
JS
RM

www.p
ub

ste
m

ce
ll.c

om

 
www.pubstemcell.com                                     JSRM/Vol3 No.1, 2007; p2 - 11 

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved 

JSRM/ 003010200002/Nov 14, 2007. 

 

JSRM/Vol3 No.1, 2007; p 2 -11                                                             - 2 -                                                                                     Vol3 Issue1  

 

Review Article 
 

Stem cell therapy for neuropathic pain treatment 

Dario Siniscalco*, Francesco Rossi, Sabatino Maione 
_______________________________________________________________ 
 
1Department of Experimental Medicine - Section of Pharmacology “L. Donatelli”, Second University of Naples 

* Dario Siniscalco, Department of Experimental Medicine - Section of Pharmacology “L. Donatelli”, Second 

University of Naples. Via S. Maria di Costantinopoli, 16 - 80138 Naples, Italy. E.mail; dariosin@uab.edu 

  

Published online on 14 Nov 2007 
______________________________________________________________________ 

 

Abstract 

Pain initiated or caused by a primary lesion or dysfunction in the nervous system 

is defined as neuropathic pain.  

About 75 -150 million people in the United States are suffering for chronic pain 

disorder. Neuropathic pain has a great impact on the human wellbeing. It is very 

debilitating and often has an associated degree of depression that contributes to 

decreasing the quality of life. Moreover, the management of chronic pain is 

costly to the health care system. Pain is a national healthcare priority in US: the 

United States Congress has declared the present decade (2001-2010) as the 

“Decade of Pain Control and Research”.  

Neuropathic pain is a very complex disease, involving several molecular 

pathways. Due to its individual character, its treatment is extremely difficult. 

Current available drugs are usually not acting on the several mechanisms 

underlying the generation and propagation of pain.  

Nowadays, pain research is focusing on newer molecular ways, such as stem cell 

therapy, gene therapy, and viral vectors for delivery of biologic anti-nociceptive 

molecules. These methods could provide a new therapeutic approach to 

neuropathic pain relief. 
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Pathophysiology of Neuropathic Pain 

Neuropathic pain is defined as pain initiated or 

caused by a primary lesion or dysfunction in 

the nervous system 
[1, 2]

, and several clinical 

symptoms are associated with it 
[3]

. Most 

common are hyperalgesia (an increased 

response to a stimulus which is normally 

painful; patients with hyperalgesia perceive 

pain spontaneously) and allodynia (pain as a 

result of a stimulus which does not provoke 

pain; patients with allodynia do not feel 

constant pain, in fact in the absence of a 

stimulus there is no pain) 
[4]

. Neuropathic pain 

can be triggered by central or peripheral nerve 

injury. Changes in the spinal cord or in the 

peripheral nerve, but also in the brain, have 

been reported, although these molecular 

alterations are still far to be clarified. 

Nociceptive signalling terminates in the spinal 

cord, the first centre involved in the 

controlling and processing of pain 

transmission. Indeed, in the dorsal horn of the 

spinal cord nociceptive afferent fibers 

terminate where the nociceptive neurons are 

located in the superficial lamina I (marginal 

layer) and in the lamina II (substantia 

gelatinosa). Interactions between nociceptive 

and non-nociceptive afferent pathways control 

the transmission of nociceptive information to 

higher centres in the brain 
[5]

.  

Due to nociceptive input, such as peripheral 

nerve injury, the spinal cord anatomical 

structure is subjected to a re-organization. 

Indeed, the myelinated primary afferent fibers 

sprout into lamina II of the dorsal horn, 

establishing synaptic contacts with second-

order neurons. In this way, they help to 

conduct the allodynic transmission 
[6]

.  

Another change is a phenomena called “wind-

up”, a condition of central sensitization 

resulted from severe and persistent injury. In 

this condition, C-fibres are frequently sped on, 

releasing glutamate, and the response of the 

neurons of the dorsal horn spinal cord 

progressively increases 
[7, 8]

.  

