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Abstract: Additive manufacturing (AM) is a rapidly expanding material production technique that
brings new opportunities in various fields as it enables fast and low-cost prototyping as well as easy
customisation. However, it is still hindered by raw material selection, processing defects and final
product assessment/adjustment in pre-, in- and post-processing stages. Spectroscopic techniques
offer suitable inspection, diagnosis and product trouble-shooting at each stage of AM processing.
This review outlines the limitations in AM processes and the prospective role of spectroscopy in
addressing these challenges. An overview on the principles and applications of AM techniques
is presented, followed by the principles of spectroscopic techniques involved in AM and their
applications in assessing additively manufactured parts.
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1. Introduction

Additive manufacturing (AM), commonly known as 3D printing, is a process of
fabricating 3-dimensional objects through layer-by-layer addition, directly from a digital
file. The AM technology encompasses a range of production techniques such as fused
deposition modelling (FDM), powder bed fusion, inkjet printing, stereolithography (SLA)
and laser engineered net shaping (LENS). AM presented a market size of USD 7.97 billion
in 2018 with a compound annual growth rate (CAGR) of 14.4%, expecting to reach USD
23.33 billion by 2026 [1]. The fast-growing interests and evolutions in AM will boost
its market uptake and commercial chance. AM has been employed in construction [2],
biomechanical [3], healthcare [4], aerospace [5] and automotive industries [6] and with
advancements in AM techniques, new applications keep emerging. A wide variety of
materials, in the likes of metals, alloys, ceramics and polymers, have been used in AM
applications. Some examples of recent AM developments having commercial implications
are presented in Table 1.
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Table 1. Some successful commercial applications of AM.

Sector Company/Institute Year AM technique and
Materials Development Parts Function

Consumer
goods

Holthinrichs
Watches 2017 Laser powder bed fusion;

stainless steel 316L.
Parts for limited

edition watches [7].
3D printed case, crown

and buckle.

Nuclear energy US Department of
Energy 2018 Dissolvable materials. Nuclear plant

components [8].

Dissolvable supports
with improved topology

and microstructure.

Manufacturing Renishaw 2019 N/A Parts for arm
powered bike [9]

Central titanium
support (CTS)

Manufacturing Siemens 2019 N/A
Components for

aeroderivative gas
turbine [10].

Dry low emission
(DLE) pre-mixer

Catalysts
Flemish Institute
for Technological

Research
2019

3D fibre
deposition technique;
Ni-alumina catalysts

Ni-alumina-based
catalysts for CO2
methanation [11].

CO2 conversion and
selectivity to methane

The concept of creating 3D objects in a layer-by-layer fashion using computer-aided
designs, then commonly known as rapid prototyping, was born in the 1980s. Rapid
prototyping was traditionally used to create models to realise concepts physically [12].
However, AM has now evolved from a prototyping tool to a production technique for
actual functioning products [13,14]. The growth in popularity of AM, as shown in Figure
1, is attributed to its advantages such as; fabrication of complex geometries with high
precision in a short period of time, operative with very little human intervention and
reduced material wastage [15–17].
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While AM is gaining popularity, one of the major challenges has been the lack of
understanding of the fundamental material properties of produced parts and raw materials
used. Non-destructive techniques such as thermography and acoustic emission testing
have been applied to detect defects in additively manufactured parts [18]. Raw materials
have been characterised using laser particle size distribution measurements, X-ray com-
puted tomography, X-ray diffraction, scanning electron microscopy, dispersive elemental
analysis [13]. However, these techniques have fallen short of providing information on
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the chemistry of the materials. Spectroscopic material characterisation techniques, though
currently used sparingly in AM, have the potential to bridge the knowledge gap in material
properties for AM. Spectroscopic techniques offer rapid analysis with a high degree of
sensitivity. Most spectroscopic techniques find use in real-time production process mon-
itoring for quality control purposes without the need for withdrawing materials from
the production line. Spectroscopic analysis provides insights into structures at molecular
level and reveals the chemical composition and composition variation of the material.
Understanding the material properties and physical behaviours, leads to development of
innovative materials, customised products and prolonged shelf life of the final products.
Knowledge of molecular structure helps material scientists and engineers to choose the
correct materials for specific functional properties in end products. Moreover, this will also
help in reducing material waste and enhance production efficiency.

Spectroscopic techniques can be utilised for raw material characterisation for quality
control purposes, preventing wastage and economical loss as well as superior manufactured
products. Moreover, characterisation during the manufacturing process would ensure
control of the process so that parts are manufactured as planned. Dispersion of additives in
the matrices, chemical bonding between different components and presence of functional
materials can be verified using spectroscopy.

4D printing, which is based on 3D printing but using stimulus-responsive materials to
change its property, shape or character as a function of time, has been attracting intense
attention since 2013 when it was introduced by a research group at MIT [19]. However, as an
emerging technique, the products from 4D printing are mostly developed as conceptional
objects. There is a huge gap to transfer great concepts into practical products in 4D
printing, where real-time monitoring and control should be industrialised. For example,
Shiblee et al. [20] reported a 4D printed flower structure with swelling-induced ‘line-to-
coil’ bending, showing great potential to function as biomimetic actuators, encapsulating
systems and soft robotic. However, refined control of the curvature over time remains to be
conquered before turning into industrial products, where real-time monitoring and in-time
feedback is needed. Understanding the time-dependant molecular change would make
a great contribution towards further development of 4D printing products with refined
control of the changes over time. Hence, spectroscopy finds its great application to achieve
real-time and in situ detection with time changing in 4D printing.

This paper aims to provide a comprehensive review of spectroscopic techniques
currently employed and future prospective as material characterisation tools in AM. The
specific aims of this review are: (i) To summarise the principles, production techniques
and materials used in AM; (ii) to provide the principles of spectroscopic techniques; (iii) to
outline the scientific and technical challenges in AM and the potential functionality of
spectroscopy in the AM process.

