
Introduction 

Coronary heart disease (CHD) is the leading cause of death worldwide. CHD mortality 
in the United States in 2017 was over 360,000 [1] and worldwide, 3.8 million men and 3.4 
million women die of the disease each year [2,3]. Myocardial infarction (MI), also known 
as a heart attack, is the major cause of death in CHD and over 100,000 Americans died of 
MI in 2017 [1]. 

The myocardium performs structural and biomechanical functions that are essential 
for health and survival. Myocardial loss caused by injury, disease, or aging accounts for a 
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Myocardial infarction (MI) is the leading cause of death from coronary heart disease and 
requires immediate reperfusion therapy with thrombolysis, primary percutaneous coro-
nary intervention, or coronary artery bypass grafting. However, myocardial reperfusion 
therapy is often accompanied by cardiac ischemia/reperfusion (I/R) injury, which leads to 
myocardial injury with detrimental consequences. The causes of I/R injury are unclear, but 
are multifactorial, including free radicals, reactive oxygen species, calcium overload, mito-
chondria dysfunction, inflammation, and neutrophil-mediated vascular injury. Mild hy-
pothermia has been introduced as one of the potential inhibitors of myocardial I/R injury. 
Although animal studies have demonstrated that mild hypothermia significantly reduces 
or delays I/R myocardium damage, human trials have not shown clinical benefits in acute 
MI (AMI). In addition, the practice of hypothermia treatment is increasing in various 
fields such as surgical anesthesia and intensive care units. Adequate sedation for anesthetic 
procedures and protection from body shivering has become essential during therapeutic 
hypothermia. Therefore, anesthesiologists should be aware of the effects of therapeutic hy-
pothermia on the metabolism of anesthetic drugs. In this paper, we review the existing 
data on the use of therapeutic hypothermia for AMI in animal models and human clinical 
trials to better understand the discrepancy between perceived benefits in preclinical ani-
mal models and the absence thereof in clinical trials thus far. 
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significant number of clinical disorders and substantial human 
suffering at an enormous social and economic cost [4]. Infarctions 
usually result in the formation of fibrotic scars that permanently 
impair the biomechanical function of the heart because the heart 
exhibits a minimal capacity for self-repair [5]. 

MI occurs when the blood supply to the heart is severely re-
duced or completely blocked. As a result, cardiac muscle cells do 
not receive sufficient oxygen and may die through forms of ne-
crosis and apoptosis that contribute to the death of cardiomyo-
cytes [6]. This most commonly occurs when a coronary artery 
becomes occluded and blood clot forms acutely following the 
rupture of an atherosclerotic plaque. Major surgery and anesthesia 
may also induce cardiovascular risk, particularly in patients with 
cardiovascular disease [7]. For example, cardiac ischemia/reperfu-
sion (I/R) injury is frequently induced or may occur during coro-
nary angioplasty, cardiac valve replacement, coronary artery by-
pass grafting, and cardiac transplantation [7,8]. 

Early myocardial reperfusion with the use of thrombolytic ther-
apy or primary percutaneous coronary intervention (PCI) is the 
most effective strategy to reduce infarct size and improve clinical 
outcomes [3,8]. However, the process of restoring blood flow to 
the ischemic myocardium can cause injury, and this phenome-
non, termed ‘myocardial reperfusion injury,’ can diminish the 
beneficial effects of myocardial reperfusion [2,3,8]. The mecha-
nism of I/R injury is unclear, but several hypotheses have been 
proposed: formation of free radical or reactive oxygen species 
(ROS), calcium overload, hyperglycemia, mitochondrial dysfunc-
tion, inflammation, neutrophil-mediated vascular damage, micro-
vascular hypoperfusion, and depletion of high energy phosphates 
[8,9]. Reperfusion has deleterious effects and reperfusion injury 
can contribute to up to half of the final myocardial infarct size 
(MIS) [2,3,8]. 

The development of effective adjunct therapy is necessary to 
improve clinical outcomes in acute MI (AMI) and to reduce the 
risk of heart failure (HF) and sudden death after MI. For these 
reasons, various approaches and therapies have been tested to re-
duce the detrimental effects of I/R. However, these have not 
shown any beneficial cardioprotective effects in the clinical setting 
[8,10–12]. 

Mild hypothermia has been introduced as a potential inhibitor 
of myocardial I/R injury. Although animal studies have demon-
strated that mild hypothermia significantly reduces or delays I/R 
myocardial damage [13–18], human trials have not replicated 
clinical benefits in AMI [10–12,19,20]. In this article, we review 
the evidence and issues from animal and clinical studies regarding 
the effects of hypothermia therapy on AMI. 

