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Abstract

Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem
cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue
homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage
of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental
system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this
review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation
that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal
muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the
assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
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Background
Several theories of aging have been proposed: cellular sen-
escence [1], accumulation of mutations [2], antagonistic
pleiotropy [3], disposable soma [4], deteriorated proteosta-
sis [5], or telomere attrition [6]. While relevant and valid in
many instances, each of these theories alone does not
explain the rapid and robust rejuvenation of old tissues ob-
served in heterochronic parabioses and blood exchange
studies [7–11]. An alternative theory that fits both the aging
and the rejuvenation data [12] suggests that aging is caused
primarily by the functional (and notably, experimentally re-
versible) inactivation of resident stem cells, which precipi-
tates deteriorated tissue maintenance and repair and leads
to the loss of organ homeostasis [13]. The damaged and
unrepaired tissues suffer changes in their biochemistry, in-
cluding the molecular crosstalk with resident stem cells,
which further inhibits productive, regenerative responses.
The inflammatory and fibrotic secretome can then propa-
gate systemically, affecting the entire organism [10, 14–23].
This decline in homeostatic functional integrity causes age-

associated diseases, the degenerative and inflammatory dis-
orders of the muscle, brain, liver, and bone, diminished im-
mune responses, and increased susceptibility to infections,
cancers, cardiovascular diseases, and metabolic diseases
(e.g., type II diabetes) [24]. Figure 1 illustrates the above-
introduced theory of aging.
Skeletal muscle (note that “muscle” does not include

smooth and cardiac muscle in this review) accounts for al-
most 40% of the total adult human body mass. This tissue
is indispensable for vital functions such as respiration, loco-
motion, and voluntary movements and is among the most
age-sensitive in mammals. Aging muscle loses its ability to
adapt its morphological, biochemical, biophysical, and mo-
lecular properties to loads and use. With advanced age, in-
terventions such as exercise do not efficiently reverse the
rapid loss of muscle mass resulting from disuse atrophy
and systemic diseases. Numerous age-associated changes
have been investigated: fiber atrophy [25–27], increase in
apoptosis [28], DNA damage [29, 30], heterochromatin
marks [31], reduced protein synthesis [32, 33], autophagic
degradation [34], lysosomal dysfunction characterized by
lipofuscin accumulation [35, 36], accumulation of advanced
glycation end-products [37], insoluble polyubiquitylated
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proteins [38], changes in microRNA expression [39], and
altered nuclear shape and spatial disorganization of nuclei
[40]. These age-specific parameters are not unique to
muscle and manifest more generally, in other organs and
tissues, such as the immune system, CNS, bone, skin, and
liver [41, 42]. Similarly, the decline in numbers and func-
tional activation seen with muscle satellite cells (SCs) are
also seen in other tissues such as blood, brain, bone, and
liver [41, 42]. The age-specific changes in the resident stem
cell pools diminish the regenerative potential that is needed
to compensate for tissue loss due to attrition or injury. As
typical of tissue aging, the aged muscle becomes infiltrated
by adipose tissue and fibrosis, shows decreased capillariza-
tion, and is characterized by chronic inflammation.
Altogether, these changes result in a progressive reduction
in myofiber size and number that collectively are seen as a
progressive decline in muscle mass, cross-sectional area,
and strength, a phenomenon known as sarcopenia.
Muscle is relatively accessible for ectopic gene expres-

sion, given that it is a non-vital tissue with a good ability to
uptake gene constructs after single or repeated injections
into the tissue or through systemic delivery. Using screens
for native gene expression and gene reporters, the markers
and biochemical regulators of SCs have been identified and
characterized [43]. Additional methods, including tissue
histology, biochemistry, cell isolation and characterization
by function, and gene expression-omics studies, have
allowed decrypting age-specific SCs properties, changes in
differentiated myofibers, and the dynamics between SCs
and their muscle niches. The SCs niche controls the main-
tenance and breakage of quiescence, decisions to self-

renew or differentiate, and asymmetric versus symmetric
divisions. In SCs, chromatin adopts bivalent states to facili-
tate rapid differentiation in response to external factors,
and metabolism adapts to support particular needs. Stem
cell niche control of SCs is age-specific and is generally
conserved between adult tissue stem cells [41, 42].
This review summarizes current approaches that used

skeletal muscle for improving our understanding of the
crosstalk between adult stem cells and their niches,
which, when altered by aging, leads to reduced tissue
maintenance and repair. We also discuss how tissue
rejuvenation might be pursued. We further elaborate on
differences in the experimental design in the field of
aging and rejuvenation that might have led to conflicting
results, and we point out critical steps for ensuring
robust experimental outcomes.