2. AM Techniques

Unlike traditional subtractive manufacturing processes such as lathing, milling or
grinding, AM produces desired shapes by addition of materials without any part specific
tooling [15,18]. There are a range of AM techniques available, however, all work on the
same principle are shown in Figure 2. The design of the part to be fabricated is created by
computer-aided design (CAD) software, which is then converted to standard tessellation
language (.stl) file. The .stl file then slices the 3D model into layers and the AM apparatus
fabricates the part by accumulation of successive layers shaped in x-y plane. The assembly
of single layers on top of each other brings about the z dimension, hence a 3D object [17].
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A range of AM techniques, working in different ways, are currently available [12,13,15–17].
The major AM techniques summarised and tabulated in Table 2, work by either thermo-
plastic filament extrusion, photo polymerisation, melt deposition, ceramic suspension
deposition or lamination. The choice of the technique depends on the raw material used
and end product fabrication needs. In order to realise the importance of material character-
isation, it is imperative to understand how different AM techniques work.

2.1. Fused Deposition Modelling (FDM)

In FDM, a thermoplastic filament is fed to the heated printer head and molten polymer
is extruded through the nozzle to create a thin layer of the desired shape on a platform.
The printer head moves according to a programmed mechanism and deposits another
thin layer on the earlier printed layer. Successive layers fuse together and solidify at room
temperature to result in the desired 3D part. The FDM technology has been developed
further to make use of two extrusion nozzles. While one nozzle extrudes the thermoplastic
to build the part, the second nozzle dispenses material for the creation of a sacrificial
support structure which can be removed after printing [21]. This development has paved
way for printing overhanging geometries [22]. The schematic process of FDM is presented
in Figure 3.
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FDM is favoured due to its low cost, high speed and no post processing chemical
curing [12,16]. Its major disadvantage, however, is mechanical weakness of the printed
part due to inter-layer distortions [24]. The layer-by-layer appearance also projects poor
quality surface finish of the produced part [25].

2.2. Powder Bed Fusion

Powder bed fusion is an AM technique where powder material is sintered or fused
together using a laser beam. A thin layer (0.1 mm) of the material powder is spread on a
platform and the laser fuses the powder at specific locations specified by the design [12].
New layer of the material powder is spread across the previous layer using a roller and
then fused together. The layering and fusion of the powder is repeated until the desired 3D
object is made [16]. Selective laser sintering (SLS) and selective laser melting (SLM) are the
two aspects of powder bed fusion technique. SLS achieves fusion of material powders by
elevating local temperature on the surface of the grains without melting them completely
and can be applied to a wide range of polymers, metals and alloys. SLM, on the other
hand, fuses the material powders by completely melting them and is used for only certain
metals such as aluminium and steel. Parts formed by SLM have superior mechanical
properties [16,26]. The schematic process of powder bed fusion is presented in Figure 4.
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Figure 4. Schematic illustration of powder bed fusion system (SLS).

Powder bed fusion attracts attention as it could be used with a wide range of material
powders such as polymers, metals, ceramics and their combinations [17,27]. Moreover, the
powder bed itself provides support for the printed part so additional efforts of removing
the support material is eliminated [16]. However, accuracy is limited by the particle
size of the material powder and an inert gas atmosphere has to be maintained for the
process to prevent oxidation [12]. Additionally, some critical drawbacks are attributed to
powder bed fusion, such as undesired porosity and balling, residual stresses, cracks or
layer delamination and microstructure inhomogeneity.
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2.3. Laser Engineered Net Shaping (LENS)

In LENS, molten metal powder, with particle size ranging from 38–150 µm, is injected
onto a specific location on a substrate stationed on a base plate. A strong laser is used to
melt the metal powder and a melt pool is created on the substrate. The deposition happens
in the X − Y direction to fabricate layers in an additive manner [27]. The process occurs
in a closed chamber flushed with argon and the printed layer solidifies as it cools. LENS
differs from SLS and SLM as it does not use a material powder bed but the metal powder is
fed directly to the processing apparatus. LENS can be helpful in filling cracks or repairing
broken parts [12,16]. The schematic process of LENS system is presented in Figure 5.
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LENS permits the use of a large range of metals and is used to repair parts which would
otherwise have been impossible or very expensive. While material graded deposition
allows for more than one type of metal powder to be used simultaneously, the gradient
material offers enhanced compatibility and high mechanical properties equivalent to
wrought processing for many applications. The disadvantage of LENS, however, is the
residual stress created on the parts by the uneven heating and cooling [12].

2.4. Laminated Object Manufacturing (LOM)

The LOM technique uses a carbon dioxide laser to cut modelled shapes from a thin
sheet of material fed into the machine. Successive layers of precisely cut shapes or laminates
are bonded together by application of pressure, heat and a thermal adhesive [12,16]. The
excess material left after cutting are usually removed and recycled. The schematic process
of LOM system is presented in Figure 6. LOM is a low-cost process with no post processing
requirements. LOM also presents an excellent technique for manufacturing large structures.
On the other hand, the drawbacks of LOM are low surface definition and difficulty in
building complex internal cavities [12,16].



Materials 2021, 14, 203 7 of 29Materials 2021, 14, x FOR PEER REVIEW 8 of 34 
 

 

 
Figure 6. Schematic illustration of laminated object manufacturing (LOM) system. 

2.5. Stereolithography (SLA) 
Developed in the late 1980s, SLA is one of the earliest AM techniques [28]. It is based 

on the concept of photopolymerisation of an UV active monomer. The SLA technique in-
volves lowering a build platform into a monomer reservoir, coating the platform with a 
usually 50–75 µm thick layer of liquid monomer [13]. A laser beam focuses on the liquid 
surface and draws out the shape according to the CAD model. UV irradiation is absorbed 
by the photo-initiator which activates the polymerisation of the monomer, transforming 
the liquid monomer to a solid polymer. The build platform is then lowered so that the 
earlier printed layer is covered by the same thickness of the liquid monomer and UV irra-
diation is applied. The layer-by-layer build process is repeated until the desired 3D part 
is achieved [29]. The printed part is only 80% cured at this point and the curing is further 
completed in a UV oven [13,30]. The schematic process of SLA system is presented in Fig-
ure 7. While SLA presents a high printing accuracy and smooth finishing, its disad-
vantages include high cost, time-consuming processing, brittle components and very lim-
ited choice of raw materials [16]. 

  

Figure 6. Schematic illustration of laminated object manufacturing (LOM) system.