Pathophysiology of MI and I/R injury 

Ischemia

MI results from an imbalance in the myocardial oxygen supply/
demand, typically due to insufficient coronary blood flow. Various 
causes of coronary stenoses, such as atherosclerosis, vasoconstric-
tion, or mechanical pressure can cause coronary ischemia. Usual-
ly, coronary blood flow is maintained through autoregulation, 
which controls the tone and coronary artery luminal size through 
mediators of the myocardium or endothelium [21]. However, 
when the coronary endothelial function is abnormal due to coro-
nary artery disease, coronary blood flow cannot be sufficiently 
maintained through this mechanism. 

Factors influencing the size of subsequent infarcts include the 
duration of ischemia, the size of the ischemic territory (area at risk 
[AAR]), collateral blood flow, myocardial metabolic rate, and 
temperature during ischemia [22,23]. Ischemia duration longer 
than 40 min results in irreversible myocardial damage and loss of 
cardiac function, and I/R injury may occur after 50 min [2,24]. In 
the absence of collateral circulation, necrosis occurs in most of the 
AARs if reperfusion is not performed in a timely manner. Long-
term consequences of MI include ventricular remodeling of the 
remaining myocardium, ventricular failure, arrhythmia, and sud-
den death [25,26]. 

Reperfusion & reperfusion injury

Reperfusion therapy, such as PCI or thrombolysis, is essential 
for the survival of damaged myocardial tissue by ischemia, espe-
cially in the setting of acute ST-segment elevation myocardial in-
farction (STEMI) [3,22]. Clinically, reperfusion significantly re-
duces mortality after MI by approximately 75% [23]. However, 
reperfusion can be a ‘double-edged sword’ due to I/R injury 
[27−29]. 

The pathological mechanisms of I/R injury are multifactorial 
[2,8,23,24]. Infarcted myocardium undergoes necrosis character-
ized by calcium overload with contracted myofibrils, sarcolem-
mal rupture with edema, mitochondrial collapse, microvascular 
obstruction, capillary rupture, hemorrhage, and leukocyte infil-
tration [2,8]. Necrotic changes during reperfusion are accelerated 
by multiple pathways, such as calcium overload, oxidative stress 
by ROS, inflammatory response, and activation of the calpain 
system [2,8,23]. In addition to necrotic cell death, the regulated 
process of cell death via apoptosis, autophagy, and necroptosis 
also occurs through the regulation of the calpain system [24]. 
Myocardial reperfusion results in four types of cardiac dysfunc-

217https://doi.org/10.4097/kja.22156

Korean J Anesthesiol 2022;75(3):216-230



tion: 1) myocardial stunning, 2) no-reflow phenomenon, 3) 
reperfusion arrhythmias, and 4) irreversible fatal reperfusion in-
jury, which involves severe myocardial damage including in-
creased infarct size and impairment of myocardial contractility 
[3]. 

Inflammation & remodeling

After MI, macrophages, monocytes, and neutrophils migrate 
and trigger intracellular signaling processes, resulting in inflam-
matory responses [25,30,31]. The degradation of collagen struts 
by matrix metalloproteinases activation and serine proteases re-
sults in infarct expansion. Infarct expansion leads to wall thinning 
and ventricular dilatation, increasing myocardial wall stress. This 
early remodeling occurs within 72 h, and the expansion of the in-
farct zone leads to changes in loading conditions. 

When ventricular load increases and cardiac output decreases, 
there is a release of norepinephrine, and activation of the re-
nin-angiotensin-aldosterone system, resulting in myocardial hy-
pertrophy. During late remodeling (more than 72 h), reparative 
changes occur in the global ventricle including both infarcted and 
non-infarcted myocardium. The release of transforming growth 
factor-β (TGF-β) facilitates fibroblast proliferation and angioten-
sin II production. Macrophage activation stimulates nitric oxide 
stimulation that increases vascular permeability. 

Oxidative stress facilitates post-MI inflammatory responses in 
both infarcted and non-infarcted myocardium through enhanced 
ROS production and impaired antioxidant capacity. These chang-
es induce an inflammatory response in the infarct zone and stim-
ulate fibrosis by collagen synthesis. Ventricular dilatation, myo-
cyte hypertrophy, and the formation of collagen scar result in dis-
tortion of the shape of the ventricle until the ventricular wall 
stress is balanced with the tensile strength of fibrous tissue [25,26]. 

Survival after MI is determined by the effect of ventricular re-
modeling on contractile function and end-systolic volume, which 
is based on the infarct size, location, and shape of the left ventricle 
[30,32]. Adverse ventricular remodeling, which does not normal-
ize the intracavitary stress of the ventricular wall, results in exces-
sive dilatation of the ventricles and fibrosis and decreased con-
tractile function [8,25,31]. Patients with preserved left ventricular 
systolic function have a higher survival rate, while adverse ven-
tricular remodeling is associated with significantly higher mortal-
ity [30]. Therefore, left ventricular remodeling is considered a 
surrogate for HF, and maintaining a normal end-systolic volume 
and ejection fraction during remodeling is an important goal for 
survival [30,32]. 