Glutamate is the major nociceptive excitatory 

neurotransmitter released from A-delta and C-

fibres. Once released, glutamate is able to 

evoke fast synaptic potentials in dorsal horn 

neurons by activating the pre- and post-

synaptic glutamate receptors. Among them, 

the ionotropic NMDA receptor is most 

involved in the events correlated with 

nociception [9], and with the maintenance of 

central sensitization and hyperexcitability of 

dorsal horn neurons. Activation of NMDA 

receptors increases the concentration of the 

calcium ion by the indirect activation of 

protein kinase C 
[10]

.  

In the brain, the insular cortex is directly 

involved in the pain modulation. In this area, 

anti-nociceptive response is increased by the 

GABA neurotransmission [11]. In particular, 

there is evidence that GABAa receptors 

modulate the nociceptive threshold affecting 

the noradrenergic bulbo-spinal projections 

from the insular cortex to the locus coeruleus, 

and GABAb receptors modulate the 

projections from cortex to amygdala 
[11]

.  

Is the neuropathic pain a complete disease and 

not only the result of an other syndrome or 

injury? Interesting, newer molecular studies 

support this idea. Changes in DNA expression 

in the neuropathic pain syndrome have been 

observed. In response to peripheral noxious 

stimuli, dorsal horn neurons over-express the 

immediate early genes encoding transcription 

factors, such as c-jun and c-fos. These genes 

could be involved in cell death induction via a 

long-lasting cascade of transcriptional 

processes 
[12]

. Indeed, the apoptotic genes 

mRNA expression levels of the bcl-2 cell 

death-associated family in the lumbar dorsal 

horn of the spinal cord of neuropathic rats are 

modified by peripheral nerve injury 
[13]

.  

Following nerve injury, the afferent neurons 

(injured sensory neurons and their uninjured 

neighbours) close to the site of the injury 

increase their level of firing. This massive 

activity is called ectopic discharge, and it has 
also been proven in humans with neuropathic 
pain

 [14]
. Altered expression of several types of 

sodium channels is responsible for the ectopic 
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firing after nerve injury, such as the voltage-

gated sodium channels 
[15, 16]

. The mechanisms 

responsible for the changes in the channel 

expression are not yet clear. Involvement of 

the neurotrophin (such as NGF, GDNF) 

supply has been suggested as a possibility 
[17]

.  

The calcium channels may also contribute to 

the induction of hyperalgesia and allodynia 
[18]

.  

After peripheral nerve injury, sprouting of 

collateral fibres from sensory axons in the skin 

into denervated areas has been observed 
[19, 20]

. 

Neurotrophic factors and several cytokines, 

such as interleukin-1 (IL-1) and tumour 

necrosis factor-alpha (TNF-alpha), may be 

involved in the sprouting formation and in 

pathophysiology of neuropathic pain 
[21, 22]

.  

Classical pharmacological treatment 

Pain has a very complex nature. Nowadays 

there are not drugs for the neuropathic pain 

treatment acting in a complete and definitive 

way.  

Currently, lidocaine, lamotrigine, 

acetaminophen, dextromethorphan, 

carbamazepine, gabapentin, valproic acid, 

opioid analgesics, tramadol hydrochloride, and 

tricyclic antidepressants are used for the 

classical pharmacological treatment of 

neuropathic pain.  

Clinical research is studying new direct-acting 

compounds to sodium and calcium channels 

since the ability of these channels to contribute 

to the development of neuronal 

hyperexcitability and the production of pain-

associated behaviour. Lidocaine, a sodium 

channel blocker, is effective in the pain relief 
[23]

, however, the available blockers are not 

specific between the several types of sodium 

channels. A private company is developing a 

new sodium channel blocker, Ralfinamide, for 

the potential treatment of neuropathic pain 
[24, 

25]
.  

Specific antagonists for the neuronal calcium 

channel are able to reduce heat hyperalgesia 

and mechanical allodynia in a pain model, the 

chronic constriction injury of the sciatic nerve, 

if administered locally on the site of nerve 

injury 
[17]

. More interesting, reduction of 

neuropathic pain associated with spinal cord 

injury in humans has been shown with 

intrathecal ziconotide, a marine-derived 

peptide 
[26]

.  

Calcium flux is decreased by activation of the 

cannabinoid receptor subtype 1. The synthetic 

cannabinoid CB1 receptor agonist Win 

55,212-2 decreases neuropathic pain 

behaviour, such as thermal hyperalgesia and 

mechanical allodynia 
[27]

.  

