-OK 928 (4) 928 (12) 254 (10) 0 (0)

DNR/DNI 4397 (20) 4397 (57) 2060 (79) 0 (0)

Not documented 14 386 (65) 0 (0) 0 (0) 1174 (100)

Major comorbiditiesg

Congestive heart failure 2758 (13) 1728 (23) 745 (29) 194 (17)

Chronic pulmonary disease 4626 (21) 2516 (33) 922 (35) 265 (23)

Dementia 1815 (8) 1447 (19) 570 (22) 77 (7)

Metastatic cancer 1787 (8) 848 (11) 634 (24) 304 (26)

Values are n (%) or median (interquartile range). Percentages may not add to 100 due to rounding.

CDSS: clinical decision support system; CLSC: Centre local de services communautaires; CSO: code status order; DNI: do not intubate; DNR: do not resusci-

tate; ED: emergency department; EOL: end of life; ICU: intensive care unit.
aRepresent direct admissions to the ICU before a primary non–critical care service could be specified (ie, the responsible service upon ICU discharge). ICU expo-

sure is more precisely measured with the variables “ICU admission” and “ICU stay during hospitalization.”
bSee Supplementary Appendix for characteristics of real-time–accessible living status (used for prediction models).
cIncludes transfer to another hospital, rehabilitation center, palliative care center, or discharge against medical advice.
dIn the year before admission.
eIn the 90 days before admission.
fLast preference documented during hospitalization if one was documented.
gCharlson comorbidities using International Classification of Diseases–Tenth Revision codes by Quan et al31 and ascertained using the discharge abstract of in-

dex hospitalization and of those in the year before discharge.
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predicted risk; all models had good construct validity for DNR pref-

erences.

CSOs at the EOL
There were 7648 hospitalizations associated with a CSO in the

CDSS-eligible cohort (35%). Among these, 2599 (34%) were associ-

ated with death within 1 year of admission; clinicians were observed

to document a CSO during 1 hospitalization at the EOL for every

�1.9 hospitalizations not at the EOL (observed exchange rate of

2599 TPs to 5049 FPs). On average, clinicians acted as though the

harm of FNs was 1.9 times as harmful as a FP.

There were 3773 (17%) hospitalizations at the EOL in the

CDSS-eligible cohort. Among these, a CSO was not documented in

1174 cases, meaning a minimal GOC discussion had not been docu-

mented for 31% of applicable hospitalizations with overnight stays

at the EOL. Compared with hospitalizations at the EOL that did

have a CSO, these cases were more likely to be elective (odds ratio,

9.6; 95% CI, 7.3 to 12.5), in surgical specialties (odds ratio, 5.1;

95% CI, 4.4 to 6.1), for younger patients (mean age 68.3 years vs

76.9 years; 95% CI, -9.5 to -7.6]), and of shorter duration (mean

length of stay 6.5 days vs 12.9 days; 95% CI, -7.1 to -5.7]).

Expected clinical utility
Simulated at an alert prevalence of 10%, each model would have

generated on average 6 alerts per day over 1 year (Figure 4). At

this same level of resource use, the eRD varied between 5.4% and

10.7%, and the NNB between 5.4 and 10.9 alerts (Table 4). The RF-

AdminDemoDx model had the highest expected benefit by either met-

ric. This model also maximized NB in the decision curves regardless

of the decision tree or exchange rate used (Figure 5). When routine

clinical actions were considered, only the RF-AdminDemoDx and

RF-AdminDemo models could increase value above usual care in the

range of reasonable alert prevalence (Figure 5D).

Sensitivity analysis
The net benefit of the RF-AdminDemoDx model remained the

highest among models in the 2-way sensitivity analysis (Figure 6).