MI size measurement 

The size of MI in the clinical trials can be measured by the tech-
niques as below: 

Single-photon emission computed tomography (SPECT)

SPECT imaging with Technetium-99m 2-methoxy isobutyl iso-
nitrile (99mTc-sestamibi, also termed as 99mTc MIBI) is the most 
practical and widely used tool for the clinical evaluation of MI 
[33]. SPECT imaging is used to visualize areas of reduced blood 
flow due to physiologic/pharmacologic stress or pathological con-
ditions and to determine the viability of cardiac tissue. There is a 
close association between SPECT MI size and other parameters 
including left ventricular function, end-systolic volume, creatine 
kinase release, and magnetic resonance imaging (MRI) infarct 
size, as well as patient mortality [33]. There is also a good correla-
tion between the SPECT MI size and the actual amount of patho-
logical fibrosis in the human heart [33]. The major limitation is 
that radioisotopes are required as contrast agents. In addition, due 
to the spatial resolution (10 mm) of SPECT images, SPECT miss-
es small infarcts, particularly subendocardial infarcts that do not 
involve the entire heart wall, and their sizes exceed the spatial res-
olution of SPECT.  

MRI

Although SPECT is an established method for infarct quantifi-
cation, cardiovascular MR techniques play an important role in 
the assessment of myocardium viability and infarct detection be-
cause of their advantages of superior spatial resolution (60-fold 
greater than SPECT) and tissue characterization performed under 
resting condition, and without exposure of radiation [34]. Con-
trast-enhanced MRI allows real-time visualization of cardiac mo-
tion with superior anatomical and functional definition, and is 
useful and accurate for the noninvasive determination of infarct 
size. In addition, contrast-enhanced MRI enables accurate delin-
eation between infarct and viable myocardium, while cardiac MR 
can visualize both reversible and irreversible injury and determine 
the presence of residual MI [34]. This allows a comprehensive as-
sessment of the sequels of AMI that can help guide patient man-
agement [34]. 

Since the contrast agent (gadolinium) is extracellular and inter-
stitial, the volume of distribution of the contrast increases within 
the infarcted imaging voxel. Since the increased gadolinium con-
centration in the infarcted tissue shortens the relaxation time, the 
infarct appears to be hyper-enhanced [34]. MRI shows excellent 
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accuracy in the delineation of scars when compared to scinti-
graphic techniques (e.g., SPECT) [35]. The hyper-enhanced area 
of the MR images shows a near-perfect correlation with the irre-
versibly injured regions defined by triphenyl tetrazolium chloride 
staining [35]. 

Recently, MRI techniques have demonstrated high accuracy in 
measuring microvascular obstruction, necrotic core, total infarct 
size, and the AAR in reperfused infarcts, which allows direct 
quantification of myocardial salvage [36,37]. In addition, infarct 
size by MRI has higher reproducibility than SPECT [38]. In hu-
mans, MRI accurately predicts the reversibility of associated myo-
cardial dysfunction [39,40]. 

Animal models for AMI 

The normal core temperature of animals is higher (i.e., pig: 
38.5–39°C) than that of humans (36.5–37.5°C). However, experi-
mental animal models can help to evaluate the effect of hypother-
mia on I/R injuries before conducting clinical trials, and it would 
be recommended to focus on the degree of changes in infarct size 
with changes in core temperature rather than the absolute tem-
perature of hypothermia. 

Techniques

There are several animal models of MI that include small ani-
mals such as rodents, or large animals such as swine and sheep. 
The pig model is an attractive choice given its similarity to hu-
mans in terms of cardiac circulatory anatomy and cardiac con-
traction relaxation kinetics, and cardiac output [41]. In pigs, the 
left coronary artery is larger and longer than the right coronary 
artery, as in humans. There is little collateral blood flow with scant 
collateral arteries that localize to the mid myocardium and 
sub-endocardium. These properties of the coronary system allow 
for predictable infarct size. Pigs have a heart rate of about 105 ±  
10.6 beats/min and a mean arterial blood pressure of 102 ±  9.3 
mmHg [42,43]. After the occlusion of a coronary artery, the isch-
emic myocardium ceases aerobic metabolism within a few sec-
onds, resulting in severe systolic dysfunction [44]. An occlusion 
period of less than 15 min in pigs causes reversible myocardial 
ischemia, and ischemic myocardial tissues may survive after the 
restoration of coronary blood flow [44]. A duration of occlusion 
between 15 and 30 min causes irreversible myocardial damage 
with histological changes as mentioned above in the infarction 
area [44]. 