2.5. Stereolithography (SLA)

Developed in the late 1980s, SLA is one of the earliest AM techniques [28]. It is based
on the concept of photopolymerisation of an UV active monomer. The SLA technique
involves lowering a build platform into a monomer reservoir, coating the platform with
a usually 50–75 µm thick layer of liquid monomer [13]. A laser beam focuses on the
liquid surface and draws out the shape according to the CAD model. UV irradiation
is absorbed by the photo-initiator which activates the polymerisation of the monomer,
transforming the liquid monomer to a solid polymer. The build platform is then lowered
so that the earlier printed layer is covered by the same thickness of the liquid monomer
and UV irradiation is applied. The layer-by-layer build process is repeated until the
desired 3D part is achieved [29]. The printed part is only 80% cured at this point and the
curing is further completed in a UV oven [13,30]. The schematic process of SLA system is
presented in Figure 7. While SLA presents a high printing accuracy and smooth finishing,
its disadvantages include high cost, time-consuming processing, brittle components and
very limited choice of raw materials [16].
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2.6. Inkjet Printing

Inkjet printing is the ideal AM technique for printing complex and advanced ceramic
structures. This method involves the deposition of ceramic ink droplets onto the substrate
through an injection nozzle. A continuous pattern, formed by the droplets, solidifies to a
sufficient strength to support subsequent printed layers. The ceramic ink used is either a
liquid suspension, which dries by the evaporation of the liquid or a wax-based ink, which
is melted and deposited on the cold substrate to solidify [16]. The schematic process of
inkjet system is presented in Figure 8.
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While inkjet printing is a fast and efficient technique for printing complex structures,
its drawbacks include coarse resolutions and poor adhesion between layers [16].

2.7. 4D Printing
4D printing is a newly developed field instigating from 3D printing [31]. It is defined as

3D printing + time, where the configuration, property, character, shape and/or functionality
of the 3D printed object can change as a function of time with additional stimulation such
as temperature [32], light [33], water [34] and pH [35]. The fundamental building blocks
of 4D printing are 3D printing facility, stimulus, stimulus-responsive material, interaction
mechanism and mathematical modelling [19].
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Table 2. Summary of AM techniques.

AM Techniques Input Stock Working Principle Advantages Disadvantages
Materials Spectroscopic

CharacterisationsClass Specifications

FDM Solid
Thermal fusion;

Nozzle extrusion
deposition.

Low cost;
High speed/

Limited to thermal-stable
substances;

Mechanical weakness;
Rough appearance;

Limited to thermoplastic
materials.

Composite

Vinylpyrrolidone—vinyl acetate copolymers and polyvinyl
pyrrolidone loaded with mannitol, ramipril and magnesium

carbonate [36]
Polylactic acid with nanohydroxyapatite [37]

Polycaprolactone and polylactic acid composites [38]
polylactic acid with graphene nanoplates/multi-walled

carbon nanotubes [39]
wood flour with thermoplastic polyurethane [40]

FTIR [38,40–43]
Raman [36,39,42]

XPS [40,42,44]
EDXS [37,44]

Polymer

Polylactic acid [42,45]
Polycarbonate [46]

poly (acrylonitrile butadiene styrene) [43]
poly(ε-caprolactone) [44]

Powder bed
fusion

Powder
Laser

sintering/fusion;
Local in situ fusion;

Material powder bed.

Wide materials
choices;

Good mechanical
consolidation

Limited accuracy;
Required gas atmosphere;
Undesired porosity and

balling; Residual stresses,
Cracks or layer
delamination;

Microstructure
inhomogeneity

Alloy
Titanium alloys (Ti-45Nb) [47]

Titanium-zirconium-niobium [48]
Cobalt-chromium-molybdenum [49]

FTIR [50–52]
Raman [53,54]
XPS [49,50,53]

EDXS [47,48,50,54,55]

Composite

Titanium alloy (Ti-6Al-4V) with poly (2-methacryloyloxyethyl
phosphorylcholine) [50]

Carbon nanotube/molybdenum-titanium-aluminium [54]
Polyamide 12 coated with hydroxyapatite nanoparticles [51]

Poly-ε-caprolactone and hydroxyapatite [52]
Polymer Polyamide 12 [53]
Ceramic Spodumene powder [55]

LENS Powder
Laser melting; Local

powder feeding.

Repairing parts;
Material graded

deposition;
Stress residuals

Alloy

AlCoCrFeNi [56]
Hydroxyapatite coating on titanium alloy (ti6al4v) [57]

Titanium powder [58]
Fe–Ti alloys [59]

FTIR [57]
Raman [60]

UV-vis spectroscopy [57]
XPS [58]

EDXS [56,59]Ceramic Yttria stabilised zirconia [60]

LOM Solid
CO2 laser melting;
Laminated layer

building and adhesion.

Large object
manufacture; low cost.

Low surface definition;
challenge in complex

internal structures.

Graphene Laser-introduced graphene [61]
FTIR [62]

Raman [61]
XPS [61,63]

EDXS [64,65]

Alloy Titanium alloy (Ti-6Al-4V) [63]

Ceramic
Titanium carbide—silicon carbide [65]

Silicon nitride [64]
Alumina [62]

SLA Liquid

Liquid monomers by
UV polymerisation;

laser beam
solidification.

High printing
accuracy and smooth

finishing

High cost; time consuming
processing; brittle

components; very limited
choice of raw materials

(only UV-resistant)

Polymer
Polyurethane acrylate, epoxy acrylate, isobornyl acrylate [66]

Perfluoropolyether [67]
Resin [68,69]

FTIR [66,70,71]
Raman [68]

UV-vis spectroscopy
[67,69]

XPS [71]
EDXS [72]

Ceramic
Alumina [72]

Silicon oxycarbide [70]
Silicon nitride [71]

Inkjet printing Powder
Ceramic ink droplets;

solidification by
drying liquid layers.

Complex structures;
Expensive ink; limited in

high volume
manufacturing; low

printing speed.

Polymer Polyvinyl alcohol [73]
FTIR [73,74]

Raman [74,75]
XPS [76]

EDXS [75,77]

Ceramic Alumina [77]
Calcium sulphate hemihydrate [75]

Composite
Lactic acid and ethanol [74]

Indium nitrate hydrate, gallium nitrate hydrate and zinc
acetate dihydrate [76]



Materials 2021, 14, 203 10 of 29

Table 2. Cont.

AM Techniques Input Stock Working Principle Advantages Disadvantages
Materials Spectroscopic

CharacterisationsClass Specifications

4D printing Solid

Using 3D printing
facility and smart

materials to achieve a
stimulation-
responded
structure.

Self-assembly;
reconfiguration;

transformation (save
space for

storage/transport);
multi-functionality;

self-repairing.

