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Abstract: (1) Objective: In order to evaluate the effect of a pre-induced mesenchymal stem cell (MSC)-
coated cellulose/collagen nanofibrous nerve conduit on facial nerve regeneration in a rat model both
in vitro and in vivo. (2) Methods: After fabrication of the cellulose/collagen nanofibrous conduit, its
lumen was coated with either MSCs or pre-induced MSCs. The nerve conduit was then applied to
the defective main trunk of the facial nerve. Rats were randomly divided into three treatment groups
(n = 10 in each): cellulose/collagen nanofiber (control group), cellulose/collagen nanofiber/MSCs
(group I), and cellulose/collagen nanofiber/pre-induced MSCs (group II). (3) Results Fibrillation
of the vibrissae of each group was observed, and action potential threshold was compared 8 weeks
post-surgery. Histopathological changes were also observed. Groups I and II showed better recovery
of vibrissa fibrillation than the control group. (4) Conclusions: Group II, treated with the pre-induced
MSC-coated cellulose/collagen nanofibrous nerve conduit, showed the highest degree of recovery
based on functional and histological evaluations.

Keywords: cellulose; collagen; nanofibrous nerve conduit; pre-induced mesenchymal stem cell;
nerve regeneration

1. Introduction

Facial nerve damage is a frequent complication of traumatic injury that occurs after
facial bone trauma or head and neck injury or as a surgical side effect. Among peripheral
nerve injuries, facial nerve injury considerably decreases quality of life because facial
expression is the most important emotional signal used to convey diverse thoughts, ideas,
and emotions.

To reconstruct the nerve gap, autografting is ideal, but it is associated with problems at
the donor site, such as neuroma formation, skin incision-induced scar formation, and lack of
sensation. A nerve conduit minimizes these complications. Such conduits are divided into
autologous and synthetic nerve conduits. Autologous nerve conduits can be obtained using
arteries, veins, and muscle, but donor-site problems are inevitable. Synthetic nerve conduits
can be classified as nondegradable and biodegradable [1]. Recently, biodegradable nerve
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conduits have been developed using collagen, polylactide, polycaprolactone, polyglycolic
acid, chitosan, and cellulose. The main advantage of these biodegradable nerve conduits
is that they are readily available. Cellulose acetate is an excellent structural material and
a rich structural biomolecule used in nature and industry. Because of its good mechanical
properties, it is occasionally mixed with gelatin scaffold [2].

Nanofibers are synthetic fibers that naturally mimic the extracellular matrix and
provides an environment suitable for cell attachment, differentiation, and proliferation [3].
The application of electrospinning was to mimic the structure of a nerve conduit.

Adult mesenchymal stem cells (MSCs) can be separated from umbilical cord blood,
bone marrow, adipose tissue, and the skin [4]. MSCs can be differentiated into neurons
and this property can be utilized as a therapeutic target to promote neuroprotection and
neurogenesis. Owing to the absence of precursor cells around damaged areas, regeneration
is impossible in these areas. To overcome this limitation, various potent stem cell sources,
such as MSCs and neural stem cells, have been used in combination with nerve conduits to
treat peripheral nerve defects [5–8]. However, after transplantation of MSCs into the neural
damaged area, only a minority of MSCs can be differentiated into neuronal cells in vivo [9].

To resolve this problem, chemical compounds or growth factors have been used to
induce neural differentiation of MSCs [10]. However, according to follow-up studies,
morphological and molecular transformation of MSCs may occur as a stress response of
the cells rather than their actual differentiation into neuronal cells [10]. During neural
differentiation, the endoplasmic reticulum of MSCs is highly susceptible to stress owing to
the nature of the differentiation process itself [11]. If the cell overcomes the stress, it shows
further adaptation by performing other functions; otherwise, it dies. [12]. Recently, MSCs
pre-induced via addition of either β-mercaptoethanol or basic fibroblast growth factor to
the cell medium were reported to undergo neuronal differentiation [13–16]. Therefore, the
present study aims to evaluate the effect of a pre-induced MSC-coated cellulose/collagen
nanofibrous nerve conduit for facial nerve regeneration in a rat model, both in vitro and
in vivo.