Effect of the duration of occlusion on the infarct size 
[13,18,45–65]

In pigs, the percentage of infarct size in the risk area after reper-
fusion increases with the duration of coronary artery occlusion: 
percentage of infarct size was 30 ±  15% AAR after 30 min occlu-
sion, 66 ±  12% AAR after 60 min occlusion, and 68% AAR after 
90 min occlusion. A duration of occlusion of about 180 min re-
sults in a complete infarct with an AAR size greater than 80% 
[23]. 

Hypothermia therapy 

Effects of hypothermia on infarct reduction

During mild hypothermia, the heart rate decreases while cardi-
ac contractility is preserved, thus reducing myocardial work and 
oxygen consumption [66,67]. In addition, as the metabolism of 
the whole body, as well as the heart, is suppressed, the oxygen de-
mand decreases. Reduction of cellular metabolism, preservation 
of adenosine triphosphate (ATP) concentration, reduction of ROS 
production, and regulation of apoptosis is associated with energy 
preservation and reduction in infarct size. The prophylactic effect 
of hypothermia on I/R injury is also associated with modulation 
of the mitochondrial permeability transition pore, reduction of 
calcium overload during hypothermia, and regulation of cellular 
signaling (Akt pathways, heat-shock proteins, extracellular-regu-
lated kinase, etc.), reducing the inflammatory response [67]. 

Animal studies 

Table 1 summarizes the effect of mild hypothermia therapy on 
infarct size in animal models. Therapeutic mild hypothermia in 
the setting of AMI, usually left anterior descending (LAD) occlu-
sion, in animal models has effectively reduced MIS and microvas-
cular dysfunction, particularly when initiated before reperfusion, 
but not after reperfusion [13–15,17,18]. Duncker et al. [49] found 
a positive correlation between infarct size and temperature. Other 
studies have demonstrated a beneficial temperature-related effect 
of hypothermia on infarct size. However, Maeng et al. [61] found 
no benefit of hypothermia induced in conjunction during or after 
reperfusion. In addition, studies that reached the target tempera-
ture after perfusion in which cooling was initiated concurrently 
with rapid reperfusion failed to show the same level of protection 
[61]. These previous studies have suggested that the timing of 
cooling relative to end-ischemia and early reperfusion is critical 
for optimizing its benefit. 
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Dae et al. [13] studied the cooling effect on MI in a human-sized 
pig model. Systemic cooling with an endovascular temperature 
catheter was started 20 min into a total 60 min coronary occlusion 
followed by gradual rewarming during reperfusion for about 3 h. 
The size of the AAR was comparable in the hypothermic (19 ±  
3%) and normothermic (20 ±  7%) animals. However, infarct 
size significantly decreased in hypothermic animals (9 ±  6% vs. 
45 ±  8%). 

The mechanism by which mild hypothermia exerts its effect is 
not fully elucidated yet. The protective effect of hypothermia is 
mediated in part through reduced reperfusion injury [68]. Cardi-
ac hypothermia is known to decrease myocardial oxygen con-
sumption and slow the rate of ATP depletion during ischemia 
[69]. This may be mediated by decreased release of vasodilatory 
mediators but may also reflect decreased responsiveness of endo-
thelial and vascular smooth muscle cells. Shao et al. [70] suggested 
that significant acceleration of myocardial death occurs within the 
first hour of reperfusion, preceded by a burst of oxidants, and cy-
tochrome c release that occurs within minutes of reperfusion. 

It has been difficult to translate this finding into a clinical set-
ting because the methods used to induce hypothermia (e.g., car-
diac surface cooling, arteriovenous extracorporeal heat exchang-
ers, and peritoneal cooling) and the cooling rate are different and 
rapid intervention times are impractical for implementation. In 
addition, porcine myocardium, the most popular animal model 
for MI studies, has little collateral blood flow, unlike human 
myocardium; this may lead to a slower onset of infarction in hu-
mans. 

Human clinical trials 

Effect of target temperature
Several human clinical trials were conducted to evaluate the ef-

fect of hypothermia on the reduction of infarct size and HF in pa-
tients with AMI (Table 2). Most human clinical trials have used 
mild hypothermia of 32–34°C as a target hypothermia tempera-
ture for adjuvant PCI therapy [11]. 

The COOL-MI InCor Trial (cooling as an adjunctive therapy to 
percutaneous intervention in AMI), in which hypothermia was 
maintained using the endovascular cooling method with a target 
temperature of 32 ±  1°C showed no difference in AAR (14.1% vs. 
control 13.8%) and ventricular function (43.3 ±  11.2% vs. control 
48.3 ±  10.9%) [71]. However, hypothermia less than 35°C applied 
to anterior MI patients resulted in a significant decrease in infarct 
size (9.3% vs. control 18.2%). A small pilot study, Rapid MI-ICE 
(the rapid cooling by cold saline and endovascular cooling before 
reperfusion in patients with ST-elevation MI), in which hypother-
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mia was maintained with a target temperature of 33°C by forced 
infusion of 4°C cold saline for 3 h [72], showed a 38% reduction 
in infarct size/AAR and no HF development. 