Life-long stem cell persistence, age-specific dysfunction,
and loss of heterogeneity
Muscle is capable of active repair in response to daily wear
and tear, intense exercises, or injuries. Unfortunately, there
is a noticeable decline in muscle regeneration and per-
formance after 40 years, and this tissue becomes typically
dysfunctional after the seventh decade, characterized by se-
vere loss of muscle mass or sarcopenia [44–48]. Muscle re-
generation relies on the adult muscle stem cells, also called
satellite cells (SCs) due to their location around the periph-
ery of the sarcolemma, under the basal lamina of each ma-
ture myofiber. Decades of studies have provided abundant
information on the SC markers, tissue location, signaling

Fig. 1 Fundamental theory of progressive tissue aging that fits with the phenomena of rapid experimental rejuvenation. Increasing with chronological
age, damage to differentiated soma – tissue niches of stem cells blocks regenerative responses through deregulation of cell-niche crosstalks. With
worsened regenerations, tissues become more damaged (increase in inflammation and fibrosis) and their secretome changes thereby altering the
composition of systemic milieu, affecting tissues at a distance, and further inhibiting the capacity of adult stem cells to maintain and repair the tissues

Etienne et al. Skeletal Muscle            (2020) 10:4 Page 2 of 16



pathways that control their function, and the age-imposed
changes in any of the above [7, 8, 49–53].
The inherent heterogeneity of the SC pool might have

led to conflicting results in the aging field because different
groups employ different approaches for SCs identification
and isolation (summarized in Fig. 2), thus analyzing differ-
ent subsets of the heterogeneous population which have
different properties. Historically, SCs were first identified
and studied in muscle cryosection by electron microscopy
[54] and are currently studied through immuno-
fluorescence imaging. Since their first observation in the
tibialis anticus (anterior) muscle of the frog [54], several
markers have allowed SCs identification in many animals:
human, mouse, monkey, pig, chick, salamander, frog,
and zebrafish [55–57]. These adult stem cell markers
include Barx2 [58], c-Met [59], calcitonin receptor [60],
caveolae-forming protein caveolin 1 [61], CD34 [51,
62], CD56 [63, 64], CXCR4 [65, 66], Emerin [61],
Lamin A/C [40], M-Cadherin [51], NCAM [67], Notch1
[67], VCAM1 [68], Pax3 [69], syndecan3 [70], synde-
can4 [67, 70], and Sca1 [66], but by far, Pax7 [71] is the
most widely used and evolutionarily conserved SC
marker for fetal and adult SCs [72].
Most of the studies investigating aged SCs properties

(e.g., proliferation and differentiation capacities) use
fluorescence-activated cell sorting (FACS) on the broadly
expressed CXCR4, CD34, or additional myogenic markers
(e.g., M-Cadherin, alpha7-integrin, syndecan4, VCAM1
and ITGB1), while negatively selecting against CD45 leu-
kocytes, CD31 endothelial cells, and Sca1-expressing cells.
Cell sorting can be damaging for cell viability and function
and, more importantly, enriches for a sub-population of

SCs, both focusing on that population and yet limiting the
study only to that subset [53, 66, 68, 73–75]. Alternative
methods, such as density gradient purification, requires
multiple centrifugations and also can compromise cell via-
bility and function and require high starting cell numbers,
thus calling for experimental injury by myotoxins or
cardiotoxin, or expansion of the cells in culture, thus
allowing further deviation from in vivo properties and
gene expression [76].
Methods that do not limit the study to a subset consist

of chopping the muscle into small pieces and, after mesh
filtration and/or pre-plating on plastic culture dishes, ex-
pansion of the fewer adherent cells in Ham’s F-10 Nutri-
ent Mixture (F-10), 20% FBS, 2.5–5 ng/ml bFGF [52, 77].
While in this bulk preparation, no sub-population is ex-
cluded, SCs are contaminated with other cells, including
fibroblasts, endothelial cells, and macrophages. Such con-
tamination with irrelevant cell types may be minimized by
the culture of single myofiber explants or two-step enzym-
atic dissociation of myofibers with their associated SCs.
The type of enzyme depends on the species and digestion
methods [78–80], but after removal of the more adherent
fibroblasts (for instance, by pre-plating on uncoated tissue
culture dishes), the SC myogenic pool reaches 95–99% of
purity and the stem cell properties, gene expression, and
heterogeneity are preserved [78, 81–87].
Within the muscle, around 85% of SCs are located in

proximity to blood vessels [88], and these cells display
heterogeneities of metabolism, the ability for long-term
renewal versus differentiation, and expression of Pax7 or
Myf5. Quiescent SCs exist as a continuum from Pax7low