As mentioned above, the main nociceptive 

neurotransmitter is glutamate. Inflammation 

and central sensitization are also controlled by 

NMDA glutamate receptors. NMDA receptor 

antagonists are able to attenuate neuropathic 

pain. Indeed, the NMDA receptor antagonist 

MK-801 has a potent anti-nociceptive effect 
[28, 29, 30]

, but due to its high toxic properties 

and low safety margins it is not available for 

clinical use on human patients. Nevertheless, 

amantadine, dextromethorphan, ketamine, and 

memantine are commercially available 

NMDA-receptor antagonists. The opioids 

methadone, dextropropoxyphene and 

ketobemidone are also NMDA-antagonists, as 

well as the triciclic antidepressant amitriptiline 
[31, 32]

. NMDA-receptor antagonists in 

combination with opioids might represent a 

new class of analgesic and might have 

potential as a co-analgesic; NMDA-receptor 

antagonists help to enhance development of 

tolerance to opioid analgesics 
[33]

.  

In pain transmission, glutamate activates also 

group I metabotropic receptors (mGluRs). 

Peripheral and central mGluR5 receptors are 

responsible of the nociceptive transmission 
observed during post-operative pain 

[34]
. 

MPEP, the potent and selective antagonist for 

metabotropic glutamate receptor subtype 5 

(mGlu5), is able to prevent the development of 

thermal hyperalgesia, transiently reduce 

mechanical hyperalgesia in neuropathic rats, 

and prevent the over-expression of pro-

apoptotic genes in dorsal horn spinal cord 
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neurons
 [3]

. This subtype of metabotropic 

glutamate receptors could represent the 

prototype of new potential drugs in pain 

treatment; however, due to the complex role of 

glutamate in the nervous central system, 

blockade of glutamate receptors is associated 

with several side effects.  

The typical mu-opioid analgesics, such as 

morphine, can be relatively ineffective in 

treating neuropathic pain since different 

opioids can produce analgesia by affecting 

different pain pathways 
[35]

.  

Likely, the optimal classical drugs in the 

treatment of neuropathic pain are the 

anticonvulsant gabapentin, and its successor 

pregabalin 
[36, 37, 38, 39]

. They are able to 

decrease the hyperexcitability of dorsal horn 

neurons induced by tissue injury, but their 

mechanism of action is still unclear. 

Interesting, they have only an effect in a 

condition of sensitization of a nociceptive 

pathway. 

Molecular methods for neuropathic pain 

treatment 

Newer molecular methods, such as gene 

therapy and viral vector for the delivery of 

biologic anti-nociceptive molecules, could 

represent a novel therapeutic approach to the 

neuropathic pain treatment 
[40]

.  

Following peripheral nerve injury, spinal re-

organization and changes in the excitatory or 

inhibitory pathways controlling neuropathic 

pain development are correlated with altered 

gene expression. Novel molecular 

pharmacological strategy is directed toward 

the control of the gene up- or down-regulation. 

Antisense knock-down strategy could 

represent a novel approach to the neuropathic 

pain therapy in the nearest future. As next 

step, antisense research has to elucidate the 

pharmacodynamics, pharmacokinetics and 

distributions of antisense oligonucleotides.  

Among the genes showing altered expression 

in neuropathic pain, several sodium and 

calcium channels contribute to the hyper-

responsiveness of dorsal horn sensory neurons 

and to hyperalgesia and allodynia 
[16, 41, 42, 43, 44, 

45, 46]
. Gene silencing by the use of antisense 

oligonucleotides, a novel molecular 

pharmacological approach, causes a decrease 

in pain-related behaviour.  

Nicotinic receptors, P2X receptors, 5-HT1A 

receptors, NMDA glutamate receptors and 

opioid receptors have been successfully used 

as target for antisense knock-downing 

strategy, showing a decrease in nociceptive 

behaviour 
[47, 48, 49, 50, 51, 52]

.  