A multicenter randomized clinical trial, CHILL-MI Trial (a 
randomized controlled study of the use of central venous catheter 
core cooling combined with cold saline as an adjunct for the treat-
ment of AMI) aimed at rapid induction of hypothermia (33°C for 
1 h) but did not achieve an overall reduction in infarct size/AAR 
[73]. Relatively longer door to balloon time in the study group 
(about 9 min longer) and failure to achieve goal temperature in 
some patients may be responsible for the failure to reduce infarct 
size. However, the trial showed a 33% reduction in infarct size/
AAR on the anterior wall and a lower incidence of HF at 45-day 
follow-up (3% vs. 14% of control). 

Interestingly, the VELOCITY trial (the evaluation of ultrafast 
hypothermia before reperfusion in STEMI patients) that used an 
automated peritoneal lavage device for mild hypothermia target-
ing a temperature below 35°C did not yield meaningful results 
[74]. The VELOCITY trial showed no change in infarct size or 
microvascular obstruction and an increase in major cardiac ad-
verse events in 30 days. In addition, the door to balloon time was 
increased by about 15 min, and stent thrombosis occurred only in 
the hypothermia group. These results indicate that the potential 
risk of peritoneal cooling methods for therapeutic hypothermia 
and duration of ischemia may be more important factors for in-
farct size than prevention of I/R injury by hypothermia. 

The COOL AMI EU pilot trial (a multicenter, prospective, ran-
domized controlled trial to assess cooling as adjunctive therapy to 
percutaneous intervention in patients with AMI) showed a suc-
cessful reduction in infarct size/left ventricular mass up to 30% in 
anterior STEMI patients (16.7% vs. 23.8% of control) [75]. This 
trial used a rapid cooling protocol that achieved 33.6°C during 
reperfusion and lowered the temperature by more than 1.1°C 
compared to the previous clinical trials with 17 min cooling-relat-
ed delay to reperfusion. 

Most randomized clinical trials have not shown positive results 
with hypothermia as an adjunct therapy to primary coronary in-
tervention in patients with AMI [19,71,73,74]. However, clinical 
trials have demonstrated the safety and feasibility of adjuvant hy-
pothermia induced by cold saline and endovascular cooling 
during coronary intervention in patients with AMI; mild hypo-
thermia at the time of reperfusion is effective in reducing infarct 
size and the incidence of HF [11]. In particular, in the subgroup 
analysis, patients with body temperature reaching <  35°C before 
reperfusion and significant anterior wall MI showed a decrease in 
infarct size, suggesting a benefit of inducing hypothermia before 
reperfusion. Moreover, a pooled analysis of clinical trials showed 

a reduction in ischemia size and HF incidence in patients with 
large AARs, at least 30%, when the core temperature reached ≤  
35°C at the time of reperfusion [76,77]. These results suggest that 
it is essential to reach a core body temperature of <  35°C before 
reperfusion to reduce the size of MI and that a lower temperature 
close to 32°C, the lower limit of mild hypothermia, may be more 
effective. 

Consideration for hypothermia in clinical practice
Although animal studies have demonstrated the cardioprotec-

tive effects of hypothermia during reperfusion procedures, clinical 
trials have shown poor clinical relevance. A systematic review and 
meta-analysis of hypothermia trials after AMI confirmed that hy-
pothermia is a safe and feasible intervention. However, there are 
controversies about the reduction of infarct size and major ad-
verse cardiovascular events (MACE). Mottillo et al. [78] suggested 
that more evidence is needed although mean infarct size de-
creased according to the subgroup analysis of anterior wall infarc-
tion and there was no significant difference in the cardiac out-
come. Villablanca et al. [79] reported that hypothermia had limit-
ed benefits in reducing infarct size only in anterior wall MI and 
no significant benefit in reducing MACE and mortality. These re-
sults suggest that further studies are needed for different indica-
tions and protocols in humans by comparing the methods and re-
sults of animal studies.  

In animal studies showing the benefits of hypothermia, hypo-
thermia and MI were typically undertaken simultaneously, and 
hypothermia was maintained throughout the ischemic period. 
However, it is almost impossible to apply hypothermia in humans 
from the onset of MI in clinical situations. It is also difficult to ap-
ply rapid hypothermia to humans, and a sufficiently low tempera-
ture may not be achieved before reperfusion. Moreover, the bene-
fits of hypothermia may be lost in some patients with spontaneous 
reperfusion of an occluded coronary artery prior to the reperfu-
sion procedure [67]. Also, the actual temperature of myocardial 
tissues may differ from the core temperature or blood tempera-
ture measured by a cooling device [80]. 