2. Results
2.1. In Vitro Study

To examine the neuronal pre-induction effect, MSCs were treated with neuronal pre-
induction medium for 24 h. Then, the gene expression levels of neuro-progenitor markers,
trophic factor, and p21 were measured using RT-PCR. The expression of genes encoding
neuro-progenitor markers (CD133, GFAP, Musashi, and Nestin), trophic factors (ANG,
BDNF, and VEGF), and p21 was significantly increased (Figure 1). Increases in Musashi,
Nestin, GFAP, ANG, and p21 gene expression levels were confirmed using immunocyto-
chemical staining, and consistent results were obtained (Figure 2). Based on these results,
the effect of pre-induced MSCs was established. Moreover, scanning electron microscopy
showed that the MSCs were well-attached to the lumen of the cellulose/collagen nanofi-
brous conduit (Figure 3).
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Figure 1. The expression of specific markers was identified by real-time PCR. Transcripts of neuro-
progenitor markers (CD133, GFAP, Musashi, and Nestin), trophic factors (ANG, BDNF, and VEGF), 
and p21 were significantly increased in pre-induced-MSCs (t-test, * p < 0.05, ** p < 0.005, mean ± SD 
n = 6). Control-MSCs: control-MSCs. PreIn-MSCs: preinduced-MSCs which are incubated with pre-
induction media for 24 h. 

 

Figure 1. The expression of specific markers was identified by real-time PCR. Transcripts of neuro-
progenitor markers (CD133, GFAP, Musashi, and Nestin), trophic factors (ANG, BDNF, and VEGF),
and p21 were significantly increased in pre-induced-MSCs (t-test, * p < 0.05, ** p < 0.005, mean ± SD
n = 6). Control-MSCs: control-MSCs. PreIn-MSCs: preinduced-MSCs which are incubated with
pre-induction media for 24 h.
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Figure 2. Control (Left panel) and pre-induced MSCs (Right panel) were fixed and stained with spe-
cific antibodies, Muisashi, Nestin, ANG, GFAP, and p21, and visualized under fluorescent microscopy
(red and green). Blue indicates nucleus. Pre-induced MSCs indicates preinduced-MSCs which are
incubated with preinduction media for 24 h.
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Figure 3. Scanning electron microscopic view of control group and MSC loaded group. Both groups 
show cellulose/collagen nanofibrous structure (2.0K). The magnified view shows well coated MSCs 
to the nanofibrous strand (arrow indicates). 

2.2. In Vivo Study 
2.2.1. Recovery of Vibrissa Fibrillation 

No postoperative complications were observed and all rats survived well. As shown 
in Figure 4, the recovery of vibrissa movement was more prominent in group II (cellu-
lose/collagen nanofiber/neural pre-induced MSC group) than in the control group. The 
recovery of vibrissa fibrillation was enhanced by time dependent pattern at postoperative 
weeks 2, 4, 6, and 8 (* p < 0.05, Figure 4). 

 

Figure 3. Scanning electron microscopic view of control group and MSC loaded group. Both groups
show cellulose/collagen nanofibrous structure (2.0K). The magnified view shows well coated MSCs
to the nanofibrous strand (arrow indicates).

2.2. In Vivo Study
2.2.1. Recovery of Vibrissa Fibrillation

No postoperative complications were observed and all rats survived well. As shown
in Figure 4, the recovery of vibrissa movement was more prominent in group II (cellu-
lose/collagen nanofiber/neural pre-induced MSC group) than in the control group. The
recovery of vibrissa fibrillation was enhanced by time dependent pattern at postoperative
weeks 2, 4, 6, and 8 (* p < 0.05, Figure 4).
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Figure 4. Recovery of vibrissae fibrillation is more pronounced in groups I and II than in the control
group. The highest degree of recovery of vibrissae fibrillation is observed in group II (pre-induced
MSC). Repeat measure ANOVA, Between time interval; p = 0.0226, Between each group; p = 0.0047.
Values of * p < 0.05, *** p < 0.001 were considered statistically significant.
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2.2.2. Macroscopic Observation

In all the three groups, the nerve gap was successfully regenerated with a new bridge
in all the rats, and degradation of the cellulose/collagen nanofiber conduit was confirmed
macroscopically 8 weeks after surgery. No neuroma formation was observed. The gross
thickness of the nerve was not significantly different, although both groups I and II showed
slightly larger diameter of the nerve than the control group (Figure 5).
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Figure 5. All groups show well-regenerated nerve. Compared with the control group, both the
mesenchymal stem cell (MSC) and pre-induced MSC groups show slightly larger diameter of the
nerve, but the difference was not significant.