Based on the 3D printing
techniques involved.

Temperature-
responsive

Soybean oil epoxidised acrylate [78]
PCL-based resin [79]

FTIR [20,35,66,78,79]
UV-vis spectroscopy [35]

Raman [80]
EDXS [35]

Light-responsive
Polyurethane acrylate with epoxy acrylate, isobornyl acrylate

and radical photoinitiator [66]
Polyurethane [80]

Water-responsive Poly(N,N-dimethyl acrylamide-co-stearyl acrylate) [20]

pH-responsive Poly(2-vinylpyridine) with addition of 12%
acrylonitrile−butadiene−styrene (ABS) [35]
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3. Spectroscopy and Its Application in AM Techniques

The interaction of radiation with matter is utilised by spectroscopic analysis regimes to
provide details of molecular energy levels, energy state lifetimes and transition probabilities
of materials [81]. These details translate into information on the molecular environment
and chemical structures of materials.

While the term ‘spectroscopy’ refers to a number of techniques, the basic principle of all
techniques is shining a beam of electromagnetic radiation onto a sample and observing how
it responds to such a stimulus. Primarily, upon interaction with the sample, the radiation
is either absorbed, reflected or scattered is some manner. The response is recorded as a
function of radiation wavelength, resulting in a response plot (spectrum).

Different types of radiation, such as x-rays, ultra-violet and infrared, can be employed
in spectroscopic characterisation of matter. X-ray photoelectron (XPS) and energy disper-
sive X-ray (EDXS) spectroscopies are typical material characterisation techniques which
involve irradiation of a sample with X-rays. Fourier transform infrared (FTIR) spectroscopy
involves absorption of infrared radiation of specific frequencies by molecules, dependent
on their chemical structure. In ultraviolet—visible (UV) spectroscopy, atoms and molecules
undergo electronic transitions when exposed to UV region of the electromagnetic spectrum.
Similarly, Raman spectroscopy relies on inelastic scattering of the incident radiation.

Material characterisation is crucial for fully realising the benefits of AM. While a lot
of emphasis has been placed on characterisation of physical features of manufactured
parts [14], the chemical properties warrant equal attention. Spectroscopic characterisation
techniques offer chemical analysis regimes which help identify the material and determine
elemental composition. This information, in turn, can be used to confirm material stability
after processing, presence of functional materials within the manufactured parts and the
purity of raw materials. Spectroscopic characterisation, thus can be useful for quality and
process control.

3.1. Spectroscopic Characterisations
3.1.1. FTIR Spectroscopy

In FTIR spectroscopy, infrared radiation is applied to a sample and the transmission
through the sample, or in some cases reflection from the sample is measured as a function
of frequency (Figure 9). Chemical bonds between different elements absorb light at differ-
ent frequencies, hence the materials’ absorbance of infrared light at various frequencies
(wavelengths) helps determine the material’s chemical composition and structure [82].
FTIR spectroscopy is a cheap and fast technique with minimal sample preparation needs.
On the downside, FTIR spectroscopy is water and carbondioxide sensitive and some com-
pounds are difficult to analyse at low concentrations because of the interferences from
other compounds.

3.1.2. Raman Spectroscopy

Raman spectroscopy is based on inelastic scattering of monochromatic light focussed
on a molecular sample (Figure 10) [82]. Analysis of the scattered radiation from a molecular
system indicates the presence of frequencies spectrally shifted to lower or higher energies
compared to the incident radiation. The transfer of vibrational quanta between the interact-
ing radiation and the medium results in spectrally shifted lines. Vibrational frequencies of
functional groups in molecular systems can be characterised from the spacing of Raman
lines. In the Raman spectrum, each bond is correlated to a specific energy [83]. Raman
spectroscopy yields information complementary to IR absorption spectroscopy [81].

Raman spectroscopy is a non-contact and non-destructive technique capable of analysing
chemical composition of materials. It typically requires no sample preparation and can be
applied to different samples such as solids, powders, liquids, gels and slurries. Raman
spectroscopy can also be combined with imaging facilities such as atomic force microscopy
and confocal laser scanning microscopy. However, fluorescence of the sample can affect
the Raman spectra and the intense laser irradiation can destroy the sample.
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3.1.3. UV-Vis Spectroscopy

UV-vis spectroscopy involves the excitation of electrons from a low energy to high
energy atomic or molecular orbitals when the material is irradiated with light from ultra-
violet (100 to 400 nm) to visible region (400 to 800 nm) of the electromagnetic spectrum.
Upon irradiation, a molecule absorbs a discrete quantity of energy to promote electrons
to higher energy states, from the highest occupied molecular orbital (HOMO) to the low-
est unoccupied molecular orbital (LUMO), resulting in an absorption spectrum with the
intensity distribution of the spectrum reflecting the probabilities of the transitions [81]
(Figure 11). While the UV-vis spectra are associated with the transitions between certain
functional groups involving π and or n electron systems, they fall short of characterising
the whole molecule.

3.1.4. XPS

XPS has been widely used for measuring the elemental composition, speciation and
electronic states of elements at the surface of samples [84]. In XPS, a solid sample is
irradiated with soft X-rays to produce multiple ionisations from core and valence levels
of the irradiated atoms or molecules [85] (Figure 12). The analyser measures the kinetic
energy of the photoemitted electron and determines the corresponding binding energy,
characteristic of a specific core level of the photoemitting atom [85]. While XPS provides
detailed information on chemical bonding, it analyses only the surface of the sample
(1–20 nm) and is an expensive technique employing sophisticated instrumentation and
requires long processing time.
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3.1.5. EDXS

Like XPS, EDXS is a powerful and useful elemental analysis technique. It, however,
has a higher sample analysis depth of 1–2 µm. EDXS is used in conjunction with scanning
electron microscopy (SEM). In EDXS, a sample of interest is bombarded with a focussed
beam of electrons which can excite and eject an inner shell electron, the vacancy being
filled by an outer electron. An X-ray is emitted due to the energy difference between the
two shells (Figure 13). The energies and number of emitted X-rays are measured by the
spectrometer and are used to determine the elemental composition of the sample as the
X-ray energies are characteristic of the atomic structure of the emitting element. While
relative compositions (atomic %) and distribution maps of elements in the SEM scan area
can be obtained using EDXS, the data generated is only for the surface to a depth of a few
microns and not of the bulk.
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3.2. Applications of Spectroscopy
3.2.1. Biomedical Applications

With the fast development of AM techniques, their applications in the biomedical field
have been contributing to an evaluable market share and trending to be the drivers for AM
evolution and growth [16]. AM techniques provide important benefits for biomedical ap-
plications, such as high complex structures, customisation and patient-tailored properties,
low-cost and fast prototype development, biocompatibility and good mechanical strength.

