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Pan-cancer analysis of neoepitopes
Gabriel N. Teku & Mauno Vihinen  

Somatic variations are frequent and important drivers in cancers. Amino acid substitutions can yield 
neoantigens that are detected by the immune system. Neoantigens can lead to immune response and 
tumor rejection. Although neoantigen load and occurrence have been widely studied, a detailed pan-
cancer analysis of the occurrence and characterization of neoepitopes is missing. We investigated the 
proteome-wide amino acid substitutions in 8-, 9-, 10-, and 11-mer peptides in 30 cancer types with 
the NetMHC 4.0 software. 11,316,078 (0.24%) of the predicted 8-, 9-, 10-, and 11-mer peptides were 
highly likely neoepitope candidates and were derived from 95.44% of human proteins. Binding affinity 
to MHC molecules is just one of the many epitope features. The most likely epitopes are those which 
are detected by several MHCs and of several peptide lengths. 9-mer peptides are the most common 
among the high binding neoantigens. 0.17% of all variants yield more than 100 neoepitopes and are 
considered as the best candidates for any application. Amino acid distributions indicate that variants 
at all positions in neoepitopes of any length are, on average, more hydrophobic than the wild-type 
residues. We characterized properties of neoepitopes in 30 cancer types and estimated the likely 
numbers of tumor-derived epitopes that could induce an immune response. We found that amino acid 
distributions, at all positions in neoepitopes of all lengths, contain more hydrophobic residues than the 
wild-type sequences implying that the hydropathy nature of neoepitopes is an important property. The 
neoepitope characteristics can be employed for various applications including targeted cancer vaccine 
development for precision medicine.

The task of the immune system is to detect and destroy foreign molecules and organisms. This is achieved by the 
numerous mechanisms and processes that form the innate and adaptive arms of the immune system. Three com-
plementary adaptive systems have evolved to recognize foreign materials. First, antibodies recognize and neu-
tralize non-self-molecules. Second, the major histocompatibility complexes (MHCs) I and II bind to and present 
short fragments of foreign peptides to T cells. Third, T cell receptors are produced with a similar recombination 
process as antibodies. The binding sites of these molecules are highly variable due to genetic recombination 
processes. Therefore, it is essential that the immune system does not react against natural human molecules to 
prevent autoimmune diseases. Safeguards against self-reactivity and induced tolerance prevent this from happen-
ing. These mechanisms are still poorly understood. Recently, antigen-specific regulatory T-cells were shown to be 
responsible for autoimmunity protection1.

Variations accumulate during a lifetime. It has been estimated that in fibroblasts, B, and T cells, the mutation 
rate is 2–10 variations per diploid genome per cell division2. This means that normal cells can have from hundreds 
to several thousands of variations in comparison to the original genome of the individual3. In cancers, the vari-
ation rate can be much higher, for example, lung cancer cells typically contain over a million variants4. It is thus 
highly likely that cancer tissues include numerous immunogenic proteins because substitutions in the DNA, the 
most abundant changes in cancers, can lead to amino acid substitutions (AASs) in proteins. Such immunogenic 
epitopes are called neoantigens.

To use neoantigens for therapeutic purposes, numerous research projects aim at detecting cancer variant 
peptides for diagnosis and treatment, including vaccination. Although next-generation sequencing methods are 
efficient for sequencing and detecting variants in tumors, the translation to neoantigens is not straightforward. 
Neoantigen-based treatment would facilitate personalized medicine for cancer patients. In addition to the possi-
bilities for treatment, neoantigens could possibly be used for diagnosis especially in the case of relapse.

Numerous methods have been developed to predict the antigenicity of peptides, especially those binding 
to MHC type I molecules5. The performance of these tools varies6,7 depending on the size and composition 
of the used benchmark dataset8. Despite intensive research, the number of experimentally defined epitopes is 
still relatively small7,9 and affects the performance of the predictors. By combining the epitope predictions with 
experimental validation assays, the performance can be improved. NetMHC10,11 is a predictor for epitopes and 
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available in several versions for different purposes. It has consistently been among the best tools in performance 
assessments7.