2.2.3. Electrophysiological Studies

As shown in Figure 6, 8 weeks after the application of the nerve conduit, group
II (treated with cellulose/collagen nanofiber nerve conduit/neural pre-induced MSCs)
showed significantly lower mean threshold of MAP than the other two groups. The mean
threshold of MAP of group I was significantly lower than that of the control group (Figure 6).
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Figure 6. Measurement of threshold of action potential (A). The graph of action potential in the lab
chart of PowerLab (B). The threshold of action potential of each group was compared to normal
nerve. Pre-induced MSC coated cellulose/collagen nanofibrous conduit group showed significantly
reduced than other groups. One way ANOVA between group, p < 0.0001. Values of **** p < 0.0001
were considered statistically significant (C).

2.2.4. Histopathological Studies

As shown in Figure 7A, both groups I and II (treated with the MSC-coated nerve
conduit) exhibited larger axons than the control group. The surrounding myelin sheaths,
produced by Schwann cells, were also more distinct and thicker in the groups treated with
the MSC-coated nerve conduit than in the control group. Additionally, group II (cellu-
lose/collagen nanofiber nerve conduit/neural pre-induced MSCs) exhibited improved
morphological parameters compared with group I. H&E and neurofilament immunostain-
ing (Figure 7B) revealed smaller axonal diameters in the regenerated nerve fibers of the
control group. Moreover, Luxol fast blue staining revealed thinner myelin sheaths in the
nerve fibers, and S100 immunostaining showed fewer and smaller Schwann cells surround-
ing the regenerated nerve fibers in the control group compared with those in groups I and II.
Therefore, treatment with the MSC-coated nerve conduit alleviated this poor regeneration
effect observed in the control group, as shown in Figure 7C. The treatment with neural
pre-induced MSCs enhanced the morphological parameters of nerve fiber regeneration by
13–34%. These findings suggest the neuro-regenerative ability of MSC treatment against
facial nerve injury due to trauma.
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Figure 7. Pre-induced MSC showed better regeneration than other groups. (A) both groups I and II
(treated with the MSC-coated nerve conduit) exhibited larger axons than the control group. (B) H&E
and neurofilament immunostaining revealed smaller axonal diameters in the regenerated nerve
fibers of the control group. (C) treatment with the MSC-coated nerve conduit alleviated this poor
regeneration effect observed in the control group. Values of ** p < 0.01, *** p < 0.001, and **** p < 0.0001
were considered statistically significant.
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As shown in Figure 8, the axon counts of three groups were similar (n = 255), but gross
size of axon is higher in the pre-induced MSC group than other groups. The thickness of
myelin sheath is higher in pre-induced MSC group than other groups. The Kruskal-Wallis
test showed significant differences between the three groups (** p = 0.0036).
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Figure 8. (A) The axon counts of three groups were similar (n = 255), but the gross size of an axon is
higher in the pre-induced MSC group than other groups. (B) The thickness of myelin sheath of the
pre-induced MSC group and MSC group show larger than the control media group. (C) reveals that
thickness of myelin sheath of the pre-induced MSC is highest among three groups. ** p < 0.01 were
considered statistically significant.
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3. Discussion

In the present study, rat facial nerve regeneration was significant in group II. The
additional coating of pre-induced MSCs in the cellulose/collagen nanofibrous conduit
significantly improved the regeneration parameters. It is proposed that nerve regeneration
can be enhanced using an abundant source of collagen, which is an important extracellular
matrix component in the nanofiber layer of this conduit.