Subgroup analysis indicated heterogeneity that could influence im-

Table 3. Predictive performance of automatable prediction models for the outcome of 1-year mortality

RF-AdminDemoDx RF-AdminDemo RF-Minimal mHOMR

Internal validationa

C-statistic (range) 0.90 (0.90-0.91) 0.86 (0.85-0.87) 0.85 (0.84-0.86) 0.86 (0.85-0.86)

Brier score (range) 0.068 (0.065-0.073) 0.079 (0.077-0.083) 0.082 (0.078-0.084) 0.081 (0.078-0.085)

External validationb,c

C-statistic (95% CI) 0.89 (0.88-0.89) 0.85 (0.84-0.86) 0.84 (0.83-0.84) 0.84 (0.83-0.85)

Brier score (95% CI) 0.074 (0.072-0.076) 0.084 (0.081-0.086) 0.086 (0.084-0.089) 0.086 (0.083-0.088)

CDSS-eligible validationb,d

C-statistic (95% CI) 0.86 (0.85-0.87) 0.81 (0.80-0.82) 0.79 (0.78-0.80) 0.80 (0.79-0.81)

Brier score (95% CI) 0.088 (0.085-0.091) 0.10 (0.097-0.10) 0.10 (0.10-0.11) 0.10 (0.099-0.11)

CDSS: clinical decision support system; CI: confidence interval; mHOMR: Modified Hospital One-year Mortality Risk.
aInternal validity estimated using 10-fold cross-validation in the training cohort (12 069-12 521 hospitalizations and 7078-7079 patients in each fold). Metrics

calculated for each fold after sampling 1 random hospitalization per patient. Data given as median estimate (range [ie, minimum-maximum]) across the 10 folds.
bMetrics calculated on 1000 two-stage bootstrapped samples as detailed in the Supplementary Appendix. Data given as median estimate (95% CI).
cTemporal validity estimated in testing cohort (26 291 hospitalizations, 20 012 patients).
dTemporal validity estimated in CDSS-eligible cohort (22 034 hospitalizations, 16 490 patients).
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Figure 3. Regression of end-of-life outcome and communication indicators against model-predicted risk. Binary variables regressed against predicted risk of a

given model then plotted along with 95% confidence interval bands using the LOESS algorithm. One random hospitalization per patient sampled from the clinical

decision support system–eligible cohort before applying regression. (A, B) Showing 16 490 patients, in which 2248 died within 1 year of hospitalization and 5241

had code status order (CSO) documentation during that hospitalization. (C) Showing 5241 patient hospitalizations with CSO documentation, in which 3552 pre-

ferred a do not resuscitate (DNR) status in the last CSO documented before discharge. Among the 5241 patients with a CSO, a predicted risk of mortality exceed-

ing 10% to 15% was associated with a majority preference for DNR—either “DNR/Intubation-OK,” or “DNR/DNI (do not resuscitate).” mHOMR: Modified Hospital

One-year Mortality Risk.
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plementation, including a smaller benefit for all models at site B

(Supplementary Figures S3-S7). Estimates of clinical utility using dif-

ferent sampling strategies did not change the direction or interpreta-

tion of results (Supplementary Tables S7-S9, Supplementary Figures

S8-S10).

DISCUSSION

Improving patient identification for routine PEOLC interventions is

a priority for healthcare stakeholders aiming to reconcile the default

policies of life-sustaining therapy with the static truth that all life

comes to an end. We performed an up-to-date review of model vali-

dation studies in this area of research and provide both a narrative

and tabular synthesis of related studies in the Supplementary Appen-

dix. In recent years, there has been a shift from manual screening

tools33 toward automated trigger tools,34 with the latter shifting

from query-based algorithms35 toward increasingly flexible, but in-

frastructure-dependent, prediction models.21,36–39 A challenge with

such models is that their usual learning objective, minimizing the er-

ror of mortality prediction, is only indirectly related to the clinical

objective of maximizing benefit for a resource-limited PEOLC inter-

vention. In this setting of mismatched expectations, predictiveness

does not mean usefulness, making it essential to assess clinical utility

and not just predictive accuracy.8–10,16
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actual admissions is compared with the frequency of simulated alerts at risk thresholds corresponding to an overall alert prevalence of 10%. “All” refers to all

admissions in the testing cohort (excluding pediatric and psychiatric admissions). The loess algorithm was used to smooth day-to-day variations using a span of
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tus order; EOL: end of life; mHOMR: Modified Hospital One-year Mortality Risk.
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While the most accurate model ended up having the highest expected