cells that are primed for cell-cycle entry to Pax7high cells

Fig. 2 Variation in isolation of heterogeneous tissue stem cells. Illustrated are the different methods of satellite cell isolation, which all have been
used in studies of muscle aging and rejuvenation. Considering that satellite cells (and tissue stem cells in general) are a heterogeneous
population, enrichments for different sub-populations produce results and conclusions that might fail to apply broadly to the entire stem cell
pool and might differ from lab to lab
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that are in deeper state of quiescence [89]. The number
of SCs varies by muscle types, and overall declines with
age [90–95], although whether this decline is slight or
severe is a matter of some debate [10, 14, 51, 52, 96–98].
The hindlimb muscles of newborn and juvenile rodents
contain a mix of SCs and their more differentiated pro-
geny: proliferating myoblasts that are numerous, sum-
ming to around 30% of total sublaminar myonuclei, and
supporting the rapid growth of juvenile muscle. When a
more quiescent adult stem cell pool is established in 2-
month-old mice [99–101], the SCs represent less than
5% of myofiber sublaminar nuclei and remain relatively
constant in adulthood. Adult muscle is hence composed
of postmitotic multinucleated myofibers and their asso-
ciated non-dividing, quiescent SCs. By a geriatric 30
months of age, SCs represent 2.5% of the total muscle
cells [71, 102, 103]. Yet this decline is not drastic com-
pared to adult or old mice when normalized to muscle
mass, which has also declined by such an advanced age
[10, 14, 51]. Another important variable to account for
when determining the number of SCs is the muscle type.
Generally, adult slow-twitch myofibers (type I) such as
that predominate in the soleus are generally associated
with two- to fourfold higher SC numbers than fast-
twitch, type IIa and IIb myofibers that predominate in
the tibialis anterior or EDL [104].
SCs are critically needed for the regeneration of injured

muscle fibers and, to a small extent, they participate in the
process of overload hypertrophy, for example when
muscle fibers grow through protein synthesis and become
bigger there might be some SC proliferation to populate
the enlarged fiber mass [105–107]. Conversely, muscle fi-
brosis and atrophy can be induced by SC depletion [108–
111]. Cellular homeostasis is tightly regulated in muscle,
as evidenced from the restoration of sufficient quiescent
SCs after a local tissue injury, to support future needs of
repair [112, 113]. Rather than a significant decline in the
total number with age, most of the data support a dra-
matic lack of activation of muscle stem cells after injury
and a concomitant lack in the formation of progenitors
that are needed for repair [7, 8, 114, 115]. This lack of
myogenic cells is in part due to reduced asymmetric divi-
sions among myogenic stem and progenitor cells and is
also linked to diminished SC self-renewal [53, 116–118].

Age-specific changes in key signaling pathways
Signaling pathways play essential roles in SC mainten-
ance and adult myogenesis, which largely recapitulates
the cellular and molecular regulations that take place
during embryonic myogenesis. Notch signaling plays a
critical role by regulating the quiescence and prolifera-
tion decisions of SCs, in cooperation with syndecan3,
and in influencing asymmetric cell division through an-
tagonism with the Wnt/beta-catenin signaling. Notably,

the age-specific role of Notch and Wnt interplay, as well
as that of the TGF-beta, Jak/Stat, etc. pathways that was
deciphered in muscle, is conserved in the brain, blood,
bone, gut, and other tissues [119–122].
The Notch ligand Delta1 is upregulated by damaged

myofibers and provides the temporal and positional cues
for Notch activation in quiescent SCs [7, 49, 51]. Notch
signaling promotes myoblast proliferation and inhibits
their differentiation [49, 51, 123–126] in part through an-
tagonism with Wnt signaling [50]. Notch also contributes
to return of Pax7+MyoD- cells to quiescence [127].
Muscle regeneration relies on the tight balance between
self-renewal and myogenic commitment. With age, SCs
undergo excessive commitment and precocious differenti-
ation [52], revealing a dysfunction in the ability to undergo
proper asymmetric division. Delta expression and hence
Notch activation is lacking in aged SCs; thus, very few SCs
break quiescence or engage in tissue repair [51]. In
addition, aged SCs progressively express a high level of
JAK/STAT signaling targets [53, 118], have elevated TGF-
beta/pSmad2,3 [10], and perturbed p38 signaling [116,
117, 128–131], all of which promote myogenic differenti-
ation at the expense of SC self-renewal and myoblast
expansion. Similarly, the Wnt/beta-catenin pathway pro-
motes the formation of fusion-competent myoblasts and
myotubes, but also inhibiting the expansion of SCs when
Wnt becomes excessive with age [8, 50].

Tissue rejuvenation
Muscle has served as an excellent model for assessing tissue
rejuvenation because it undergoes clear-cut and well-
described physiological, histological cellular and molecular
changes with age. The summary of approaches for muscle
rejuvenation is outlined in Fig. 3. In addition, adult myo-
genesis takes place throughout mammalian life and is well-
characterized. At the beginning of muscle regeneration
soon after the injury, small diameter myofibers with
centrally located myonuclei are produced by the fusion of
myoblasts. They can be distinguished histologically by
morphology and expression of the embryonic/developmen-
tal isoforms of myosin heavy chain (eMyHC). With time
(weeks), these myofibers increase in size and the myonuclei
migrate to the periphery, so that regenerated muscles
appear indistinguishable from undamaged muscles. A
hallmark of the aging muscle is a decline in the for-
mation of eMyHC+ myofibers after injury, persistence
of inflammatory cells and cytokines, and expansion of
fibrosis [132, 133].
An alternative method of assaying aging and rejuven-

ation consists of measuring the size of the new myofibers
that repaired the injury, assuming that bigger myofibers
are better. However, if the injury is successfully repaired
by small muscle myofibers, there could have been pro-
longed myogenic proliferation at the expense of fusion or

