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L
owering of LDL cholesterol plasma levels with
statins reduces coronary heart disease (CHD)
event rates by up to 50% (1), implying a residual
cardiovascular risk of the same magnitude de-

spite treatment. Moreover, statins increase the risk of type
2 diabetes mellitus (T2DM), especially in patients showing
components of the metabolic syndrome (2). Hence, there is
considerable need for novel therapeutic regimens improving
CHD prevention without increasing the risk of T2DM.

HDLs are an interesting target for this objective. Most
observational studies and meta-analyses thereof demon-
strated the inverse relationship of HDL cholesterol (HDL-
C) levels with the CHD risk (3) as well as T2DM and its
vascular complications (4,5). HDL particles exert various
potentially antiatherogenic (6–8) and antidiabetogenic ac-
tivities (4). Atherosclerotic lesions were decreased or even
reversed in animals by transgenic overexpression or ap-
plication of exogenous apolipoprotein (apo) A-I, which
constitutes the most abundant protein of HDL (6). Animal
experiments also provided evidence that HDL improves
the function and survival of pancreatic b-cells and glucose
uptake into muscle, liver, and adipose tissue (4). In
humans, artificially reconstituted HDL particles reduced
coronary plaque volume (9,10) and improved glycemia
(11). In contrast to these promising results, addition of
fenofibrate, niacin, torcetrapib, or dalcetrapib to statins
failed to reduce cardiovascular risk beyond that provided
by statin treatment alone despite increasing HDL-C (12–
15). Moreover, alterations in HDL-C, either associated with
mutations in the human genome or provoked in genetic
mouse models, did not consistently translate into opposite
changes of cardiovascular risk and atherosclerotic plaque
load, respectively (16,17).

Because of these controversial data, the suitability of
HDL as a therapeutic target has been increasingly ques-
tioned. However, it is important to emphasize that inter-
ventional trials and Mendelian randomization studies
targeted HDL-C, which neither exerts nor reflects any of
the potentially antiatherogenic activities of HDL (6). In
a prototypic HDL particle, two to five molecules of apoA-I
and w100 molecules of phosphatidylcholine form an
amphipathic shell in which several molecules of unesteri-
fied cholesterol are imbedded and it surrounds a core of

cholesterol esters (18). Molar differences in the content of
these major protein and lipid constituents produce con-
siderable heterogeneity of HDL in shape, size, density, and
charge (Fig. 1). The macroheterogeneity of HDL is further
compounded by quantitatively minor proteins, lipids, or
microRNAs (19–21), many of which contribute to the po-
tentially antiatherogenic and antidiabetogenic properties
of HDL. Additional HDL microheterogeneity is a conse-
quence of various inflammatory diseases, including T2DM
or CHD, which lead to the loss of or structural modifica-
tion of typical HDL constituents or the acquisition of
atypical HDL constituents (22). Several alterations of HDL
structure and composition have been associated with
the loss of potentially vasoprotective functions, such as
stimulation of cholesterol efflux (7) and endothelium-
dependent vasodilation (8), independently of plasma HDL-
C levels. Importantly, the plasma concentrations of many
microcomponents of HDL amount to only #1 mmol/L.
Hence, they are three to four orders of magnitude lower
than those of HDL-C (usually .1 mmol/L) and one to two
orders of magnitude lower than those of apoA-I (50 mmol/L)
or HDL particles (10–20 mmol/L). Accordingly, these
microcomponents are nonrandomly distributed among
HDL subclasses and are not recovered by measurements
of HDL-C, apoA-I, or HDL subclasses.