Additive manufacturing is being increasingly utilised in drug-delivery applications
and FTIR spectroscopy has emerged as a powerful tool to evaluate the stability as well as
the interactions between the host matrices and the loaded drugs. Long et al. [41] have found
that the carbonyl absorbance band of polylactic acid at 1756 cm−1 red shifted to 1735 cm−1

when progesterone was incorporated into the matrix via FDM. This shift was attributed to
the possible interactions between polylactic acid and progesterone. The chemical structures
of the polymer and the drug, however, remained largely unaffected as the spectral features
of the 3D printed projectile were same as those of the raw materials. FTIR studies have
also confirmed the absence of any detectable interactions between paracetamol and the
excipients (poly (vinyl pyrrolidone) and croscarmellose sodium) in 3D printed immediate
release tablets as the spectral features remained unchanged from paracetamol powder to
the formulations (see Figure 14) [86]. FTIR spectrum of a 3D inkjet printed poly (ethylene
glycol diacrylate) tablet containing ropinirole hydrochloride, collected using a spectrometer
coupled with attenuated total reflectance attachment, was used to evaluate the degree of
cure on the tablet surface [87]. The uncured poly (ethylene glycol diacrylate) monomer
exhibited acrylate peaks at 1722 cm−1, 1636 cm−1, 1618 cm−1 and 810 cm−1, which were
absent from the spectra of the cured tablet, indicating a high degree of acrylate conversion.

The presence of nitrofurantoin anhydrate crystals in 3D printed antimicrobial eluting
polylactic acid disks were confirmed by Raman spectroscopy [88]. Kollamaran et al. [36]
have achieved low melting and thermolabile drug printlets, exhibiting 100% drug release
within 20–30 min, at reduced FDM-operating temperature. The stability of thermolabile
drugs over the 3D processing temperature has also been investigated using Raman spec-
troscopy. Significant differences in the Raman spectra of virgin and processed Rampiril
indicated degradation of the drug at high temperatures. The low processing temperature for
Ramipril was therefore, emphasised with the aid of Raman spectroscopy [36]. Using a hot
melt 3D inkjet printing and beeswax as the drug carrier for fenofibrate, Kyobula et al. [89]
fabricated personalised tablets with adjustable honeycomb cell size to control the drug
release profiles. Raman spectrum, of the printed beeswax-fenofibrate mixture, showed
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no significant shifts in the position of the component bands in the mixture relative to the
isolated components, indicating little to no structural changes to either beeswax or fenofi-
brate upon mixing and subsequent printing [89]. Moreover, the distribution of ropinirole
hydrochloride in 3D printed crosslinked poly (ethylene glycol diacrylate) tablets has been
studied by mapping the drug in the matrix using the drug related peak at 480 cm−1 (see
Figure 15) [87]. While the confocal Raman mapping indicated the presence of the drug
throughout the matrix, certain drug-rich ‘hot spot’ regions were also identified.
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With respect to tissue engineering, Santos et al. [90] improved the mechanical strength
of 3D printed β-tricalcium phosphate scaffolds via a sintering process. The hypothesis
that the sintering temperature affected the composition of the scaffolds was negated by
FTIR evaluation of β-tricalcium phosphate powder. This conclusion was based on the
characteristic phosphate group vibration bands at 1020 cm−1 and 962 cm−1 remaining
relatively unchanged after the sintering process. FTIR spectroscopy was used again, in
a later study on 3D printed polycaprolactone/β-tricalcium phosphate, to justify that the
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high extrusion temperature did not result in either chemical transformation or degradation
of the polymer chains [91]. This was evident as the carbonyl group vibration band at
1727 cm−1 remained largely unaffected by the processing conditions.

The presence of hydroxyapatite in 3D printed polylactic acid/nanohydroxyapatite
bone substitute composite material was confirmed by the presence of calcium and phos-
phorous within the matrix by EDXS [37]. EDXS mapping further indicated that the nanohy-
droxyapatite particles were evenly dispersed in the polymer matrix even though the
nanoparticles tend to agglomerate. EDXS elemental analysis focused on distinguishing cell
boundaries from the interior of the cells have been performed on powder bed fusion 3D
printed 316L stainless steel, which is widely employed in pharmaceutical manufacturing
and medical implants such as cardiovascular implants (stents, artificial valves), orthopaedic
bone fixation devices, orthodontic wires, plates and screws used in craniofacial applications
and artificial eardrums [92]. Molybdenum enrichment was observed at the intercellular
regions compared to the cell interiors and this had a significant impact on the 3D printed
stainless steel. Similarly, EDXS mapping studies by Taylor et al. [93] have also presented
high niobium presence at the bond regions between nickel titanium particles. Niobium
powder had been added to the nickel titanium inks to form a eutectic nickel—titanium—
niobium liquid phase during sintering while 3D printing. The eutectic phase bonded the
nickel—titanium powders and improved the densification of the printed trusses.

The advances in AM techniques have been further applied in dentistry [94,95]. Recog-
nizing the significant incidence of fungal infections in dental prostheses, functionalised
dentures loaded with an antifungal agent were fabricated via the fused filament process.
Functionalised dentures were 3D printed using polymethylmethacrylate filaments incor-
porated with polycaprolactone microspheres containing an antifungal agent. While the
flexural strength of the dentures were characterised by mechanical testing, FTIR spec-
troscopy was used to confirm the presence of the antifungal agent in the printed dentures.
Obvious peaks at 1017 cm−1 in the spectra of the printed dentures correlated with the
C-C-H groups of the antifungal groups [96].

Furthermore, additively manufactured titanium alloys have been considered in the
field of biomedical engineering [97,98], however, the selective laser melting process intro-
duces high surface roughness due to partially melted particles which limits their use as
hip implants [99]. Ghosh et al. [99] have therefore, modified the surface of the fabricated
titanium implants with 2-methacryloyoxyethyl phosphorylcholine polymer. It was crucial
to achieve a homogenous graft of the polymer on the implant surface, to minimise the
friction and wear impact. The presence of the polymer grafts were hence, confirmed by
FTIR spectroscopy, with –N+(CH3)3 and P=O bands attributed to phosphorylcholine units
of the polymer.