As the ischemic myocardium is a part of the loss of blood circu-
lation, the measured temperature does not reflect the tissue of in-
terest and may be insufficient to protect against I/R injury. Salvage 
of reperfused myocardial tissue is correlated with tissue tempera-
ture at the border of the ischemic region, not with core tempera-
ture. Therefore, hypothermia precisely confined to the infarct re-
gion may be effective to prevent I/R injury in humans. 

Consequently, adequate hypothermia with practically optimal 
temperature and time duration is considered to be limited in 
some areas of emergency care, cardiac surgery, or post-condition-
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ing strategies, and further research and technology development 
are required. 

The temporal window for efficacy
According to the results from the studies on small animals, a 

pooled analysis showed that the reduction in infarct size de-
creased exponentially with increasing hypothermia induction 
time [66]. In addition, delayed hypothermia, initiated just prior to 
reperfusion, may have little effect on reducing ischemic size after 
reperfusion. The protective effect of hypothermia was completely 
lost when cooling was delayed 15 min post-reperfusion [70]. In-
terestingly, hypothermia induced after reperfusion reduced the 
no-reflow phenomenon without the benefit of reduced infarct size 
[61,81]. Therefore, it is clear that hypothermia should be applied 
prior to reperfusion and initiated as soon as possible for the re-
duction of infarct size, no-reflow phenomenon, and remodeling 
[14,51,81,82]. 

Optimal target temperature
Therapeutic hypothermia is classified as mild (32–35°C), mod-

erate (28–32°C), severe (20– 28°C), and profound ( <  20°C) de-
pending on the target body temperature [83]. There is still no op-
timal target temperature in clinical practice. Experimental results 
show that the reduction in infarct size is closely related to the tar-
get temperature, which decreases by 10–20% for every 1°C de-
crease in temperature [11]. Therefore, a lower temperature is as-
sociated with a reduction in infarct size. However, in clinical prac-
tice, only mild hypothermia is acceptable except under special cir-
cumstances such as surgery or cardiac arrest because the 
life-threatening risks associated with hypothermia are less with 
mild grade. Mild hypothermia reduces heart rate and cardiac out-
put while maintaining stroke volume and mean arterial pressure. 
In general, a target temperature of 32–34°C is recommended 
[11,84]. 

Safety during hypothermia 

Deep hypothermia may be associated with various complica-
tions such as hemodynamic deterioration, ventricular arrhythmia, 
or coagulopathy. However, mild to moderate hypothermia does 
not appear to cause these complications [19]. The feasibility and 
safety were successfully confirmed in clinical trials using endovas-
cular cooling to lower core body temperature to below 34–35°C 
[19,72,85,86]. There was no hemodynamic instability or bleeding 
complications during mild to moderate hypothermia with endo-
vascular cooling. Although some patients with anterior MI may 
develop ventricular arrhythmias during hypothermia with endo-

vascular cooling [19] or intracoronary cooling [87], these arrhyth-
mias can be easily controlled by DC cardioversion, so mild hypo-
thermia seems to be safe in patients with AMI. However, perito-
neal cooling appears to be associated with some safety concerns. 
Peritoneal cooling increases stent thrombosis due to increased 
platelet activation and respiratory suppression due to effects on 
diaphragmatic excursion [74]. Yet, the application of mild to 
moderate hypothermia is well tolerated in patients with MI and 
does not cause serious complications when it is controlled by ade-
quate treatment and sedation. 

Future studies 

Optimal cooling & rewarming pattern

Although the potential of mild hypothermia for myocardial re-
covery strategies after MI has been introduced by animal and hu-
man studies, there are few studies on optimal rewarming patterns. 
Unfortunately, while most studies on rewarming after hypother-
mia have focused on neurological outcomes after cardiac arrest, 
few studies have focused on the cardiac outcomes after MI, such 
as infarct size or cardiac function. Rewarming may induce adverse 
effects, such as ‘rewarming shock,’ characterized by hypotension, 
tachycardia, and acidosis due to the return of altered cardiovascu-
lar functions during hypothermia [88]. For example, increased 
metabolic rate and cardiac output can cause a mismatch between 
oxygen demand and supply. 

Changes in oxygen delivery can occur due to changes in body 
temperature associated with changes in oxygen extraction rates, 
hemoglobin dissociation curve, and blood viscosity. In addition, 
increased oxygen consumption may occur due to the resumption 
of the inflammatory process and free radical oxidation. Shivering 
during rewarming may also contribute to the mismatch. Ventric-
ular dysfunction associated with decreased sensitivity of myofi-
brils to calcium due to increased troponin C phosphorylation may 
also occur after rewarming [89]. 