Many laboratories worldwide currently are searching for
functional biomarkers of HDL, which are more closely
related to atherosclerosis and cardiovascular outcomes
than HDL-C. One promising approach in this direction has
been undertaken by Gordon et al. (23), who investigated
the association of HDL subclasses and their proteomes
with the presence of T2DM and obesity in adolescents and
with pulse wave velocity (PWV), a noninvasive measure of
vascular stiffness and hence a surrogate of atherosclerosis.
Among 12 HDL subfractions identified by the authors,
large HDL particles showed greatest differences between
T2DM patients and nondiabetic controls. Compared with
those in healthy controls, these subfractions were de-
prived of several proteins, including apoA-I, apoA-II, apoE,
apoM, and paraoxonase 1 (PON1) in T2DM patients. These
results in humans closely correspond to recent findings by
Kothapalli et al. (24) showing increased arterial stiffness in
apoE-deficient mice and favorable effects on arterial
elasticity exerted by apoE-containing HDL particles. In
addition to changes in protein composition, the phospho-
lipid content of large HDL subfractions showed a signifi-
cant inverse correlation with PWV. In agreement with
protective functionality, large HDL particles were enriched
in the sphingosine-1-phosphate–binding lipocalin apoM
(25) and the antioxidative enzyme PON1 (26) in non-
diabetic subjects. In contrast, cholesterol concentrations
in smaller HDL particles showed positive correlations with
PWV, suggesting adverse effects on vascular health. Of
note, HDL-C did not show any significant correlation with
PWV.
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The study has several strengths. By investigating young
patients with diabetes and controls, Gordon et al. (23)
minimized the effect of confounders complicating data
interpretation in diabetic adults. By using gel filtration
rather than ultracentrifugation, the authors eliminated
artifacts arising from protein and lipid displacement by
shear forces or high ion concentrations. It is noteworthy
that the authors retrieved several proteins, including apoM
and PON1, in large HDL particles that were previously
assigned to small HDL particles by ultracentrifugation
(27). The risk of recording false-positive results after using
the comprehensive proteomic approach was limited by the
stringent selection of those proteins for statistical analy-
ses, which were identified by previous proteomic exami-
nation of HDL.

General limitations of these explorative studies are the
cross-sectional design and the small number of patients.
As acknowledged by the authors, statistical association
does not imply causality. In this respect, it will be in-
teresting to test the effect of large HDL fractions on en-
dothelial functions, which were previously found to be
modulated by PON1 or apoM (8,25,26). The expansion to
prospective studies will require methodological advance-
ments permitting analyses of hundreds or even thousands
of samples. To this end, a refined proteomic and lipidomic
examination of large HDL particles might help to identify
proteins or lipids that can be specifically targeted by high-
throughput technologies such as immunoassays or single-
reaction monitoring mass spectrometry. It also should be
emphasized that the enzymatic assay used by the authors,
which quantifies choline rather than phospholipids, nei-
ther discriminates between phosphatidylcholines, lyso-
phoshatidylcholines, plasmalogens, and sphingomyelins
nor records noncholine phospholipids such as phosphati-

dylethanolamines, phosphatidylserines, and sphingosine-1-
phosphate. Another limitation of the study is that the mass
spectrometry approach measured only relative concen-
trations. Interestingly, however, this semiquantitative ap-
proach unraveled reduced peptide signals in HDL from
T2DM patients. It is possible that posttranslational protein
modifications altered the mass of peptides and thereby
prevented their recording by the assigned molecular mass.
This explanation is congruent with previous findings
showing enhanced glycation, nitration, chlorination, sul-
foxidation, or carbamylation in HDL from diabetic subjects
(22). Such modifications may offer new opportunities for
use as biomarkers (7,8,22).

In conclusion, the study by Gordon et al. (23) provides
new insights into the molecular heterogeneity of HDL and
its association with T2DM and atherosclerosis. Apart from
reproducing and extending these findings in larger obser-
vational studies, it will be important to resolve the struc-
ture, function, and metabolism of large HDL fractions.
Further structure–function studies may help to select
molecules or modifications within HDL, which can be used
as biomarkers for identification, treatment stratification,
and monitoring of patients at increased risk for cardio-
vascular diseases or diabetes mellitus.
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