Etienne et al. Skeletal Muscle            (2020) 10:4 Page 4 of 16



differentiation, and most myofibers eventually increase
their size by fusing with each other and/or through pro-
tein synthesis and hypertrophy. The early time points after
injury (5–7 days) serve best for assaying eMYHC+ cen-
trally nucleated myofibers, for after 2 weeks, eMyHC ex-
pression is lost and regenerated myofibers begin to look
similar to non-injured ones. However, for assaying the
age-specific changes in muscle physiology and function,
contractility, and strength, longer time points (2–4 weeks)
are clearly preferable [52, 134].
The myogenic capacity of freshly isolated SCs can also

be assayed in vitro by measuring the numbers of myo-
blast clusters that are produced in hours to days after
derivation from the muscle and by the numbers and
multi-nuclearity of myotubes that differentiate from
those isolated myoblasts. In such assays, young SCs or
myofibers with their associated SCs are typically more
myogenic than their old counterparts. The age-specific
changes in the clonogenic capacity have been studied in
the muscle and are typical for other tissues such as
hematopoietic, liver, bone, brain hippocampus, and skin,
underscoring the significance of muscle as a superb ex-
perimental system in aging research. Linked to the clo-
nogenic capacity and also generally shared by stem cells
from different tissues is the age-specific transplantation
efficiency of SCs [53, 62, 77, 95, 117, 135–140]. Interest-
ingly, early muscle transplantation studies suggest that
the age of the host rather than the age of the SCs seem
to influence the success in regeneration [141].
Studying the above-described parameters in young,

old, and experimentally rejuvenated muscle yielded a
number of novel paradigms that broadly apply to tissue
aging and rejuvenation [41, 42]. For example, experi-
ments that allow sharing young donor constituents

(blood, secreted molecules, and organs), with an old
host, were shown to rejuvenate myogenicity and to re-
store the youthful Delta/Notch signaling after injury [8,
14, 142–144], but also rejuvenate the brain, cognition,
liver, skin, bone, etc. Clinically relevant attempts to reju-
venate the circulatory niche of muscle stem cells include
neutralization of Wnt and TGF-β in old mice by inhibiting
the age-elevated ligand molecules and/or their signaling
pathways [93, 145, 146]. Activation of FGF2-p38alpha/
beta MAPK, ectopic oxytocin/MAPK, interleukin33 (IL33)
supplementation, or IL6-JAK/STAT3 pathways, e.g., the
determinants which decline with age, have also been
shown to rejuvenate myogenic responses [147]. In a dual-
prong approach, oxytocin (a signaling peptide that de-
clines with age) was combined with a low dose of an in-
hibitor of TGF-beta/pSmad (signaling that increases with
age). Emphasizing cross-tissue conservation of age-
associated changes, this defined pharmacology not only
enhanced muscle repair but also improved cognitive func-
tion through a probable reduction of neuroinflammation
and reduced liver adiposity and fibrosis in old mice [148].
GDF11, once suggested as pro-regenerative youthful fac-
tor [142], was found to actually inhibit muscle regener-
ation [149] possibly through SCs inhibition [145]. The
inhibitory role of GDF11 is consistent with the phenotypes
of GDF11 gene knockout mice [146, 150] and the fact that
this TGF-β family member activates pSmad 2, 3 signaling,
which is already elevated in the old and well known to
block cell proliferation in general and specifically of SCs
[147, 149, 151]). A protein very similar to GDF11, myosta-
tin (aka, GDF8) has a known inhibitory role for SCs prolif-
eration and muscle growth; accordingly, its antagonist
follistatin is pro-regenerative [152–154]. Like other TGF-β
family proteins, GDF11 is pro-angiogenic and it might

Fig. 3 Summary of the approaches for tissue, systemic and stem cell rejuvenation. Multiple experimental approaches have been used (typically, in
mice) for tissue rejuvenation and/or systemic rejuvenation; these include ablation of senescent cells and re-calibration of key signaling pathways
that are needed for productive stem cell responses. To test the success in experimental rejuvenation, 1–4 approaches are typically applied, and
skeletal muscle is well-suited for assaying each one, as described in the text
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support muscle regeneration through increased blood
vessel formation, albeit at risk of promoting oncogen-
esis, as GDF11 has a high association with human
cancers [155–158].

The age-associated biophysical and biochemical changes
in the stem cell niche
The general directions of experimental rejuvenation are
based on the fact that maintenance and repair of mamma-
lian tissues is regulated by systemic and local cell signaling
molecules [41, 42]. Skeletal muscle is a good example of
the multi-level endocrine and local tissue control of
homeostatic maintenance and regeneration. Muscle is
highly vascularized, and the molecular composition of the
systemic milieu has a profound influence on the mainten-
ance and repair of this tissue. Heterochronic parabiosis
and blood exchange (apheresis) studies uncovered the
phenomenon of rapid restoration of regeneration in old
muscle, through exposure to a young organism (in parabi-
osis) or just young blood (apheresis). These experiments
pointed out the crucial age-specific roles for the SC niche,
of interstitial cells, blood vessels, extracellular matrix pro-
teins with their storage of secreted factors, as well as the
systemic environment (circulation) for both the mainten-
ance of SCs in the quiescent state and their activation for
proliferation, differentiation, and tissue repair. In confirm-
ation of the multi-tissue conservation of the paradigms
uncovered in aged muscle, rejuvenation of the CNS, brain,
bone, kidneys, liver, etc. have also been demonstrated
through blood heterochronicity [41, 42]. Moreover, many
key age-specific biophysical and biochemical changes that
were established through studies of muscle apply more
generally to these other tissues and clarify the overall age-
imposed increases in fibrosis and inflammation.
Through its components (fibrillar proteins, growth