3.2.2. Electronics

Hu et al. [100] have used Raman spectroscopy to validate that graphene had been pre-
vented from oxidation during laser additive manufacturing of graphene-copper nanocom-
posites, providing an alternative material for electrical and thermal conductors with strong
mechanical properties. The Raman spectra of the nanocomposites exhibited peaks at
1354 cm−1, 1589 cm−1, 2697 cm−1, 1334 cm−1, 1574 cm−1 and 2677 cm−1, corresponding
to multilayer graphene. Although the distinct peak shapes and positions showed that
graphene had survived the fabrication process, its structure had changed slightly. Similarly,
Raman spectroscopy has also been used to verify the existence of graphene sheets in 3D
printed graphene—aluminium nanocomposites [84].

XPS performed on 3D printed graphene—aluminium nanocomposites indicated the
sample surface, as expected, consisted of mainly carbon, aluminium and oxygen, as
illustrated in Figure 16 [84]. The oxygen (O 1s) peak, indexed at 531 eV, may have been
due to slight oxidation of the metal powders before printing. Further, the high resolution
carbon and aluminium spectra showed peaks attributed to –COOH- groups and Al2O3.
These results confirmed elemental composition of graphene—aluminium nanocomposites
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and identified the oxidation of the metallic powder. Considering unexpected oxidation
widely existed in metal powder, proper and timely detection of oxidised raw material in
pre-processing step could effectively prevent composition or quality issues in the following
fabrication and post-processing stages.
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3.2.3. Aerospace Applications

Most aerospace components have complicated structures with tailored geometries,
leading to time-consuming and expensive manufacture processes [101]. Therefore, 3D
printing is highly suitable for developing aerospace components, such as engine exhaust
and turbine blade [102,103].

Taking advantages of ultrasonic crushing and super-cooled nucleation, ultrasonic
assisted LENS can decrease the eutectic spacing and improve the fracture toughness of
eutectic ceramic significantly [104]. While some hemispherical particles were observed on
the Al alloy side of the weld interface in transmission electron microscopy (Figure 17a),
EDXS was used to confirm the particles of Fe–Al intermetallic compounds (Figure 17b).

Alumina (Al2O3) ceramics have been widely used as structural materials in aerospace.
FTIR spectroscopy was also used to identify hydrophobic structures by chemisorption on
alumina powder used for manufacturing micro-components by SLA [104]. The spectral
features presented –(Si–O)n– vibrational bands at wavenumbers ranging from 1000 cm−1 to
1098 cm−1, indicating the silane coupling agents interacting with –OH groups on alumina
surfaces. EDXS has also been used to confirm the presence and even distribution of
aluminium oxide particles in UV curable acrylic-based resin suitable for SLA 3D printing
of micro-components with complex geometries [105].
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3.2.4. Protective Applications

Compared to conventional protective structures, such as heavy and expensive solid
monolithic plates made of high-strength steel or aluminium, AM brings possibilities
to fabricate smart materials with superior thermal and sound insulation, better energy
absorption and higher surface area [100]. Meanwhile the lightweight structures possess
high stiffness-to-weight and high strength-to-weight ratios [16]. Thus, protective structures
produced by AM makes a great fit for numerous engineering applications.

Chemical modification using chlorosulfonic acid was carried out on 3D printed
polystyrene objects to yield hydrophilic surfaces [106]. FTIR spectra was used to ver-
ify the chemical structure of the modified surfaces, with strong bands at 1370 cm−1 and
1170 cm−1 associated with O=S=O vibrations. Manapat et al. [107] have characterised
graphene oxide powder used for 3D printing of high-strength nanocomposites. A 1 mg/mL
sample was prepared by ultrasonicating the synthesised graphene oxide powder in water
for 10 min and the absorbance was recorded using a StellarNet UV- vis near IR system. The
recorded UV- vis spectra, presented in Figure 18, showed characteristic peaks at 230 nm
and 300 nm; attributed to π–π* transitions of C=C in amorphous carbon systems and n–π*
transition of C=O respectively. The conversion of graphene to its oxide form was thus
confirmed by UV- vis spectroscopy, with additional information from FTIR and Raman
spectroscopy (Figure 18). The surface oxygenated functional groups of graphene oxide
were instrumental in forming hydrogen bonds with the host resins, resulting in 3D printed
high strength nanocomposites. This high strength SLA 3D printed nanocomposites have
been also characterised by Raman spectroscopy [108]. The mechanical properties of the
conventional 3D resins were enhanced by graphene oxide fillers. While the graphene
oxide particles formed hydrogen bonds with the oxygenated groups of the resins, it was
difficult to ascertain the presence of graphene oxide in the nanocomposites thorough FTIR
as many peaks overlapped with those of the resins. Raman spectroscopy was instead used
in this study as the signature bands of graphene oxide at 1346 cm−1 and 1600 cm−1 were
identifiable in the spectra. Raman spectroscopy was used further to verify the effect of
temperature on the defect density of the nanocomposites. The number of point defects,
calculated using the integrated intensity values from Raman spectra, were technically the
same for the control and annealed samples, suggesting that the lower initial decomposition
temperature of samples annealed at lower temperatures were not due to them having
more defects.

The XPS sample analysis depth ranges from 3–10 nm, making it an ultimate surface
analytical technique [85]. O’Connor et al. [108] have determined the surface composition of
3D printed polyamide parts, produced by powder bed fusion, using XPS. The wide survey
spectra presented peaks at 89, 154, 285, 350, 400, 532, 690 and 1072 eV, which correspond to
magnesium, silicon, carbon, calcium, nitrogen, oxygen, fluorine and sodium respectively.
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3.2.5. 4D Printing Applications

The development of 4D printing opens a new door to shape-shifting structures, which
makes 3D printing alive. Different AM techniques have been involved in creating 4D
printing structures, with various stimulation-responded properties.