Neoantigen load and occurrence in several cancers has been widely studied6,12–16, however, the detailed 
pan-cancer analysis of the occurrence and characteristics of neoantigens has been missing. We investigated 
proteome-wide amino acid substitutions in 30 cancer types. First, we predicted the most highly likely neoepitope 
candidates. This was done by comparing the binding affinities of the wild-type and variant-containing peptides. 
The peptides with high binding neoepitopes were investigated at many levels including HLA distributions, Gene 
Ontology distributions of the proteins and functions of the proteins with the largest numbers of neoepitopes, 
distribution in cancer types, as well as distributions at amino acid level. 11,316,078 (0.24%) of the predicted 8-, 
9-, 10-, and 11-mer peptides were highly likely neoepitope candidates and originated from 95.44% of human pro-
teins. A very small ratio (0.17%) of variants was predicted to lead to the formation of more than 100 neoepitopes. 
Amino acid distributions, at all positions in neoepitopes of all lengths, contain more hydrophobic residues than 
the wild-type sequences. The ubiquitous neoepitopes and the hydropathy nature of neoepitopes can be taken 
advantage of in cancer vaccine development. This represents the first large scale neoantigen distribution study 
that sheds light on the nature of neoepitopes across cancer types.

Results
We performed extensive pan-cancer analysis of neoepitopes and estimated the number of variants that lead to 
an immune response. The dataset for 30 cancer types4 contained in total 783,615 AASs. For each AAS, a 21-mer 
parent peptide was constructed such that the variant position was at the center of the peptide, flanked by ten 
amino acids on both sides. In human, MHC molecules are also called human leukocyte antigens (HLAs). We 
predicted with the NetMHC 4.0 software10 binding affinity of peptides of lengths 8, 9, 10 and 11 residues for 80 
HLAs. The reason for focusing on the MHC I system was that MHC II predictions are less reliable because the 
motifs are more promiscuous, longer and more variable17. The variants were tested in all the sequence positions 
for each peptide length. These accounted for a maximum of 38 variant peptides per parent peptide. Similarly, for 
comparison of binding affinities, we obtained predictions for the corresponding wild-type peptides. Altogether, 
we performed 4,706,079,200 predictions (Table 1).

General properties of predicted peptides. Computational studies of neoantigens are based on predicted 
affinity to MHC molecules. Similar to previous studies IC50 value of <500 nM was used to indicate weak binding 
and <50 nM high binding peptides18. From the predictions, we selected high and weak binders and investigated 
them further.

The numbers of wild-type (41,667,139) and variant (44,853,374) binders (both weak and high binding) were 
quite similar. Thus, many natural human sequences have high affinity at least to one common HLA molecule. 
Our analysis concentrated on MHC type I peptides, which have a strong preference for short 8 to 11 residue-long 
peptides. There were more 9-mer peptides among the binders than peptides of the other lengths combined. The 
9-mers were by far the most abundant predicted binders (>57%) followed by 10-mers (Fig. 1A). The 8-mer 
peptides were the least frequent (6.9%). The distributions in the n-mers were similar for the peptides with both 
wild-type and variant sequences.

Together the weak and strong binders represented 1.8% of all the possible and predicted peptides (Table 1). 
The distribution of AASs at peptide positions 1 through 11 were very similar across the wild-type and variant 
datasets (Fig. 1B). The number of binders with a variant at position 11 was diminutive compared to the other 
positions, in both the dataset for wild-type and for variant peptides. This was due to a low number of binders 
of length 11, and to the fact that this position appeared only in the longest peptides. There were no differences 
in the distributions of binders among the cancer types for both the wild-type and variant peptides (Fig. 2A). 
Colorectum, lung adenocarcinoma, melanoma and uterine cancers contained the largest numbers of binders, 
whereas there were only a few binders in acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), 
chronic lymphocytic leukemia (CLL), kidney chromophobe and pilocytic astrocytoma. These trends closely fol-
lowed the overall rate of variations in the cancers. Next, we investigated the frequencies of the peptide binders to 