Animal studies have shown worse results at faster rewarming 
rates [88]. Therefore, a slow and targeted rewarming protocol is 
necessary after applying hypothermia. In the case of mild hypo-
thermia after cardiac arrest, a slow rewarming of 0.25°C/h to nor-
mothermia (37°C) is suggested because of the long duration of 
hypothermia application (12 to 24 h) with a cooler temperature 
than coronary reperfusion (32–33°C) [84]. This slow rewarming 
takes almost 12 h or more. However, previous clinical trials of 
AMIs using both active and passive rewarming protocols showed 
somewhat rapid rewarming time [71–75,90]. 

The duration of rewarming took 3–4 h for the active rewarming 
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protocols and 3–6 h for the passive or spontaneous rewarming 
protocol. It seems the shorter duration of hypothermia (1–3 h), 
the higher temperature at reperfusion period (33–35°C), and the 
absence of risks of neurological damage unlike cardiac arrest or 
cerebral ischemia make the immediate rewarming with a shorter 
duration possible in hypothermic therapy during reperfusion pro-
cedure in patients with AMI. However, further controlled studies 
using longer rewarming duration or programmed rewarming 
protocol with shivering prophylaxis using sedatives or analgesics, 
oxygen balance optimization, and goal-directed hemodynamic 
optimization are needed to identify the optimal rewarming proto-
col. 

Effect of adequate sedation & body shivering

Shivering can occur as a natural reflex from discomfort, pain, 
or cold — including therapeutic hypothermia — in most pa-
tients [84,91]. Shivering increases metabolic rate, oxygen con-
sumption, and sympathetic tone, which increase heart rate and 
cardiac output. In particular, shivering is more likely to occur 
during hypothermia induction at temperatures between 35°C 
and 37°C and less likely at target temperatures for mild hypo-
thermia between 32°C and 34°C; thus shivering may delay 
reaching the target temperature [84]. These effects may offset 
the therapeutic effects of hypothermia for I/R injury. Therefore, 
adequate management of shivering with sedatives, analgesics, 
and other interventions is required. 

It is known that low skin temperature is responsible for about 
20% of shivering, so an application of counter-warming with a 
forced-air warmer on the body surface, especially in areas where 
cutaneous temperature sensors are concentrated, such as the face 
and hands, may help inhibit shivering [84,91]. However, count-

er-warming alone is not sufficient and simultaneous rapid phar-
macologic suppression of shivering is required during the induc-
tion of hypothermia. Because the target temperature should be 
reached rapidly, it is recommended to prevent shivering with the 
most effective combination of treatments.  

According to previous clinical trials [71−74], shivering prophy-
laxis using various pharmacological agents that lower the shiver-
ing threshold is recommended (Table 3). If shivering prophylaxis 
is unsuccessful with routine pharmacological agents, sedation 
with propofol or midazolam or analgesic with additional opioids 
such as fentanyl or hydromorphone can be used, but caution is re-
quired for respiratory depression [84]. In the case of refractory 
shivering, neuromuscular blockers can be used with mechanical 
ventilation after intubation, but sedation and analgesia are man-
datory. 

Localized myocardial hypothermia

Recently, a new method for localized myocardial hypothermia 
in AMI has been introduced, although it has already been used in 
various cardiac surgeries in the surgical field. As mentioned 
above, disappointing results of mild hypothermia in human clini-
cal trials are thought to be due to inadequate core temperature for 
I/R injury prevention, slow cooling rate, prolonged infarct dura-
tion during systemic cooling, the actual difference between tissue 
and core temperature, and adverse effects of cooling such as shiv-
ering. 

A modified technique using selective intracoronary hypother-
mia can rapidly achieve target region hypothermia by infusion of 
cold saline at 4°C for 10 min during reperfusion. This method can 
induce hypothermia during coronary angiography by injecting a 
small amount of saline of only several hundred milliliters to avoid 

Table 3. Pharmacological Agents for Reducing the Shivering

Agent Route Dosage Mechanisms Cautions
Buspirone Oral 30–60 mg Partial 5HT1A agonist Sedation, dizziness, nausea