Immediate early genes, such as c-fos, are over-

expressed in dorsal horn neurons of the spinal 

cord after peripheral nerve injury. Also in this 

case, intrathecal administration into the 

lumbar region L1-L5 of c-fos antisense 

oligonucleotides has shown a role played by 

the c-fos gene in neuropathic pain
 [53]

.  

Viral vector technology to delivery anti-

nociceptive molecules could represent a novel 

therapeutic strategy. Dorsal root ganglion 

neurons transduced with replication-

incompetent herpes simplex virus (HSV-) 

based vector, encoding the GAD67 isoform of 

human glutamic acid decarboxylase, are able 

to produce GAD and release GABA, reducing 

neuropathic pain following a spinal cord 

injury 
[54]

. Constitutive GABA expression via 

recombinant adeno-associated virus producing 

GAD65 attenuates neuropathic pain 
[55]

. It has 

been demonstrated that virus encoding human 

pre-proenkephalin (hPPE) are able to decrease 

the activation-levels of nociceptors by 

capsaicin treatment in mice and macaques
 [56]

.  

Coupling antisense knock-down and viral 

vector technology is showing promising 

results. Virus delivering antisense cDNA 

versus calcitonin gene-related peptide 

precursor (ACGRP) decreases C-fiber 

hyperalgesia due to the application of 

capsaicin on the skin in mice 
[56]

.  

Potentially, all the molecules, such as 

neurotrophines, having nociceptive effects 

could be delivered by adenovirus. Candidate 

gene products include directly analgesic 
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molecules, as well as molecules that are able 

to interfere with pain-associated biochemical 

changes in pain pathways. Recombinant 

adenovirus encoding NT-3, BDNF, GDNF, or 

Semaphorin3A into animal models of 

neuropathy showed good results for 

neuropathic pain relief 
[57, 58, 59, 60, 61, 62]

. 

Intrathecal delivery of the adenovirus-

mediated IL-2 gene has a relatively long anti-

nociceptive effect 
[63]

.  

Non-invasive gene delivery systems could be 

usefully used for targeting peripheral nervous 

system pathologies. Subcutaneous peripheral 

injection of plasmid DNA complexed with a 

non-viral cationized gelatin (CG) vector led to 

transgene expression in rat lumbar dorsal root 

ganglia 
[64]

.  

Stem cell therapy 

Nowadays, stem cell therapy represents the 

great promise for the future of molecular 

medicine. Several diseases can be slowed or 

even blocked by stem cell transplantation. 

Stem cells could be neuroprotective in a 

variety of nervous system injury models. As 

neurodegenerative disease, also neuropathic 

pain undergoes to stem cell therapy 
[40]

, even if 

the state of the art is still poor of basic and 

clinical research.  

Marrow mononuclear cells containing mixed 

stem cell populations have been intravenous 

used in neuropathic rats showing recovery 

from pain
 [65]

.  

Stem cell implantation could be a possible 

solution for spinal cord injury. Stem cells have 

the ability to incorporate into spinal cord, 

differentiate, and to improve locomotor 

recovery 
[66]

.  

Despite ethical problems, it has been 

demonstrated that human embryonic neural 

stem cells can promote functional 

corticospinal axons regeneration and synapse 

reformation in the injured spinal cord of rats. 

The action is mainly through the nutritional 

effect of the stem cells on the spinal cord. 

Transplanted cells were found to migrate into 

the lesion, but not scatter along the route of 

axon grows. The cells differentiated into 

astrocytes or oligodendrocytes, but not into the 

neurons after transplantation 
[67]

.  

Spinal progenitor cells intrathecally 

transplanted in neuropathic rats are able to 

alleviate neuropathic pain [
68

]. Murine neural 

stem cells (NSCs) homografted onto the 

injured spinal cord improved motor behaviour 
[69]

.  

How do stem cells work? Stem cells 

transplanted following spinal cord injury are 

able to reduce allodynia and improve 

functional recovery if they produce more 

oligodendrocytes than astrocytes 
[70]

. 

Serotonergic neural precursor cell grafts are 

able to reduce hyperexcitability caused by 

spinal injury 
[71]

. Neuropathic pain causes a 

decrease in the number and activity of 

GABAergic neurons, the spinal progenitor 

cells show glutamic acid decarboxylase 

immunocompetence, in this way they can 

supply the decreased GABA profile 
[70, 72]

.  