Feature Value

Number of variants 783,615

Number of predictions 4,706,079,200

Number of proteins with variants (% proteome) 18,324 (89.55%)

Number of weak binding peptides (%) 66,015,404 (1.40)

Number of high binding peptides (%) 21,712,146 (0.46)

Number of predicted neoepitopes (%) 11,316,078 (0.24%)

Number of neoepitopes per protein (max; mean; min) 42,930; 618; 1

Number of neoepitopes per cancer (max; mean; min) 1,972,000; 377,200; 859

Number of neoepitopes per variant (max; mean; min) 231, 15, 1

Number of proteins with neoepitopes (% all proteins) 18,311 (89.15%)

Number of variants that cause neoepitopes (%) 747,856 (95.44)

Table 1. Summary of predictions made with NetMHC 4.0.
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HLAs (Fig. 2B). The binders were distributed almost evenly across the HLAs. However, numbers of binders for 
HLAs B8301, C0303 and C0401 were clearly smaller than for all the others, in both datasets.

In conclusion, these results indicate that the 9-mers were the most common binding peptides and there were 
practically no major differences in the distributions for wild-type and variant peptides. Thus, numerous normal 
human peptides were predicted to be antigenic, which indicates a limitation for the used prediction method. 
However, the binding affinity is not the only factor that contributes to the T cell response. As discussed below, we 
aimed at solving the overprediction problem in further studies.

Properties of high and weak binding peptides. Both weak and high binding peptides with AASs have 
been considered as neoepitopes in some previous studies19,20. The numbers of high binding wild-type and variant 
peptides were 10,314,928 (0.22% of all peptides) and 11,189,860 (0.24%), respectively, and those for weak binders 
were 31,352,211 (0.67%) and 33,663,514 (0.72%), respectively. The distribution of AASs to positions 1–11 on 
both the wild-type and variant peptides and in both the high and weak binders was quite similar (Fig. S1). The 
distributions to amino acid positions were very even throughout the datasets. The only exceptions were positions 
10 and 11, as expected since these positions could only occur in 5% and 2% of all possible positions, respectively.

The proportions of wild-type and variant binders across the cancer types (Fig. S2) were similar to those for 
all binders (Fig. 2A). The distribution of weak and strong binders within HLAs in both the wild-type and variant 
datasets (Fig. S3) followed very closely that for all binders (Fig. 2B). The 9-mer peptide binders were clearly the 
most abundant followed by 10-, 11- and 8-mers, in that order, across all the HLAs. There were differences between 
HLAs in the ratios as well as the amounts of predicted peptides. The HLAs B0801, B1801 and B5802 have rela-
tively many predicted 8-mer binders. For some HLAs, almost all the peptide binders were 9-mers, such as A6601, 
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Figure 1. Distribution of 8- to 11-mer binding peptides and AAS distribution at positions 1–11. (A) Distribution 
of predicted peptide binders of lengths 8, 9, 10, and 11. (B) Distribution of the position of AASs in the peptide 
binders. The low number of AASs at position 11 is due to the very small number for 11-mer peptides because AASs 
at position 11 can only occur in 11-mers. In both panels, wild-type peptides are indicated in black and variant 
peptides in grey.
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B1402, and C0401. Further, HLAs A0217, A0301 and B1501 had many 10-mers, while A0101 and B3801 had 
many 11-mer binders.

These data show that the high and weak binding peptides had very similar characteristics, and this applies 
equally to the wild-type and variant-containing peptides.