Here, a cellulose nanofiber was coated with collagen. Among similar molecules in
the extracellular matrix, collagen, gelatin, and fibers are commonly used in combination
with biomaterials for tissue engineering owing to their enhancing effect on cell attachment,
proliferation, and differentiation. In fact, collagen coating of nanofibers stimulates cell
proliferation and tissue-specific gene expression [17].

The advantages of MSCs include their easy isolation from various tissues and differ-
entiation into diverse cell types, including muscle, nerve, liver, skin, bone, and adipose
cells [18]. MSCs have been widely studied and applied in regenerative medicine, such as
in the regeneration of muscle and the nervous system. Particularly, MSCs can be used to
regenerate both the central and peripheral nervous systems after injury, damage, or dys-
function. In the current study, we first pre-induced MSCs into neuronal-like cells through
incubation of MSCs in pre-induction media containing β-mercaptoethanol and bFGF.
However, long-term differentiation or long-term exposure of cells to β-mercaptoethanol
increases the expression of stress- and shock-related proteins and decreases the number
of viable cells [19]. In the present study, we confirmed the pre-differentiated MSCs by
previous Joe et al.’s report [20]. They reported the various neuronal progenitor markers
such as CD133, GFAP, Musashi, and Nestin, as well as neurotrophic factors, including
ANG, BDNF, and VEGF. Another important characteristic of MSCs is their proliferation;
however, pre-induced MSCs showed increased expression of p21, which is involved in cell
cycle arrest, suggesting that the proliferation of MSCs here was arrested and that the MSCs
were committed to neuronal differentiation. Furthermore, for successful transplantation of
pre-induced MSCs, the MSCs were coated into a biologically degradable cellulose/collagen
nanofibrous nerve conduit and pre-induced using pre-induction media. The pre-induced
MSC-coated nerve conduit was then transplanted to injured sites in rats.

In this study, we fabricated a cellulose/collagen nanofibrous nerve conduit coated
with pre-induced MSCs for application in a defective facial nerve. Although the three
groups showed similar gross appearance of the regenerated nerve, group II exhibited
the highest recovery of vibrissa fibrillation and action potential threshold. The highest
degree of recovery based on histological findings was also observed in group II. The
transplantation of MSC or neurodifferentiated MSC enhanced the regeneration of Schwann
cells and thickness of myelin sheath [21,22]. In the present study, although we did not
observe the significantly increased axon counts between three groups, but the thickness of
myelin sheath was enhanced regeneration in the MSC treated group I and II compared to
control group. The presence of S100 positive cells in the regenerated nerve fibers indicated
that Schwann cells may have played a central role in the myelin sheath and axonal growth
observed. Schwann cells aid functional recovery in injured peripheral nerves by promoting
axonal regeneration and myelin rebuilding [23]. Schwann cells are necessary for effective
nerve regeneration; in response to injury, they partially “de-differentiate” re-starting the
production of developmental genes that assist nerve repair [24,25]. In congruence with
the current study, mesenchymal stem cells also derived from human umbilical cords,
have also been successful in enhancing nerve regeneration in transected sciatic nerves
of adult rats [26]. Moreover, Schwann cells differentiated from bone marrow-derived
mesenchymal stem cells have also successfully repaired spinal cord injury in rats [27].
However, whether the Schwann cells found in groups I and II in the current study are
exogenous or endogenous—remain to be investigated. Further studies are also needed
to identify the specific underlying mechanisms involved in the regenerative properties
exhibited by the pre-induced MSC laden nerve conduit used in the current study.
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Although direct approximation by end-to-end anastomosis has a limitation of possible
misalignment, the nerve conduit provided good alignment and reduced tension and tension-
induced ischemia at the repair site. Moreover, the application of a nerve conduit does
not need sutures, thus avoiding the negative inflammatory effect of sutures. However,
in case of the nerve gap is over than 5 mm, incomplete regeneration can be occurred. To
overcome this incomplete regeneration, different growth factors, cells, and modifications of
the internal framework should be examined [28–31].