Is the stem cell differentiation the key for the 

pain care? Or do they provide several 

molecules with analgesic action? Indeed, 

using of genetically engineered stem cells 

expressing anti-nociceptive molecules or 

trophic factors seems to be an useful tool in 

neuropathic pain relief. Stem cells could be 

used as biologic "minipumps" to chronically 

deliver anti-nociceptive molecules close to the 

pain processing centers or the sites of injury 
[73, 74]

.  

Besides genetic engineering, stem cells 

applied to the site of the injury could provide 

trophic factors directly in situ, by this way 

acting as anti-nociceptive drug.  

Among the stem cell population, 

mesenchymal stem cells (MSCs) rise probably 

best potential good results in pain-care 

research. These cells are a population of 

progenitor cells of mesodermal origin found in 

the bone marrow of adults, giving rise to 

skeletal muscle cells, blood, fat, vascular and 
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urogenital systems, and to connective tissues 

throughout the body 
[75, 76]

. MSCs show a high 

expansion potential, genetic stability, stable 

phenotype, can be easily collected and shipped 

from the laboratory to the bedside and are 

compatible with different delivery methods 

and formulations 
[77]

. In addition, MSCs have 

two other extraordinary characteristics: they 

are able to migrate to sites of tissue injury and 

have strong immunosuppressive properties 

that can be exploited for successful autologous 

as well as heterologous transplantations
 [78]

. 

Besides, MSCs are capable of differentiating 

into neurons and astrocytes in vitro and in 

vivo 
[79]

. Recently, MSC injection has shown 

good results for amyotrophic lateral sclerosis 

treatment in human 
[80]

. They are able to 

improve neurological deficits and to promote 

neuronal networks with functional synaptic 

transmission when transplanted into animal 

models of neurological disorders 
[81]

.  

MSCs have been observed to migrate to the 

injured tissues and mediate functional 

recovery following brain, spinal cord and 

peripheral nerve lesions, suggesting that 

MSCs could modulate pain generation after 

sciatic nerve constriction 
[82]

, although the 

underlying mechanisms by which MSCs exert 

their actions on pain behavior is still to be 

clarified.  

We are currently studying the use of human 

mesenchymal stem cells (hMSCs) for 

neuropathic pain treatment in rodents. hMSCs 

micro-injected into specific nuclei involved in 

pain processing were able to completely 

abolish pain-like behaviour in neuropathic 

mice (Siniscalco, 2007, unpublished data).  

Recently, Dr Stephen Richardson of the 

University of Manchester has developed, 

under patent, a cell-based tissue engineering 

approach to regenerate the intervertebral disc 

at the affected level in the low back pain 

(www.ls.manchester.ac.uk/ukctr). This is 

achieved through the combination of the 

patients' own mesenchymal stem cells and a 

naturally occurring collagen gel that can be 

implanted through a minimally-invasive 

surgical technique. Hopefully, once implanted 

the differentiated MSCs would produce a new 

tissue with the same properties as the original 

and would both treat the underlying cause of 

the disease and remove the painful symptoms.  

Conclusions  

Neuropathic pain has a great impact on the 

quality of life, reducing human wellbeing. 

Management of chronic pain is very costly to 

the health care system. Since 75-150 million 

people in the United States have a chronic 

pain disorder 
[40]

. The United States Congress 

has declared the present decade (2001-2010) 

as the “Decade of Pain Control and Research”, 

making pain a national healthcare priority.  

Neuropathic pain involves several molecular 

pathways and is a very complex disease. It has 

an individual character, making its treatment 

extremely difficult. Currently, available 

treatments address the pain-symptoms using a 

combination of painkillers. None of these is 

ideal as they only treat the symptoms and 

temporal pain properties, not the cause, and 

are of limited long-term success.  

Novel molecular methods, such as antisense 

strategy, gene therapy, and virus therapy, are 

acting on the several mechanisms underlying 

the generation and propagation of pain. More 

recently, preliminary clinical evidence 

suggests that stem cell therapy could provide 

best results, this strategy could be the 

definitive pain-relief drug for the next future. 
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