Properties of neoepitopes. We defined neoepitopes as variant peptides with a high binding affinity 
(≤50 nM) to an HLA and for which the corresponding wild type sequence has either weak affinity (>50 and 
≤500 nM) or is not predicted to bind at all. This is a stricter requirement than used in some earlier studies12,15,21. 
The results for the wild-type and variant binders indicated that there were no qualitative differences between 
the groups. Here, we concentrated on the most likely neoepitopes and therefore restricted the further studies 
to neoepitopes defined this way. From both the variant and wild-type datasets, 66,015,414 peptides had a weak 
affinity, and 21,712,146 had a high affinity. Altogether, there were 11,316,078 (0.24%) neoepitopes, which covered 
95.44% of the tested variants and 89.15% of the encoded proteins. The percentage of predicted neoepitopes was 
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Figure 2. The distribution of peptide binders across cancer types and HLAs. (A) Distribution of predicted peptide 
binders across cancer types. The numbers of binding peptides are very similar for the wild-type and the variant 
datasets. The proportion of binders follows the overall rate of variations in the cancer types. (B) Distribution of 
predicted peptide binders across HLAs. The binders were distributed evenly across the HLAs.
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rather small, but since the number of tested peptides was enormous, about 2.4 billion variant peptides, there were 
still a substantial number of peptides left. According to these results, practically every human protein-coding gene 
would code for neoantigens. This is likely not true, as discussed below.

Altogether 72.26% of the neoepitopes were 9-mers, 22.06% 10-mers, 8.52% 11-mers and 4.73% were 8-mers. 
Only 1.75% of the variants gave rise to neoepitopes of all lengths (Fig. 3A). In total, only 6.1% of the variants gave 
rise to neoepitopes of at least two peptide lengths. This is a rather small number and indicates that the require-
ments for different peptide lengths vary. Thus, a variant that gave rise to a neoepitope of a certain length very sel-
dom formed neoepitope of another length even when just one residue is added or deleted from the sequence. This 
result also indicates that NetMHC predictions were specific for peptide length. Predictions of just 9-mers would 
yield 72.26% of all neoepitopes and save a substantial amount of time when investigating large datasets as in here.

The number of neoepitopes per variant varied widely, from 1 to 231 (Fig. 3B). Most variants yielded just one 
or a few neoepitopes. Only a small fraction of variants appeared in many epitopes. 1282 variants (0.17%) among 
the neoepitopes occurred ≥100 times (Table S1). These could be called super-epitopes. The proteins that yielded 
the largest number of neoepitopes were listed in (Table S2). These included TP53, PTEN, as well as many olfactory 
receptors and follicular dendritic cell secreted protein (FDCSP).

There were minor differences in the overall numbers of neoepitopes per HLAs (Fig. 4A). The results indicate 
that 9-mers were the most common among neoepitopes (compare with Fig. 3A). 10-mers had significant shares, 
e.g. in A0217, AO310, and B1501. The largest share of 11-mers appeared in B3801 and C1502. Neoepitopes for 
A0250, A3207, A6601, B1402, B8301, C0401, C1203, and C1502 consisted almost entirely of 9-mers, while in 
B1801 the largest number is for 8-mers.

The distribution of AAS at positions 1–11 in the neoepitopes (Fig. 4B) was similar to that of all binders, as well 
as high and weak binders (Fig. S1). The split down to the positions of variants within the peptides indicated very 
even distribution except for the small ratios for positions 10 and 11.

The distribution of predicted neoepitopes across cancer types is shown in Fig. 5. Melanoma, colorectum 
cancer, and lung adenocarcinoma had the largest number of neoepitopes, 17.32%, 16.88% and 16.65% of all 
neoepitopes, respectively. This was expected as melanoma, colorectum cancer and lung adenocarcinoma repre-
sent 17.12%, 16.94% and 16.33% of all the AASs, respectively. The distributions of peptide lengths were consist-
ent throughout the cancer types. Although the cancer variants originate due to different mutation mechanisms, 
depending on the type of cancer, the distributions of neoepitopes and peptide lengths were similar.