factors, glycoproteins, chemokines, cytokines), the extra-
cellular matrix (ECM) presents the biochemical and
biophysical cues that home the SCs to specific locations of
the myofiber and control the cell-intrinsic polarity and
cell-fate decisions, which are essential for SC functionality
[127, 159–161]. Laminin, the primary protein of the ECM,
along with other glycoproteins such as type IV collagen,
perlecan, entactin (nidogen), and fibronectin, support SCs
proliferation [128–130, 162]. Proteoglycans act as recep-
tors for precursor forms of growth factors (HGF, bFGF,
EGF, IGF-I, IGF-II), which are required for activation of
SCs in response to muscle damage [163, 164]. In return,
SCs express the integrin receptors that interact with the
basal lamina to regulate appropriate ECM deposition from
fibroblasts and to prevent fibrosis [110, 165]. With age,
muscle displays lower levels of elastin and fibronectin,
which are cleaved and increasingly accumulate in the sur-
rounding connective tissue, leading to compromised
muscle maintenance and degradation of the ECM through

tissue necrosis [166]. The age-imposed misprocessing of
ECM proteins leads to the accumulation of toxic-by-
products and altered properties of the basal lamina. Com-
promised interaction with the ECM also leads to weaker
adhesion of SCs to their associated myofibers, and detach-
ment or a perception of detachment leads to a pro-
grammed cell death called anoikis [130].
ECM integrity and remodeling depends on the dynamic

balance between remodeling enzymes (matrix metallopro-
teinases, MMPs) and their inhibitors (tissue inhibitors of
metalloproteinases, TIMPs) [167, 168]. During muscle re-
generation, MMP2 secreted by SCs and MMP9 produced
by IL6 secreting leukocytes [169] degrade type IV colla-
gen, among other constituents of the ECM, thereby allow-
ing recruitment of activated SCs to the site of muscle
injury [170]. In addition, MMP-9 converts the matrix-
tethered latent TGF-β complex to an active form [171]
and subsequently stimulates matrix deposition [172]. The
persistent inflammation associated with aging leads to al-
terations in the composition of the ECM, where atypical
types of collagen are seen along with a shift toward colla-
gen IV and reduced collagen VI [173, 174]). The aged
ECM retains fewer glycoproteins and is characterized by
infiltration of adipose and fibrotic tissues [8, 87]. Together,
these age-imposed processes ultimately drive an increase
in fibrosis and matrix rigidity, increasing the elastic modu-
lus to ∼ 418 kPa instead of the productive ∼ 12 kPa of the
young muscle [72]. Aged single myofibers also have an in-
creased physical stiffness that correlates with the increased
crosslinking of their collagens [175, 176], and when cul-
tured on hydrogels that mimic this stiffness, adult primary
myoblasts show increased differentiation at the expense of
proliferation [175]. The deposition of extra basal lamina
into the SC-myofiber interspace interferes with the intim-
ate association between SC and their myofibers [103]. This
expulsion from the niche changes multiple molecular cues
that regulate the asymmetry of SC divisions and their cell-
fate, and it might cause the disparity in young versus old
SC cell counts between bulk fiber preparations as opposed
to single fiber studies [8]. In addition, with age, the ability
of the ECM to function as a reservoir for growth factors
and their conversion to active forms become altered
[174]. Age-imposed changes in the ECM composition
perturb regeneration through inadequate support of
muscle fibers and disorganized scaffold orientation
[177–179]. The p38α/β MAPK axis was shown to play
an essential role in muscle mechanobiology [117,
130], and age-imposed changes in muscle tensegrity
contribute to the impaired function of SCs [149, 175,
176, 180]. The main age-specific changes in muscle
ECM are depicted in Fig. 4.
In concert with the studies in muscle, work with other

cell types (including mammary epithelial, fibroblasts and
mesenchymal stem cells) indicates significance of age-
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specific changes in ECM for loss of stem cell properties
and accumulation of senescent cells and suggests that
interactions between integrin-focal adhesion complexes
and the actin-myosin network broadly help cells to sense
matrix elasticity, which in turn influences cell behavior
and fate [181–186].