D2 receptor agonist
Meperidine Intravenous Loading: 1 mg/kg (or 0.5 mg/kg in 

case of other opioid use) over 15 to 
20 min

Agonist at opioid receptors (μ and κ) 
and α-2β receptors 

Antagonist at N-methyl-D-aspartate 
receptor

Sedation, respiratory depression, 
seizure

Maintenance: 25–30 mg/h titrated to 
effect

Bolus: 25 mg for shivering
Magnesium Intravenous Loading: 2–4 g bolus over 4 h Antagonist at N-methyl-D-aspartate 

receptor
Calcium channel block

Hypotension, nausea, vomiting
Maintenance: 0.5 g/h
Goal serum magnesium level: 3–3.5 

mg/dl
Dexmedetomidine Intravenous 0.2–0.7 μg/kg/h α-2 receptor agonist Hypotension, bradycardia, sedation
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volume overload and detained control of temperature, infusion 
rate, and pressure with sensors of the intracoronary catheter that 
provide safety [87,92,93]. Although there have been several re-
ports of the feasibility and reproducibility of selective intracoro-
nary hypothermia [87,92,93], clinical data on its effectiveness in 
reducing I/R injury, infarct size, ventricular dysfunction, or 
MACE compared with prior techniques are unknown, and more 
evidence is required. 

Therapeutic hypothermia in anesthesia and 
critical care 

For anesthesiologists, hypothermia is associated with complica-
tions such as myocardial ischemia, coagulopathy, wound infec-
tion, shivering, or long-term recovery from anesthesia [94,95]. 
However, they are also becoming accustomed to hypothermia and 
rewarming in the fields of cardiac anesthesia, neurosurgery, or 
various critical cares [94,95]. For example, it is known that hypo-
thermia during cardiopulmonary bypass (CPB) is primarily suit-
able for protecting neurological functions, including the preven-
tion of brain damage and vital organs. 

Although there is endless debate about the benefits of hypo-
thermia on neurologic function and mortality during CPB, hypo-
thermia may reduce oxygen demand and myocardial damage 
[96,97]. In addition, as mentioned above, adequate sedation and 
protection of body shivering required for anesthetic procedures 
during therapeutic hypothermia have become essential. There-
fore, anesthesiologists should be familiar with metabolic changes 
in anesthetics for the safety of patients as long as hypothermic 
technique is used [95,97,98]. 

Hypothermia impairs temperature-sensitive enzymes, leading 
to changes in distribution volume and decreased drug metabo-
lism [97]. A 3°C decrease in core body temperature results in a 
28% increase in propofol concentrations due to decreased inter-
compartmental clearance, decreased metabolism due to reduced 
hepatic blood flow, and changes in the cytochrome enzyme (cy-
tochrome P450 2B6) system [97,99,100]. The clearance of midaz-
olam decreases by 11.1% for each 1°C decrease in temperature 
below 36.5°C [101]. Fentanyl is metabolized primarily by cyto-
chrome P450 3A4, similar to midazolam, but due to its high dis-
tribution and high clearance properties, clearance is dependent 
on hepatic blood flow [100]. During hypothermia, plasma con-
centrations of fentanyl increase due to decreased clearance [102]. 
Remifentanil has a short half-life due to its rapid hydrolysis by 
nonspecific esterase [100]. The clearance of remifentanil decreas-
es by 6.37% for a 1°C decrease in temperature below 37°C, and a 
30% decrease in infusion rate is recommended for a 5°C decrease 

in temperature [103]. 
Hypothermia also affects the duration of action and recovery 

time of muscle relaxants. A 3°C lower core temperature due to 
changes in Hofmann degradation or ester hydrolysis increases the 
duration of atracurium by approximately 60% [99]. In the case of 
mild hypothermia, vecuronium recovery time is increased about 
2.2 times compared to normal body temperature [104]. Similarly, 
hypothermia may increase the duration of action of rocuronium 
[105]. Interestingly, after reversal using sugammadex, the recov-
ery time of rocuronium also increased about 1.4-fold compared to 
normothermia [106]. The long-term effects of these neuromuscu-
lar blockers are due to changes in pharmacokinetics, primarily 
clearance, rather than pharmacodynamics [105]. Also, neuromus-
cular monitoring may not be possible in hypothermic conditions 
[107]. 

Conclusion 

Available evidence suggests that therapeutic hypothermia has 
the potential to reduce myocardial ischemic injury in humans. 
However, randomized clinical trials have not reproduced the 
promising results seen in preclinical studies. Compared to many 
studies regarding the role of therapeutic hypothermia on post-re-
suscitation brain injury or myocardial protection for surgery, lim-
ited studies have focused on improving myocardial reperfusion 
injury. There are many questions left to be answered, which in-
clude: (1) the optimal target temperature for STEMI; (2) the opti-
mal therapeutic hypothermia method; (3) the need for a target 
temperature to be achieved prior to reperfusion; (4) optimal dura-
tion of hypothermia; (5) myocardial protective mechanisms; (6) 
optimal target patient population; and (7) optimal protocol for re-
warming. The emergence of new devices that allow for faster 
cooling may help to better define some of these questions and 
lead to positive results in future clinical trials. 
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