The HLA-specific neoepitope distributions for each cancer type are shown in Fig. S4. The distributions across 
the cancer types were overall very similar. This visualization indicates differences in HLAs irrespective of the total 
numbers of variants which varied very widely. In the cancers with many cases, the HLA patterns are very similar 
(e.g., melanoma, colorectum cancer, and lung adenocarcinoma). In the case of cancers with low numbers of cases 
and variants, we could see discrepancies for some HLAs compared to general patterns. See for example kidney 
chromophobe cancer, pilocytic astrocytoma, and B-cell lymphoma. The reason for pilocytic astrocytoma differing 
from the others was that there are just a small number of AASs (178) and consequently only a few neoepitopes.

To study the distribution of neoepitopes in the cancer patients from which the AAS data used in this study 
was derived, we mapped the neoepitopes to the patient data. Fig. S5 indicates that there were huge differences in 
neoepitope numbers among patients in the cancer types. The minimum and maximum numbers of neoepitopes 
per patient were 4 and 529,280, respectively. The mean and median numbers of neoepitopes per patient were 
6,856 and 1,992, respectively. The cancers with the largest number of neoepitopes included colorectum, lung ade-
nocarcinoma, melanoma, stomach, and uterus cancers. These are the tumors with the highest mutation burden, 
as expected.

Table S1 contains the list of variants with the largest number of neoepitopes sorted in descending order. The 
top of the list includes follicular dendritic cell secreted protein (FDCSP), cytochrome c oxidase subunit VIIc 
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(COX7C), transmembrane superfamily members (TM6SF1 and TM9SF4), dehydrogenases (SDR16C5, HSD3B1, 
ACAD10), receptors (VN1R2, P2RY1, TACR3, GPR141) and phosphatases (PPP3CA, PTEN, PPAP2A) linked 
to carcinogenesis.

The most frequent variants originate from proteins that have catalytic activity (30.2%), transporter activ-
ity (22.9%) or are involved in binding (19.1%). These proteins include follicular dendritic cell secreted pro-
tein (FDCSP), cytochrome c oxidase subunit VIIc (COX7C), phosphatase 3, catalytic subunit, alpha isozyme 
(PPP3CA), transmembrane 9 superfamily protein member 4 (TM9SF4), and short chain dehydrogenase/reduc-
tase family 16C, member 5 (SDR16C5). Similarly, the proteins with the largest numbers of neoepitopes are of 
interest. These include TP53, PTEN, as well as many olfactory receptors and follicular dendritic cell secreted pro-
tein (FDCSP). Of the Cancer Gene Consensus proteins (617, data accessed on June 28, 2017), 93.68% are among 
the proteins that yield many neoepitopes. Among these are polymerase (DNA directed), epsilon, catalytic subunit 
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Figure 4. The distribution of neoepitopes among HLAs and to AAS at positions 1–11 in neoepitopes. (A) The 
distribution of neoepitopes among HLAs. The differences in the overall numbers of neoepitopes per HLA were 
minor. 9-mers are most common. (B) The distribution of AASs at positions 1–11 of the neoepitopes. The split 
down to the positions of variants within the peptides indicated very even distribution except for the small ratios 
for positions 10 and 11.
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Figure 5. The distribution of neoepitopes across cancer types. Melanoma, colorectum cancer and lung 
adenocarcinoma have the largest numbers of neoepitopes, which correlates with the number of ASSs that occur 
in these cancers. Although the cancer variants originate due to different mutation mechanisms, depending on 
the type of cancer, the distributions of neoepitopes and peptide lengths were similar.
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(POLE); PTEN; Fanconi anemia, complementation group A (FANCA); and CCR4-NOT transcription complex, 
subunit 3 (CNOT3) and others.