4. Materials and Methods
4.1. Fabrication of the Nerve Conduit

Cellulose acetate (density = 1.3 g/cm3, Mn = 30,000 g/mol) was obtained from Sigma–
Aldrich (St. Louis, MO, USA) for electrospinning. Porcine collagen type I was purchased
from MSBIO, Inc. (South Korea). To dissolve cellulose into 20 wt% solution, a solvent
mixture of acetone and dimethylformamide (1:1) was used. A cylindrical cellulose/collagen
scaffold was fabricated using an electrospinning process followed by a collagen coating
process. As shown in Figure 1, the electrospinning instrument consisted of a syringe pump,
a high-voltage direct current, and a rotating collector. The cellulose solution flow rate
was 0.5 mL/h, and the voltage was 13 kV. The rotating collagen speed was approximately
0.3 m/s, and the distance between the nozzle tip and the collector was 8 cm. The electro-
spinning deposition time was 2 h. After deposition of the cellulose fiber, a nanofibrous
conduit was detached from the rotating collector. The nanofibrous conduit was then dipped
into the 0.1 wt% collagen solution for 2 h and dried at room temperature (RT) for 24 h. Next,
the collagen was immersed in a 50 mM 1-ethyl-(3-3-dimethylaminopropyl) hydrochloride
(EDC) solution in 95% ethanol to crosslink the collagen for 1 h at RT. To remove the EDC
solution, the cellulose/collagen nanofibrous conduit was washed three times in a 0.1 M
sodium hydrogen phosphate solution and three times in deionized water (Figure 9).
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4.2. Scanning Electron Microscopy of the Cellulose/Collagen Nanofiber Nerve Conduit

The cellulose/collagen nanofibrous conduit and cellulose/collagen MSC-coated nanofi-
brous conduit were immersed in fresh 2.5% glutaraldehyde fixative solution overnight
and then immersed in OSO4 solution. After dehydration using critical point drying, plat-
inum sputter coating was performed. The surface of the nerve conduits was analyzed
using scanning electron microscopy (FE-SEM, Hitachi, Tokyo, Japan) at the Korea Basic
Science Institute.
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4.3. Cell Culture and Neuronal Pre-Induction

Human bone marrow-MSCs (hBM-MSCs) were purchased from Cell Engineering for
Origin (Korea). These MSCs were cultured in low-glucose Dulbecco’s modified Eagle’s
medium (Gibco BRL, NY, USA) supplemented with 10% fetal bovine serum (Gibco, NY,
USA) and 1% penicillin and streptomycin (Gibco) at 37 ◦C and 5% CO2 in a humidified
atmosphere. hBM-MSCs at the seventh passage (P-7) were then seeded over a cellu-
lose/collagen nanofiber scaffold in 12-well plates at a density of 1.5× 104 cells/well. The
next day, the cells were treated with pre-induction medium as described previously [14,15].

4.4. Real-Time Polymerase Chain Reaction (PCR)

RNA was extracted from hBM-MSCs using RNAiso Plus (TAKARA, Japan). cDNA
was prepared using a PrimeScript II cDNA Synthesis kit (TAKARA). PCR analyses were
performed using Power SYBR Green Mix (Applied Biosystems, Carlsbad, CA, USA) and
human sequence-specific primers for the β-actin, (angiopoietin) ANG, BDNF, CD133, bFGF,
GFAP, Musashi gene, Nestin-1, p21, and VEGF genes (Table 1), which were synthesized by
Integrated DNA Technologies, Inc. (Coralville, IA, USA) and Genotech (Daejeon, South
Korea).

Table 1. Primers used in the real-time polymerase chain reaction analysis.

Gene Forward Primer (5′ → 3′) Reverse Primer (5′ → 3′)

CD133 GAGCAGGTTGTGTGCTTGGT GGAAGCACTGGATCTGCTGAA
GFAP CAGAAGAGGACACAATGGCG GTACAGAGCAAGAAGGGCTG

Musashi TCTGTGTAGGGGGACTGTGT TGAATGGCACAGACCAGGAA
Nestin GATAAGTCAGCCAGGGAGCAG GACATCTTGAGGTGCGCCAG
ANG TGGGCGTTTTGTTGTTGGTC GGCATCATAGTGCTGGGTCA