Age-specific changes in the epigenome
The environment largely influences the epigenomic pro-
gram (i.e., post-translational modifications), which deter-
mines the fate of activated adult stem cells through the
expression or repression of specific genes. Studies of muscle
have greatly contributed to the broad understanding of age-
associated epigenetic changes in stem cells. Namely, the
changes that were observed between young versus old SCs
and were correlated with the global transcriptome of these
stem cells [53, 116, 187] have been extrapolated to other
tissues and their stem cells, such as hematopoietic [188],
heart [188], and brain [188, 189].
Notch signaling might contribute to the age-imposed

changes in the SC epigenome through positive regulation
of Bmi1 [96, 190, 191], a component of the polycomb re-
pressive complex 1 (PRC1), in coordination with enhancer
of zeste homolog 2 (Ezh2), a component of PRC2.

Together, they repress the expression of several genes
such as p16INK4a through maintenance of H3K27me3
marks [192, 193]. With age, the redistribution of PRC1
and PRC2 may activate SCs and inhibit their self-renewal,
driving a cellular senescence phenotype associated with
aged SCs [194–197]. Evidence of this pathway comes from
the observation that deletion of Bmi1 in young SCs pre-
vents their active participation in muscle regeneration
[197]. Similarly, elevated with age TGF-beta and dimin-
ished MAPK signaling activate the expression of CDK in-
hibitors and promote cell cycle arrest in muscle SCs and
in neural precursor cells [10, 84, 198].
Some studies on epigenetic and transcriptional profiling

in SCs suggest that the overall permissive state (e.g.,
H3K4me3) is age unrelated. However, the dominant and
repressive marks (e.g., H3K27me3) accumulate and spread
with age [187], probably reflecting the decrease in prolifer-
ative capacity and the inability of SC to self-renew as these
repressive epigenetic marks are transmitted to daughter
cells [194–197]. An age-imposed loss of epigenetic inacti-
vation of CDK inhibitors loci takes place in SCs, resulting
in permissiveness of CDK expression and a lack of myo-
genic proliferation [84, 96]. Aged activated SCs also display
an altered epigenetic stress response [199]. Interestingly,

Fig. 4 Connection between biochemical and biophysical age-associated tissue changes are exemplified in skeletal muscle. With age, composition
of ECM becomes altered through changes in FAPs, persistent damage, fibrosis, and inflammation; these age-associated changes make myofibers
stiffer and diminish the capacity of ECM for proper storage and activation of growth factors
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the experimental activation of FGF2/MAPK reverses the
age-imposed epigenetic anti-proliferative signature to a
younger, closed chromatin state [84, 200].
In this regard, there is an observation of a very slow

and gradual SC exhaustion though proliferation that
might be relevant for old people, particularly those who
constantly damage muscle by extremely rigorous exer-
cise [93, 201]. However, in mice, virtually, no SCs in-
corporate BrdU in uninjured muscle and are mitotically
quiescent in the young (2 months or older) or the old
animals [62, 202, 203]. Nevertheless, even in the absence
of SC exhaustion, mouse muscle ages (much faster than
that of humans) with pronounced lack of SC responses
and sarcopenia. Moreover, all examined CDK inhibitors
(p15, p16, p21, p27) become elevated in aged SCs, as
compared to young, and there is an age-imposed epigen-
etic permissiveness of the p16INK4a and p21CIP1 loci in
old SCs after injury [84]. With age, there is a loss of the
PRC1-mediated repressive H2A-lysine 119 ubiquitina-
tion mark, which leads to de-repression of the p16INK4a

locus and SC inactivation, a loss of myogenic fate (ab-
sence of MyoD), and the acquisition of a senescent cell
fate that is marked by elevated gamma-H2A histone
family member X (γH2AX) foci and secretion of the
“senescence-associated secretory phenotype” [96].
Generally speaking, the lack of activation versus too

much activation (e.g., proliferative exhaustion are the
general paradigms under investigation in the broad area
of tissue stem cell aging) and the understanding of these
phenomena in muscle resonates well with the work in
the gut, skin, blood, and brain [119, 204–208].

Inflammation
As true in other tissues that undergo life-long remodel-
ing (gut, bone, blood, liver, skin, etc. [209–211]), muscle
regeneration and inflammation coincide in space and
time [212]. The study of muscle provided insights into
the process of the age-specific decline in tissue mainten-
ance and the dominance of inflammation. To some de-
gree, inflammation is useful for tissue repair: the
inflammatory response, mostly by myeloid cells, removes
the degenerating debris, and the temporary scar allows
the correct orientation and deposition of new ECM by
muscle-resident fibroblasts, which also provide pro-
differentiation signals to myoblasts. Some inflammatory
cytokines and myokines are produced and promote
myogenesis, activate endothelial cells for angiogenesis,
and attract new nerve projections [88, 213–217].
Numerous immune cells infiltrate damaged muscle,

with neutrophils being the first responders to the injured
site at 1–6 h. These secrete pro-inflammatory molecules
such as cytokines (TNF-alpha, IL6), chemokines (CCL2
and 17), and growth factors (FGF, HGF, IGF1; VEGF,
TNF-beta) that create a chemo-attractive environment