Annotation of neoepitope-containing proteins. The variant dataset used in the study has been investi-
gated previously. We have used PON-P2 variant tolerance/pathogenicity method to predict cancer-related harm-
ful variants22. The performance of the method was verified on experimentally studied cancer variants. 14% of the 
variants were predicted to be harmful. We compared the three predicted categories of PON-P2, that is benign, 
harmful and variants of unknown significance, and found that the antigenicity and harmfulness were not corre-
lated (data not shown). The harmful variants were not likely more antigenic than benign substitutions. This was 
expected as harmful variants affect crucial sites in proteins while neoantigens are cleaved peptides containing 
non-self characteristics.

Next, we characterized what kinds of proteins were enriched in neoepitopes. For this purpose, we collected 
the Gene Ontology23 annotations of all the human proteins and used them as the background. We sorted proteins 
containing neoepitopes and normalized them by the protein length (Table S2). We determined the enriched 
molecular function, biological process, and cellular component GO terms for the neoepitope-inducing proteins 
(Tables 3–5). The metabolic process (0008152) and cellular process (0009987) were the two main and related 
categories of biological process terms. The most specific terms at this level were related to nucleic acid metabo-
lism (0090304) including RNA metabolic process (0016070). Other prominent categories were cellular protein 
metabolic process (0044260), gene expression (0010467) and macromolecule biosynthetic process (0009059).

The largest category of molecular function terms was binding (0005488), which was further divided into 
nucleic acid binding (0003676), protein dimerization (0046983), receptor binding (0005102), and protein com-
plex binding (0032403), with more detailed daughter terms. The three other categories were nucleic acid binding 
(0001071), catalytic activity (0003824), and transporter activity (0005215). Transcription factor activity, RNA 
polymerase II distal enhancer sequence-specific binding (0003705) and oxidoreductase activity (0016712) were 
the most specific terms.

The enriched cellular component terms related to macromolecular complex (0032991), organelle (0043226), 
cell (0005623), and supramolecular complex (0099080). These were nested so that the most specific terms 
included only nucleosome (000786), nucleus (0005634), mitochondrion (0005739), and keratin filament 
(0045095).

To investigate the effect of AASs in neoepitopes or peptide characteristics, we compared the amino acid res-
idue distributions for 8- to 11-mers. For this analysis, we concentrated on the positions of the AASs within the 
neoepitopes. The results in Fig. S6 show that the amino acid proportions for the variant substitutions and cor-
responding wild-type residues were clearly different. The results were visualized with MultiDisp that draws the 
characters based on the frequency in the data, i.e., the higher the occurrence, the taller the letter. Note that the 
figure does not show sequence context. Instead, it shows amino acid frequency data for each position within the 
n-mers.

Certain trends were evident and consistent throughout the different peptide lengths. The ratios of amino 
acid residues were similar with minor differences at the last positions for 10- and 11-mers. In the variant dataset 
enrichment of residues F, I, L, V, and Y was evident, especially in the last position of 8-, 9- and 10-mers (Fig. S6). 
The ratios of D, E, R, S, and T were reduced in neoepitopes compared to the distribution in the wild-type peptides. 
These trends were conserved at all positions but were very distinct at the last position.

The depleted residues are hydrophilic. These results are in line with a previous study24. The importance of 
hydropathy characteristics is related to the binding preference for amino acids within the HLA binding sites. 
Although, only some positions in HLAs are considered to be essential for recognition and response, our results 
showed that there were certain preferences at all sites. Overall, the positions in all n-mers were more hydrophobic 
in neoepitopes than in wild-type peptides (Fig. S7). The largest differences were in the last position for 8-, 9- and 
10-mers.

Hydropathy is a fundamental property of molecules. However, it is difficult to estimate. There are many scales 
for residue hydropathy. The AAindex database contains over 100 such propensity scales25. We have shown that 
there are differences in the prediction performance of the scales26. To be able to compare our results to those pub-
lished earlier, we used the Kyte-Doolittle hydropathy scale27.

Discussion
Our analysis indicated that neoepitopes are very frequent in all cancers. We used the NetMHC program for the 
predictions. This tool has been widely used and has behaved favorably in method assessments28. However, it is 
obvious that the tool overpredicts. In addition to variant peptides, large numbers of wild-type peptides were 
predicted to be antigenic, which cannot be possible. The production of self-recognizing antibodies is tightly con-
trolled to avoid autoimmune reactions and diseases.