A light-cured 3D printed customised, polyurethane based, cartilage scaffold with
shape-memory was reported by Shie et al. [80]. Raman spectra, Figure 19, showed no differ-
ence in the water-based polyurethanes between with or without water removing processes.
Raman spectroscopy was also used to identify hyaluronic acid in the polyurethane matrix
in this study.
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Zhao et al. [66] have achieved a high printing accuracy of shape memory polyurethane
processed by SLA. The high printing accuracy was attributed to the high UV activity of
polyurethane acrylate compounded with epoxy acrylate and isobornyl acrylate as well as
a radical photoinitiator. It takes less than 20 s for the deformed samples to recover their
original shape in hot water baths, proving the high recovery rate. FTIR measurements were
applied to monitor the synthetic process of polyurethane acrylate. The polymerisation
process finished when the characteristic absorption peak of isocyanate groups (NCO)
at 2259 cm−1, prominent in the prepolymer, disappeared while the absorption peak of
carbonyl groups on the synthesised polyurethane at 1724 cm−1 reached the maximum
value [66], as depicted in Figure 20.
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Nadgorny et al. [35] developed a pH-responsive material of poly(2-vinylpyridine)
(P2VP) incorporated with silver nanoparticles for FDM, to print recyclable catalytic objects
with dynamic and reversible pH-dependent swelling performance. The material shows
a globule-to-coil transition upon protonation below pH 4.0, which makes it practical for
the applications such as pH-responsive membranes and photonic-gels. FTIR was used to
identify the formation of the characteristic pyridinium band through a band at 1639 cm−1.
The catalysed reduction of 4-nitrophenol was identified by UV-vis through the conversion
of 4-nitrophenol to 4-aminophenol. EDXS was also used to detect the surface of printed
object is densely covered with silver (77.72 wt %, 29.45 atom %, see Figure 21).

Kuang et al. [79] reported a novel PCL-based ink of highly stretchable, shape memory
(SM) and self-healing for UV-light-assisted direct-ink-write printing. The material can
be stretched by up to 600% and showed high strain shape-memory and shape-memory-
assisted self-healing capability, which has great potential for biomedical applications such
as vascular repair devices. FTIR was used to confirm the polymerisation, showing the
complete disappearance of vinyl characteristic peaks, such as the band of vinyl carbon–
carbon double bond vibration at 1639 cm–1 [79].

Shiblee et al. [20] presented a shape-memory-hydrogel-based bilayer hydrogel actuator
that can morph its shape in response to swelling in water, with temperature as an adjustable
parameter. The bilayer structure was made of poly(N,N-dimethyl acrylamide-co-stearyl
acrylate) with different concentrations of the crystalline monomer stearyl acrylate that
responded to swelling-introduced stimulation with reversible shape-memory properties.
The system is designed as a flower architecture that can change its shape after immersing in
water and an underwater 3D macroscopic soft gripper that can grab, transport, and release
a guest substance are developed to demonstrate the applicability of these hydrogels in
biomimetic actuators, encapsulating systems and soft robotics. FTIR was used to verify the
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characteristic peaks and the absorbencies for the alkylene groups in DMAAm at 1646 cm−1,
SA at 1636 and 984 cm−1 and MBAA at 1657 cm−1 almost disappeared in the spectrum of
the SMG hydrogel, which signified that the radical reaction successfully occurred via 3D
printing [20].
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4. Spectroscopy in AM Process Loop

Widespread application of AM is limited by product quality issues, such as material
preparation and flaw, structure accuracy, undesired porosity, residual stresses, cracks or
layer delamination, or microstructure inhomogeneity. Product quality issues can be at-
tributed to raw materials preparation and AM processing parameters, which need to be
processed by repeated and complex trial-and-optimisation cycles with inefficient, time-
consuming and expensive outcomes. Process-control loop for AM has been attracting
interests and were identified as measurement challenge vital for: monitoring of process
and equipment performance, assurance of part adherence specifications and the ability
to qualify and certify parts and processes [109]. Therefore, in situ monitoring of process
and real-time control of AM process parameters find important applications to reduce
variations and simplify optimisation steps in AM processes. In this consideration, spectro-
scopic techniques play essential roles in analysis and characterisation of AM materials and
products, contributing to employment of better materials, increased production yield, re-
duced failure or rejection rate and enhancement of desirable qualities of final product. The
application of spectroscopy in AM close-loop control system is illustrated in in Figure 22.

Spectroscopic techniques find their applications at each stage, which are summarised
in Table 3 and demonstrated in the following section.

Pre-processing control is attributed to material properties, such as the proper fusion,
density, size distribution, particle morphology, chemical or physical interactions, viscosity
and printability. Developing AM materials with proper characteristics can help define
suitable processing parameters, ease of following in situ AM processing and improve the
quality of final product. In pre-processing control, spectroscopic techniques offer promising
evaluations such as elemental or molecular characters, functional bonding and absorption
information of the feeding materials.
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In-processing control relates to two procedures: (i) Real-time monitoring: to monitor
the properties of in situ product during AM processing, such as the interfacial geometry,
layer lamination and adhesion, porous structure, flowability and printing accuracy; (ii)
immediate feedback and regulation: based on the detected product properties especially
errors and defects, feedback and regulation control can act immediately to improve the
product quality by adjusting the processing parameters, such as pressure, temperature,
laser strength, etc. Spectroscopic techniques combined with movable nozzle or heating
parts of AM equipment can deliver a promising real-time measurement of the AM pro-
cessing and provide valuable information for immediate feedback and regulation. In this
consideration, fast-detecting and non-destructive techniques can be applied in real-time
measurements. For instance, all AMs employ layer-by-layer building strategy, which may
lead to discontinuity and inaccurate dimensions in all building directions [110]. In this case,
Raman associated with imaging facilities such as atomic force microscopy and confocal
laser scanning microscopy can offer real-time monitoring of being-built layer and then
provide feedbacks to modify the AM building parameters to generate parts with better mi-
crostructure. However, in-processing control has been paid less attention than the pre- and
post-processing controls, thus, there is an empty gap to be filled with proper applications
and future development of spectroscopic techniques.

Post-processing control aims to analyse the quality and characters of AM processed
products, in order to evaluate if they meet final requirements or require material and/or
processing optimisation(s). In this consideration, some key parameters of the processed
product need to be examined, such as dimensional accuracy, surface roughness, poros-
ity, mechanical properties, residual stress and fatigue strength [109]. In respect to post-
processing, spectroscopic techniques offer valuable assessments in different aspects. For
instance, FTIR can help evaluate the stability of materials in the form of detecting any
chemical bonding changes as well as the interactions between the host matrices and the
additive. In post-processing control, the assessments do not provide real-time investiga-
tion, however, more detailed information of the processing parameters can be obtained to
optimise the AM process and improve the material issues, achieving desired performance
of the final AM product.
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Table 3. Spectroscopic characterisations in AM process-control loop.