value, relying on an association between predictiveness and value can be

misleading. In Table 4, the RF-AdminDemo and mHOMR model have

similar indicators of accuracy (eg, Brier score 0.12 for both; C-statistic

0.80 vs 0.79), but only one would be more beneficial than usual care un-

der the assumptions of decision analysis (net benefit above zero vs net

benefit below zero). The unreliability of the C-statistic to discriminate

value is even more apparent when comparing a given model’s expected

benefit across the 2 hospital sites (Supplementary Figures S3-S6). For the

RF-AdminDemoDx model, the C-statistic at both site A and site B was

0.85. The NNB, however, was 4.4 and 11.0, respectively, reflecting a

greater usual tendency to document CSOs at site B. The difference be-

tween sites was most dramatic for the RF-Minimal model, which had an

NNB of 8.8 vs 114: only 4 alerts of 456 simulated during 1 year at site B

identified an individual at the EOL that did not already have a CSO

documented. The C-statistic was entirely uninformative of this differ-

ence, being 0.77 at both sites.

In our review of the literature, we did not find any retrospective

study evaluating the clinical utility—both benefits and harms—of

automatable prediction models for prompting PEOLC interventions.

In contrast, almost all studies reported the C-statistic for mortality,

and these were generally above 0.8. The context insensitivity of the

C-statistic makes it practical for research but uninformative for

practice: more value-based metrics are required to guide decision

makers.14,17 Prediction models for prompting a PEOLC intervention

had varying use cases for decision support, including GOC discus-

sion, palliative care referral, outpatient follow-up for advance care

planning, or hospice referral. The benefits, harms, and resources as-

sociated with these actions differ between each other and between

health systems; one curve does not fit all.

Strengths of our study included ensuring that retrospectively

accessed data represented real-time data and the use of temporal

rather than random splitting for validation: simulating prospective

application at the point of care. When validated in similar cohorts

(not necessarily target population), all models in our study had simi-

lar C-statistics as published models (ie, above 0.8). However, the

eRD and NNB for a patient-centered outcome ranged almost 2-fold,

and only 2 models had a higher NB than usual care with our

scenario-appropriate decision tree.

Others have validated the predictive performance of a model,

then described physician opinion about the appropriateness of high-

risk predictions for intervening.36,39,40 While informative of con-

struct validity, appropriateness does not represent a model’s useful-

ness over alternatives. If a mortality alert rule resulted in alerts for

every hospitalization—and only hospitalizations—with a DNR in

the CDSS-eligible cohort, its positive predictive value for 1-year

mortality would be 43.5% (n ¼ 2314 of 5325) and all cases would

be appropriate for hypothetical CSO documentation; yet, this rule is

useless for improving this outcome because it tells clinicians what

they already act upon. A similar situation could result from using a

model that is highly influenced by terms like “palliative” and

“DNR,”41 or a model that uses historical palliative care consults to

predict future consults.37 Even if alerts correctly predict mortality or

benefit, those who would benefit from usual care anyway might be

disproportionately identified. More concerningly, those who do not

usually benefit may be further marginalized.7

Prediction models are often evaluated in biased conditions42 and

rarely compared against routine clinical decision making.43 Clinical

utility metrics—like an intention-to-treat estimator,10 the NB,15 or

the NNB16—allow for patient-centered comparisons of prediction

models with more appropriate assumptions. They can also detect

unexpected differences in potential impact, like the difference in

expected value between our 2 sites, before any health system invest-

ment and exposure to patients. We demonstrated 3 innovative strat-

egies to increase the applicability of decision analysis for assessing

the utility of automatable prediction models.

First, we did not rely on a link between risk threshold and clini-

cal preference for net benefit analysis.27,44 Instead, we linked the

Table 4. Expected clinical utility of prediction models in the CDSS-eligible cohort

RF-AdminDemoDx mHOMR RF-AdminDemo RF-minimal

Parameters

Alert prevalence, % (no. alerts) 10 (2204) 10 (2204) 10 (2204) 10 (2205)

Risk threshold 0.478 0.461 0.465 0.422

Clinical utility

eRD, % 10.7 5.5 6.9 5.4

NNB, alerts 5.4 10.7 8.4 10.9

Benefit 0.1363 0.1273 0.1298 0.1272

Harm 0.1264 0.1284 0.1278 0.1297

Net benefit 0.0099 �0.0011 0.0020 �0.0025

Predictive accuracy

PPV, % 63 48 50 44

NPV, % 88 86 87 86

Sensitivity, % 37 28 29 26

Specificity, % 95 94 94 93

C-statistica 0.85 0.79 0.80 0.77

Brier scorea 0.11 0.12 0.12 0.12

Risk threshold set as the 90th percentile of predicted risk in the sample, which results in an alert prevalence of 10%. Sample size ¼ 22 034 hospitalizations;

true positive code status orders in usual care ¼ 2599; false positive code status orders in usual care ¼ 5049; observed exchange rate ¼ 0.515. The expected clinical

utility of completely random alerts provided for reference in the Supplementary Appendix (Supplementary Table S6).