To concentrate on the most likely neoepitopes, we defined them as having high binding affinity for the variants 
and not binding or having low binding affinity for the wild-type peptide. After this filtering, we had 0.24% of the 
original peptides left. This still accounts for 11,316,078 neoepitopes. These are very evenly distributed to peptide 
positions and HLAs. 9-mers are clearly the most prominent among neoepitopes accounting for altogether 72.26% 
of neoepitopes (Fig. 3).

The enrichment analysis of GO terms indicated binding and metabolic processes to be important. Molecular 
functions of proteins containing neoepitopes included terms for binding, catalytic and transporter activities. 
Additionally, numerous cellular compartments were enriched.

After filtering, we still retained neoepitopes for 89.15% of human proteins. It is evident that all the filtered 
neoepitopes cannot be biologically functional. The NetMHC tool has its limitations which emerge from the com-
plexity of the T cell response and from the lack of the full understanding of the many details of this process. 
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Numerous factors contribute to T cell activation. Peptide binding to MHC molecules is just one of them. These 
processes have been discussed, e.g. in29,30.

Peptide binding to an HLA molecule is a requirement for raising adaptive immunity. This is dependent on the 
sequence but also on the processing of the precursor protein in the antigen presenting cells by the proteasome 
and other proteases. The peptide is transported from the cytosol to the endoplasmic reticulum by the transporter 
associated with antigen processing (TAP) complex of TAP1 and TAP2 proteins. The transport is based on ATPase 
activity. To prevent wasting ATP, the transporter selects for high-affinity peptides.

Although a peptide may have high affinity, it may not be an efficient epitope due to, e.g., low abundance and 
low stability. Further, the peptide-MHC complex has to be recognized by T cells as immunogenic. Recently, 
methods to define the specificity of the T cell receptors have been presented31,32. Self-recognition systems prevent 
the production of antigens recognizing epitopes too similar to natural human proteins. It has been estimated that 
one-third of the peptides are too similar to self29. Thus, only a fraction of the neoepitopes can elicit an immune 
response.

Experimental data is available for very small numbers of tested peptides. Studies on two HLAs in binding vac-
cinia virus peptides indicated that about 2.5% of all 9- and 10-mer peptides bind with affinity ≤100 nM33. This is 
in line with our results that indicated weak and high binders to account for 2.8% of all the peptides. Our threshold 
for high binding peptides was 50 nM and 500 nM for low binders.

When the high binding peptides for vaccinia virus were tested experimentally, only 56% were immunogenic33. 
Peptide immunization studies revealed that 15% of the peptides elicited T cell response capable of recogniz-
ing vaccinia virus infected cells. However, only 15 (11%) were immunodominant and recognized during virus 
infections. In conclusion, only 0.89% of the high binders were true epitopes. When this ratio is applied to our 
data, there would be 101,097 neoepitopes, which is still a substantial number and indicates a high potential for 
neoantigen-based treatment and diagnosis.

Although neoepitopes and their usage in clinical applications have been discussed34, there are also notes that 
immunogenic neoepitopes are exceptions rather than the norm35. We can further correlate our findings to the 
knowledge on T cell response. Analysis of vaccinia virus WR strain indicated that only 49 epitopes accounted 
for 94.8% of the CD8+ cell response36. They predicted in total 175,458 of 8-, 9- and 10-mer peptides. For the 
experimental studies, 2256 peptides were chosen. If we use the same ratio of peptides (49/175,458) to estimate the 
number of effective peptides in our datasets, we will obtain about 1.3 million peptides.

Humans have six HLA genes. Currently, the major database for HLA alleles37 contains 12,351 HLA class I 
alleles for different ethnic groups. The most common alleles are very frequent, and therefore our results apply to 
a large part of populations.