BDNF ACCCACACGCTTCTGTATGG GCAGCCTTCATGCAACCAAA
bFGF AAAAACGGGGGCTTCTTCCT ACGGTTAGCACACACTCCTT
VEGF AGAAAATCCCTGTGGGCCTT GTCACATCTGCAAGTACGTTCG

p21 GTCTTGTACCCTTGTGCCTC GGCGTTTGGAGTGGTAGAAA
β-actin ATCCGCAAAGACCTGTACGC TCTTCATTGTGCTGGGTGCC

4.5. Immunocytochemistry

hBM-MSCs were grown on coated coverslips and treated with neuronal pre-induction
medium for 24 h. Thereafter, the cells were treated with primary antibodies against
ANG (1:200), GFAP (1:200), Musashi (1:200), Nestin (1:200), and p21(1:200) (Santa Cruz
Biotechnology, CA, USA) for 2 h at RT. Next, the cells were further incubated with secondary
antibodies, namely donkey anti-goat immunoglobulin (Ig)G antibody conjugated with
Alexa 555 (1:400) for Nestin and donkey anti-rabbit IgG antibody conjugated with Alexa
488 (1:500) for the other markers. All secondary antibodies were applied together with
Hoechst 33,342 (1:1000) for 1 h 30 min at RT. After being washed with phosphate-buffered
saline, the cells were mounted using the Prolong Gold anti-fade reagent and visualized
under a Nikon Eclipse Ti2 fluorescence microscope (Nikon, Tokyo, Japan). Cell images were
acquired using a DS-Ri2 digital camera (Nikon). All secondary antibodies, Hoechst 33342,
and the anti-fade mounting reagent were purchased from Molecular Probes (ThermoFisher
Scientific Korea, Seoul, Korea)

4.6. In Vivo Study
4.6.1. Nerve Conduit Application in a Rat Facial Nerve Transection Model

Fifteen adult male Sprague-Dawley rats (6–8 weeks old, weighing 200–250 g; Samtako-
Bio Korea, Suwon, South Korea) were used in this study. The rats were randomly divided
into three treatment groups (n = 10 in each): cellulose/collagen nanofiber (control group),
cellulose/collagen nanofiber/MSCs (group I), and cellulose/collagen nanofiber/pre-induced
MSCs (group II). Each rat was housed in a separate cage and provided feed and water. They
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were allowed to adapt to the environment without stress for a week before surgery. This
study was approved by the Animal Experimentation Committee (CIACUC2021-S0021).

A postauricular incision on the left side was performed because the left side allows
easy setup for measuring action potential threshold. After identification of the main trunk of
the facial nerve using a surgical microscope (Leica co, Wetzlar, Germany), nerve defect was
created by transection through a cut in the middle of the main trunk using a microscissor.
A 4 mm length cellulose/collagen nanofiber conduit was interposed in this area, and the
transected proximal and distal nerve stumps were anchored to the conduit using fibrin
glue. A 2 mm gap was thus formed in the main trunk (Figure 10). Finally, the wound was
closed using automatic suture.
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4.6.2. Evaluation of Vibrissae Fibrillation

Vibrissa fibrillation in both groups I and II were recorded for 40 s each using the iPhone
video system 2, 4, 6, and 8 weeks after surgery. The frequency of vibrissa fibrillation was
analyzed using BORIS (Behavioral observation research interactive software), an animal
behavior evaluation software for video/audio coding and live observations. The authors
of BORIS are Oliver Friard and Marco Gamba (Department of life sciences and systems
biology, University of Torino, Italy). The percentage of the frequency of vibrissa fibrillation
(left side: nerve conduit site, right side: normal site) was calculated. The comparison
between the three groups at postsurgery 2nd, 4, 6, and 8th week was performed by repeat
measure ANOVA test.