CDSS: clinical decision support system; eRD: expected risk difference; mHOMR: Modified Hospital One-year Mortality Risk; NNB: number needed to benefit;

NPV: negative predictive value; PPV: positive predictive value.
aThreshold independent. These metrics differ for the CDSS-eligible cohort in Table 3 due to the different sampling unit (1 hospitalization per patient is sampled

for the results of Table 3; all hospitalizations are included here).
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risk threshold to the desired alert prevalence, representing resource

use, and used other procedures to value outcomes. In doing so, we

overcome a limitation of threshold-based NB analysis, which has

been remarked as inappropriate for prediction model use cases that

require considering resource availability in addition to patient bene-

fits and harms.16 Note that the intent behind NB analysis—if not

most decision-analytic methods14—is that it be adapted and ex-

tended to specific scenarios,27,45 the motivating principle being pre-

cisely that off-the-shelf metrics are not necessarily appropriate for

all scenarios and stakeholders.17

Second, we extended the original decision tree used for decision

curve analysis to allow simulating model-augmented outcomes (eg,

that no alert can still lead to CSO if clinically appropriate), rather

than model-determined outcomes (eg, that no alert will lead to no

CSO). We would not want or expect the latter for our use case. By

design, the adapted decision tree results in a more modest estimation

of utility, one that accounts for the expected value of routine care:

models can only increase benefit if it is there to be increased after ap-

plying usual clinical decision making.

Third, we used empiric rates of TP and FP actions to inform an

observed exchange rate. This enabled decision curve analysis while

comparing models at the same alert prevalence, which was not nec-

essarily at the same risk threshold across models. Among those with

a CSO, most patients preferred a DNR when the predicted risk of

mortality was above 10% to 15%, but such a risk threshold would

result in an alert prevalence over 50%. While likely acceptable for

patients, who have little to lose and much to gain from a routine

GOC discussion, this low risk threshold could imply unreasonable

workloads for clinicians and cause alert fatigue.12 The observed ex-

change rate is a simple measure of the benefit-for-time trade-off that

limits a good practice with minimal intervention-related harm. It is

readily reproducible if practice patterns change over time and we be-

lieve it is insightful about clinical decision making, noting that

physicians may be influenced by an inflated perception of GOC-

related cost.46 This technique could facilitate the clinical utility as-

sessment of other models for improving good practices in time-

constrained environments, in which utilities cannot be inferred from

the desired risk threshold. We used CSOs because they were the only

electronic indicator of GOC documentation at our institution, but

the same technique could be applied for other standardized indica-

tors of the EOL communication process, like Physician Orders for

Life-Sustaining Treatment.47

Our reproduction of the mHOMR model did not discriminate 1-

year mortality as well as in Ontario (C-statistic 0.84 vs 0.89),21 but it

was relatively simple to generalize to our institution. We cannot say the

same of our ML model, which relies on admission diagnoses in Quebec-

local French and would need another free-text mapping to be transport-

able beyond provincial borders (we report all variable definitions to en-
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Figure 5. Decision curve analysis. Decision curves to assess net benefit as a function of either desired risk threshold (top) or desired alert prevalence (bottom),

and using either decision tree 1 (left) or decision tree 2 (right). In all scenarios, the RF-AdminDemoDx model had a higher net benefit than alternative prediction

models. (A) The decision curves use the original methodology of Vickers et al.27,32 (B) Decision tree 2 is assumed instead of the original tree. (C) The exchange

rate is assumed to equal the observed exchange rate, rather than the odds at the risk threshold. (D) Combination of the assumptions in panels B and C: decision

tree 2 is assumed and the exchange rate is assumed to equal the observed exchange rate. Only the RF-AdminDemoDx and RF-AdminDemo model exceed the net

benefit of usual care under these combined assumptions. With decision tree 1, “Alerts for none” and “Alerts for all” implies “CSO for none” and “CSO for all,”

respectively. With decision tree 2, “Alerts for all” still implies “CSO for all,” but “Alerts for none” implies “Usual care.” The strategy of “Alerts for all” is a distant

outlier in the bottom panels, corresponding to a constant net benefit of around -0.25. The strategy of “Alerts for none” overlaps “Usual care” in panels B to D.