to monocytes and macrophages. M1 phagocytic CD68+/
CD163− macrophages arrive at 2 days post-injury and
are replaced by M2 non-phagocytic CD68−/CD163+
macrophages at 4 days post-injury [218, 219]. This switch in
the macrophage populations has been described as critical
for stopping inflammation and enabling both the differenti-
ation and fusion of myoblasts [220, 221]. With aging, the
M1 profile dominates over M2 during muscle repair [222,
223], which is in part due to the elevation of macrophage-
produced osteopontin, which in turn induces a battery of in-
flammatory cytokines that inhibit myogenesis [87] and
phagocytic activity. The M1 to M2 switch that was found in
studies of skeletal muscle is a general trend with aging and
is responsible to diminished repair and increased chronic in-
flammation in the joints, lung, liver, the gastrointestinal
track, and other tissues. Recently, another class of immune
cells, T regulatory cells (Tregs), has gained interest due to
their ability to dampen the inflammatory response and pro-
mote tissue repair [224] in the muscle, heart, skin, kidney,
and brain [225–229]. In aged muscle, the lack of local secre-
tion of IL33, probably by the fibro-adipogenic progenitor
(FAP)-like cells (the major source of this inflammatory cyto-
kine), impairs the attraction of Tregs to the injury site, and
results in a decline of regenerative capacity [230].
Age-elevated inflammation negatively impacts not only

SCs [112–114], but also other cell types, mostly stromal
cells, such as blood vessel associated mesoangioblasts,
mesenchymal stem cells, FAPs, ALDH+/CD34- cells,
CD133+ cells, and pericytes [231–238]. Most of these have
been studied in age-comparative ways in muscle [239–
241] and are clearly important for most mammalian tis-
sues. Of particular interest, FAPs constitute a non-
myogenic population essential for muscle regeneration.
Undifferentiated quiescent FAPs in the interstitium of
healthy young muscle have positive effects on SCs activa-
tion and the proliferation of myoblasts, potentially via se-
cretion of IL6, IGF1, Wnt1, Wnt3a, and Wnt5a [238, 242].
However, excessive activation of FAPs following injury in
aged muscle induces their differentiation into adipocytes
and into the myofibroblasts that are the main secretors of
type I collagen and contribute to progressive fibrosis. Fi-
brosis is further promoted in old muscle through activa-
tion of adipocytes when eosinophil production of IL4
declines [243], and the cytokine profile of macrophages
becomes pro-inflammatory [244].

Selecting a specific sample size in studies of aging
Considering recent focus on scientific rigor and the large
variety of approaches in muscle aging research, this review
will end with a section on one key scientific parameter—
sample size—providing out perspective on choosing the
optimal numbers of experimental animals. Researchers in-
vestigating aging and rejuvenation of muscle and other tis-
sues typically experiment on 5–6 male mice per cohort,
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and historically, these numbers yielded statistically rele-
vant, robust data [7, 8, 51, 115]. However, some report as
many as 10–15 animals per cohort [109, 142]. So how
many animals are really needed?
The size and the composition of the cohorts are crucial

as they determine the relevance of the observed effects,
while attempting to comply with ethical considerations
and limitation in the use of resources. The National Re-
search Council’s Guide for the Care and Use of Laboratory
Animals guidelines state that the number of live animals
used for research should be minimized. The tenets of eth-
ical animal use are described as “the three R’s”: replace-
ment, refinement, and reduction [245]. The reduction
principle aims to maximize the amount of data collected
from the fewest number of animals practical.
Due to the law of diminishing returns [246], having an

unnecessarily large sample size results in negligible gains
in statistical significance that do not justify extra costs, an-
imals, or time. Inversely, selecting too small a sample size
runs the risk of the experiment having inadequate power
for detecting significant effects, which also renders the fi-
nancial, animal, and time resources wasted [246–250].
Ideally, the sample size should be sufficiently large to pro-
vide the experiment with adequate statistical power, while
at the same time minimizing the number of animals
needed to achieve statistically significant results. The
method used for accurate determination of the sample
size primarily depends on whether there are existing data
to inform a prediction of the treatment effect size, ES, and
the population standard deviation, σ. Statistical power
analysis is the most robust method for determining sam-
ple size, and it is used whenever at least some population
statistics are available. When no prior statistics are avail-
able to do a power analysis, a pilot study is done using a
resource equation to determine the number of animals
needed to detect any effect of an exploratory condition.
This scenario could be minimized by searching the litera-
ture for population data that could be used for a power
analysis. The key aspects of the power analysis and re-
source equation are briefly outlined below.
Generally speaking, when a normally distributed popula-

tion mean and standard deviation can be reasonably esti-
mated, and it can be assumed that the experimental data
will be normally distributed, then statistical power analysis
is used to determine the minimum number of animals n
per cohort. In such analysis, the null hypothesis H0 and
the alternative hypothesis HA are defined as follows:

H0 : X ¼ μ

HA : X≠μ

where μ is the presumed population mean, and X is
the sample mean. Rejecting the null hypothesis when the
sample mean is not different from the population mean

results in a type I error and occurs with probability α.
Failing to reject the null hypothesis when the sample
mean truly differs from the population mean results in a
type II error and happens with probability β. This is
summarized [247] and depicted in Table 1.
The power of a hypothesis test is the probability of

rejecting H0 when it is indeed false. This is simply the
complementary probability to β or making a type II
error:

Power ¼ 1−β

The probability β, and therefore the power, depends
on α, the sidedness of the test (one-tailed or two-tailed),
the effect size ES of the treatment, σ, and the sample size
n. From this relationship, one solves for the minimum n
needed to detect a desired ES with a test having a de-
sired confidence level and statistical power. The inter-
play between ES, α, β and other parameters is visualized
in Fig. 5 [247–251].
In general, as the desired confidence level for the test

increases, the probability of a type I error decreases, but
at the expense of power. Decreases in power and/or con-
fidence can be mitigated by a tight distribution of the
data (low σ), a large ES, or by increasing n (which has
the effect of lowering σ). However, in adhering to the re-
duction principle, n should be minimized by some com-
bination of decreasing our confidence, decreasing the
power, or increasing the minimum ES detectable by the
test. Typical acceptable values for α are 0.05 or lower,
and typical values for power are 0.8 or 0.9.
There are numerous online calculators to determine

sample size such as:
https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
https://www2.ccrb.cuhk.edu.hk/stat/mean/osm_equiva-

lence.htm
Finally, to ensure the success of the experiment, the

researcher must account for the expected attrition rate
A (in particular working with old mice, some may die
from “old age” during the experiment) and calculate the
corrected sample size n′ [11]:

n
0 ¼ n

1−A

For exploratory treatments where there is no reliable a
priori knowledge to inform about the effect size or
standard deviation, a power analysis to determine sample
size is not feasible. A pilot study can be done, not to
measure actual effect size, but rather to determine if

Table 1 Outcome space of a hypothesis test

X ¼ μ X≠μ

Reject H0 Type I error Correct conclusion

Accept H0 Correct conclusion Type II error
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there is any detectable difference between control and
experimental groups. To adhere to the reduction
principle, the number of animals should still be mini-
mized in pilot studies, but a sufficiently large sample size
is also needed for adequate detection power. A resource
equation can be used to infer the smallest sample size
that is nevertheless adequate to detect variability be-
tween groups [249–253].
An experiment with sample size N testing for the ef-

fects of a treatment can have at most N − 1 degrees of
freedom (df) or points allowing for variability [252]. The
resource equation breaks this variability into three com-
ponents: blocking B = b − 1, treatment T = t − 1, and
error E dfs. Blocking refers to the separation of cohorts
into b groups based on environmental factors (or, sex,
age, etc.). T refers to the number of questions t being
asked. E is used as an estimation of the variance within
treatment groups. The total (N − 1) df is equal to the
sum of the dfs of the three variability components:

Bþ T þ E ¼ N � 1

For a good estimate of the variance, E must be greater
than 10, but for values greater than 20, there is a negli-
gible gain in statistical significance which would not jus-
tify the increased number animals. With that in mind, it
is up to the researcher to decide on the value of E when
solving for N.
Using higher numbers of animals than those suggested

by the above resource equation or power analysis have
been concluded not to yield better or more reliable data,
and indeed, high sample numbers did not overcome

conflicting results in comparative body of published
work on GDF11 and pSMAD signaling and aging. In our
experience, if a small number of animals per cohort do
not show a robust difference between experimental and
control groups, then perhaps the researcher should con-
sider a more robust experimental assay or a different
experimental approach to answer the question. We also
find multiple experimental approaches, each with
smaller cohorts, to answer the same general question to
be a more rewarding use of time and resources. For
example, two experiments, one examining the effects of
modulating a ligand and another modulating the recep-
tor or downstream signaling, will give either corroborat-
ing or conflicting results, and that depends more on
whether the phenomenon is robust or not and less on
how many animals were used in the assays. Finally, the
bulk of studies on muscle aging and rejuvenation are
mostly if not only from male mice that, moreover, are
genetically identical and environmentally similar. There-
fore, the magnitude of effects and robustness should be
interpreted with caution as they may not translate
exactly to clinical studies [254].

Conclusion
In recent decades, the health and regeneration of skeletal
muscle have been frequently used as key experimental
systems in studies that focused on understanding and re-
versing mammalian tissue aging. This body of work
enriched the field of adult myogenesis, the broader arena
of aging research, and yielded advances in stem cell iso-
lation and characterization, pathway reconstruction,
omics, etc. biomedical approaches. The field of muscle
research in general and in application to aging is still
burgeoning as revealed by innovative technologies and
exemplified by in situ single-cell cartography, the high
definition comprehensive mapping of muscle resident
types [255]. Aging research in muscle is multi-
disciplinary, and it cross-pollinates different fields of sci-
ence, including stem cell biology and regenerative medi-
cine, bioengineering and mechanobiology, Big Data,
omics, and imaging. Such diversity of technologies and
approaches enables robust and rigorous checks and vali-
dations of the findings by the body of published work in
this clinically relevant field of science, ultimately yielding
feasible therapies for extending productive health span.
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