It is likely that neoantigens that are recognized by several HLAs and with different peptide lengths, denoted 
here as super-epitopes, also raise the T cell response at least in some cases. Thus, the variants that are predicted 
to be neoepitopes numerous times are the top candidates for neoantigen therapy and other applications. Our top 
candidates are 1282 variants which were predicted to be antigenic at least 100 times.

Recent phase I clinical studies with neoantigen vaccines38,39 were very promising and indicated that peptides 
representing 10 to 20 neoantigens presented good safety and efficacy when tested on stage III and IV melanoma 
patients. The neoantigens selection is a crucial issue both for efficacy as well as for preventing immunotoxic-
ity and autoimmunity40. Endeavors like the Human Immunome Peptidome Project Consortium41 and Tumor 
Neoantigen Selection Alliance will provide essential contributions.

Immunotherapies are promising but can cause increased progression in some cases such as PD-1 inhibitors 
in melanoma and lymphoma. Therefore, special care has to be taken for the selection of therapy, including neo-
antigen vaccines42,43.

Processing, recognition, transport and binding affinity are important for immunogenicity. Apart from peptide 
selection, the delivery of the peptides and adjuvant selection are crucial for vaccination. It is likely that immuno-
therapy should be combined with other forms of therapy, including surgery, radiation and chemotherapy.

As more experimental data become available the quality of prediction methods that take advantage of these 
data shall improve. Better prediction tools and improved experimental validation assays will lead to improve-
ments in clinical and other applications of neoantigens including personalized medicine and diagnosis.

Methods
Variations and HLA binding affinity prediction. The AASs in 30 cancer types were obtained from4. The 
sequences and annotations of the longest transcripts for each protein were retrieved from the Ensembl biomart 
release 69 repositories.

For each AAS in the dataset, we constructed a 21-mer peptide. In the middle of the peptide, at position 11, 
was the substitution position. This residue was flanked by ten amino acids on both sides. Two such sequences 
were constructed per AAS, one for the wild-type and the other for the variant sequence. Both sequences were 
in fasta format. These peptides allowed predictions to be made for the variant at all possible positions in pep-
tides of lengths 8, 9, 10, and 11. The peptide sequences were concatenated and used as input in the NetMHC 4.0 
epitope-HLA prediction algorithm10 that was run locally. The prediction results for each HLA were stored in 
tab-separated files. Peptides predicted to be neither weak nor strong binders were filtered out using bash com-
mands and R scripts.

To identify neoepitopes, we compared the predicted affinities for the wild-type and corresponding 
variant-containing peptides. Peptides were defined as neoepitopes for a certain HLA molecule when the variant 
was predicted to bind strongly whereas its wild-type form was predicted to bind weakly or not at all. Variant pep-
tides with affinity IC50 < 50 nM were classified as high binders, those with 50 < IC50 < 500 nM as weak binders, 
and peptides with IC50 > 500 nM as non-binders.
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Data analysis. Data manipulations and analyses were performed in R, a statistical analysis and programming 
software environment44. The amino acid and hydropathy data were visualized with MultiDisp (http://structure.
bmc.lu.se/MultiDisp), a web program for analyzing multiple sequence alignments. Kyte and Doolittle27 propen-
sities were used to calculate hydropathy values with a sliding window method.

The enrichment of GO terms for proteins from which the neoepitopes were obtained was calculated with 
GOrilla45. The web service uses the minimum hypergeometric method that computes the hypergeometric statistic 
of the top k ranked elements of a vector46. The top k elements were selected to optimize enrichment45. REViGO47 
was used to remove redundant terms and to summarize the terms. It defines semantic similarity for pairs of GO 
terms based on their shared parent terms and visualizes the results for GO term enrichment from GOrilla.

Data Availability. The datasets generated and/or analyzed during the current study are not publicly available 
due their sizes but are available from the corresponding author on reasonable request. The data generated and 
analyzed in the current study was retrieved from the Ensembl biomart release 69 repositories and from4.
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