CSO: code status order; mHOMR: Modified Hospital One-year Mortality Risk.
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able this). However, while the local instance of our ML model is less

geographically transportable than mHOMR, it is convincingly more use-

ful for future application at our institution. This finding adds evidence to

the recommendation that the pursuit of model generalizability should

not be at the expense of local clinical utility.13

Our study has several limitations. First, resuscitation preference doc-

umentation is an essential but limited measure of EOL communica-

tion.24 We did not measure the quality of the GOC discussions that

preceded a CSO, nor the concordance of preferences with care received.5

However, the role of this study was to inform implementation and not

substitute a prospective evaluation of clinical impact, in which these

higher-value patient outcomes should be assessed before long-term adop-

tion.8 Second, decision analysis requires simplifying assumptions to be

practical, like assuming that alerts would deterministically lead to ac-

tion.10,27 To increase the transparency of these assumptions, we repeated

analyses with a random model. In practice, some alert fatigue should be

expected and addressed during pilot implementation (eg, by tailoring

alerts to service needs).12 Third, owing to the COVID-19 pandemic, a re-

peat validation is likely warranted before local application because mod-

els rely on noncausal associations, such as between admission service

and death, that may have unexpectedly shifted after systemic reorganiza-

tion. Finally, although evaluating clinical utility of a prediction model is

recommended and provides more value-based metrics than evaluating

just predictive performance,8–10,14–17 more research is required to investi-

gate how well these metrics predict the actual impact of a model-based

CDSS. Future studies can refine on decision analysis based on this retro-
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Figure 6. Two-way sensitivity analysis between resource availability and clinical preference. The net benefit (NB) was calculated for each strategy, for each tile,

and for each plot; the strategy with the highest NB is indicated for the corresponding combination of alert prevalence and exchange rate in each hospital site (col-

umn) and service type (row). For example, if an alert prevalence around 15% was desirable for medical services at site B, and the cost of a false negative (FN) in

this group was considered equal to the cost of a false positive (FP) (exchange rate 1:1), then the most beneficial strategy would be usual care. In the same setting,

the RF-AdminDemoDx model would be a better strategy if either a lower alert prevalence was acceptable (eg, around 11%, implying a higher risk threshold), or if

the cost of FP alerts were relatively lower (eg, exchange rate of 3:5, in which 3 FNs are as costly as 5 FPs). A higher exchange rate indicates a greater preference

for avoiding the time cost of a goals-of-care discussion when one is unnecessary (worried about FPs), while a lower exchange rate indicates a greater preference

for avoiding the harm of omitting a goals-of-care discussion when one is necessary (worried about FNs). The overall exchange rate (dotted line) was calculated

using equation 4 in the full cohort, and the subgroup exchange rate (solid line) corresponds to the result of equation 4 among a given subgroup. The Modified

Hospital One-year Mortality Risk, RF-AdminDemo, and RF-Minimal models are not referenced because they were never a strategy with the highest net benefit.
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active feedback, like including model-independent effects from behav-

ioral economics–inspired cointerventions.48

CONCLUSION

An evaluation of clinical utility, such as by using decision curve

analysis, is recommended after validating a prediction model be-

cause metrics of model predictiveness, such as the C-statistic, are not

informative of clinical value. This is particularly important for mor-

tality prediction models having the use case of automatically

prompting a PEOLC intervention, like a GOC discussion. Decision-

analytic techniques to assess utility along patient-centered outcomes

are feasible for quality improvement teams. They can help discrimi-

nate value from hype, calibrate expectations, and provide valuable

information before CDSS implementation. As an adjunct to model

validation, the routine evaluation of clinical utility could increase

the value of automated predictive analytics implemented at the point

of care.
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