4.6.3. Measurement of Threshold of Electrically Stimulated Muscle Action Potential

The facial nerves were re-exposed under general anesthesia using isoflurane inhalation
at postoperative week 8. After electrical stimulation was applied to the distal part of the
nerve conduit using a monopolar tungsten probe, the threshold of action potential was
measured as described previously [32]. In brief, three needle electrodes were inserted
percutaneously into the midpoint of the left orbicularis oculi muscle, left orbicularis oris
muscle, and superficial muscle layer near the skin (ground needle) to record electrically
evoked muscle action potential (MAP) signals. Electrical signals (rectangular current
pulse for 0.05 ms) were delivered to the main trunk of the facial nerve using a monopolar
stimulating electrode (Xomed-Treace, Jacksonville, FL, USA), which was connected to
a pulse generator (A-320D; World Precision Instruments Inc., Sarasota, FL, USA). The
distance and direction of the monopolar stimulating probe relative to the facial nerve can
be controlled using a micro-manipulator. All MAPs were measured through maximal nerve
stimulation. Data were automatically acquired using the lab chart system (PowerLab; AD
Instrument, Castle Hill, Australia), which was displayed on a Samsung computer monitor,
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and then analyzed using the Scope software (AD Instrument). The peak amplitude of the
action potential waveform was determined to assess recovery from facial nerve injury.

4.6.4. Histological Examination Using Hematoxylin and Eosin (H&E), Luxol Fast Blue, and
Immunohistochemical Staining for Neurofilament and S-100
Tissue Processing and Histochemical Analysis

Segments of nerve tissue sections in the nerve conduit were carefully dissected and
fixed in 4% paraformaldehyde in phosphate-buffered saline or The fixed tissues were
processed as per routine, embedded in paraffin, sectioned into 4-µm-thick sections, de-
paraffinized, and rehydrated using standard protocols. Overall morphology was visualized
using routine H&E staining. Myelin was stained using Luxol fast blue. In brief, the rehy-
drated tissue sections were incubated in 0.1% Luxol fast blue solution overnight at 56 ◦C,
rinsed with 95% ethyl alcohol and distilled water, and differentiated in 0.05% lithium car-
bonate solution. Subsequently, the sections were dehydrated in a series of alcohol solutions,
cleared using xylene, and mounted in a resinous medium.

4.7. Immunohistochemical Analysis

Axonal microtubules and Schwann cells were visualized using immunohistochem-
ical staining with anti-neurofilament and anti-S-100 antibodies, respectively. Briefly, the
rehydrated sections were blocked using normal goat serum (Vector ABC Elite Kit; Vector
Laboratories) for 1 h, incubated with rabbit anti-neurofilament and anti-S-100 primary
antibodies (1:500; Abcam, Cambridge, UK) overnight at 4 ◦C, reacted with biotinylated
goat anti-rabbit IgG (Vector ABC Elite Kit) for 2 h at RT, reacted with the avidin–biotin
peroxidase complex (Vector ABC Elite Kit) for 1 h at RT, and finally developed using di-
aminobenzidine substrate (DAB kit; Vector Laboratories). The relative staining intensities,
average positive cell sizes, and average axonal diameters were analyzed using the ImageJ
software. The parameters are expressed as the mean ± standard error (n = 3/group).

Ultrastructural Findings Using Transmission Electronmicroscopy

After euthanasia, the distal portion of the facial nerve from 3 animals of each group
was rapidly excised using Dorco stainless razor blade and immediately immersed in 2.5%
glutaraldehyde fixation, tissue samples were washed in phosphate buffer and post-fixed
using 1% osmium tetroxide. After serial dehydration using ethanol, nerve samples were
then embedded in a mixture of resins (LR white resin). Semi-thin transverse sections were
cut at 1 mm distal to the site of regeneration and stained with toluidine blue. Sections were
evaluated by light microscope. Ultra-thin sections were cut immediately after the series of
semi-thin sections. They were examined using a JEM-2100F field emission transmission
electron microscope (JEM-2100F, JEOL Ltd., Tokyo, Japan). The thickness of myelin were
obtained using image J.

4.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0. The three groups were
compared using one-way ANOVA. The recovery of vibrissae fibrillation was performed by
repeat measure ANOVA. The thickness of myelin sheath in 3 groups was analyzed using
Kruskal-Wallis test. The Mann-Whitney test was used for comparison between two groups.
The significance was considered when p value is less than 0.05.

5. Conclusions

From our results, the neural pre-induced MSC-loaded cellulose/collagen nerve con-
duit may be helpful for regeneration of facial nerve injury due to trauma.
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