Spectroscopy
Wave

Propagation
Principle

Effective
Penetration

Depth

Materials
Analysed Sample Preparation

AM
Process-Control

Loop
Spectroscopy Function Diagnosis by Spectroscopy in AM Process

FTIR Refraction 0.5–3 µm Polymers,
ceramics

FTIR spectrometer equipped with attenuated
total reflectance accessory is capable of

analyzing solids and requires minimal sample
preparation. A small piece of specimen is
placed directly on the stage for analysis.

Pre-processing
Elemental, molecular characters and
functional bonding; predict potential

reactions.

Raw material blending; additive
homogeneity.

In-processing Stability or chemical bonding changes. Proper temperature control; degradation of
feeding materials.

Post-processing Interactions between materials; phase
solubility/precipitation.

Degradation or changes in materials
properties; blending uniformity.

Raman Diffraction 0.2–10 µm Polymers,
ceramics

Sample areas from 200 × 200 µm2 up to 50 ×
50 mm2 can be scanned. Essentially no

sample preparation is required. A small piece
of specimen is placed of the sample stage

for analysis.

Pre-processing Molecular and bonding. Raw material blending; additive
homogeneity.

In-processing Microstructure, gains, cracks,
imperfections.

Influence of local heating; interfacial
interaction between layer to layer;

structural defect.

Post-processing Stability, existence/distribution of
additives.

Degradation or changes in materials
properties; dispersion guidelines.

UV-vis
spectroscopy Refraction 1–10 µm Polymers,

ceramics

Thin transparent films can be directly
analyzed in the transmission mode. Diffuse
reflectance mode can be employed for solid
samples. Powders are diluted with a barium

sulfate standard

Pre-processing Elemental information Raw material selection.

In-processing Stability or chemical bonding changes.
Degradation or changes in materials
properties; bonding development or

disruption during fusion.

Post-processing Chemical or bonding changes Materials property evaluation; absorbance
assessment; functionality.

XPS Diffraction 1–10 nm
Polymers,
ceramics,

metals

Minimal sample preparation is required.
Powders are pressed into clean indium foils.

Solid samples are secured on the sample
holder using carbon tapes.

Pre-processing Elemental and molecular characters,
chemical bonding.

Raw material selection and blending;
addictive homogeneity.

In-processing Chemical changes in materials Degradation/changes in materials properties;
influence of local heating on materials.

Post-processing Chemical changes; molecular
bonding changes.

Degradation/changes in materials properties;
metal oxidation.

EDXS Diffraction 1–2 µm
Polymers,
ceramics,

metals

Small pieces fo solid samples are secured on
the sample stubs with carbon tapes.

Non-conductive samples are usually coated
with gold or platinum particles.

Pre-processing Elemental and molecular characters,
chemical bonding.

Dispersion guidelines; material blending and
selection assessment.

In-processing Bond regions, distribution of elements.

Influence of local heating; interfacial
interaction between layer to layer; interlayer

adhesion; Insufficient fusion or melt; flow
rate control.

Post-processing Elemental composition, atom structure,
distribution map.

Porosity or structural defect; functionality;
dispersion assessment.



Materials 2021, 14, 203 24 of 29

5. Summary and Outlook

AM technologies have brought new possibilities and contributed to transforming the
practice of biomedicines, electronics, aerospace, protective structures and the emerging 4D
printing. The rapid progress in AM technologies has provided ease of material processing
and cost and time savings for material manufacturing industries. It has also helped
mitigate industrial challenges such as worker safety in harsh environments, decreased
workforce availability and material wastage [15]. AM has thus created a niche in the
material processing world. Additive manufacturing techniques such as FDM, LOM, SLA,
SLS, SLM, Lens and inject printing have proven to be popular in the manufacturing world,
and so have been other metal additive manufacturing process such as ultrasonic and
friction stir additive manufacturing [111,112].

The development of AM technologies necessitates pertinent physical and chemical
characterisation of both employed and produced materials, for defect evaluation, quality
control and process improvement purposes. Non-destructive techniques such as ultrasonic
testing are highly capable of detecting physical defects in engineered materials [113].
Moreover, neutron diffraction has been applied for the evaluation of the microstructure
of metal parts [114]. Although spectroscopic analysis may require cutting a small portion
of the manufactured parts or sample preparation such as thinning, spectroscopy finds its
usefulness in chemical characterisation of materials. Spectroscopic analysis can be applied
for the characterisation of raw materials as well as manufactured products. The choice of
spectroscopic techniques, however, would depend on the characterisation needs as well as
the sample compatibility. For example, interference might occur if UV-vis spectroscopy was
applied to UV cured parts. Besides, the spectroscopic methods might not be suitable to in-
process monitoring for metal/alloy additive manufacturing because of strong heat-induced
light, radiation or even plasma emission.

FTIR, UV-vis and Raman spectroscopies are conventional techniques which provide
fundamental information on the functional groups of materials. EDXS provides a basic
elemental scan of elemental composition of the material. XPS is a more advanced method
for determining the elemental weight composition and oxidation states of the elements.
Although most spectroscopic techniques are surface characterisation techniques, they are
however, helpful in determining the presence of specific elements in the material, confirm-
ing the stability of materials after heat treatment during AM, compatibility of different
material components and affirming the presence of functional materials in additively
manufactured parts, such as antifungal properties in 3-D printed dentures [96].

The application of spectroscopy in AM continues to evolve and new applications
keep emerging. Resonant ultrasound spectroscopy has been employed for detecting part
to part microstructure variability between built AM components [115]. Laser-induced
breakdown spectroscopy has provided real-time quantitative multi-elemental analysis
during the manufacturing process [116,117]. Moreover, optical emission spectroscopy has
been used for detecting structural features of metal alloys [118].

While spectroscopy has been applied in process controlling of parts growth by
AM [116], the real-time sensor or program in in situ monitoring capability of spectro-
scopic techniques needs to be developed further. Consequently, the feedback mechanism
after detecting the defects in AM process-control loop is inadequate. Future work could
possibly focus on developing the in situ monitoring in spectroscopies and programming
the mechanism to give in-time feedback so that corresponding reactive actions could be
taken during the AM processes.
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