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Interstitial fibrosis represents the final common pathway of

any form of progressive renal disease. The severity of tubular

interstitial damage is highly correlated to the degree of

decline of renal function, even better than the glomerular

lesions do. Angiotensin II (Ang II), the main effector of

the renin–angiotensin system, is a critical promoter of

fibrogenesis. It represents a nexus among glomerular

capillary hypertension, barrier dysfunction, and renal tubular

injury caused by abnormally filtered proteins. Transforming

growth factor (TGF)-b1 and reactive oxygen species (ROS) are

the key mediators of the pro-fibrotic effect of Ang II causing

apoptosis and epithelial-to-mesenchymal transition of the

renal tubular epithelium. Recent studies link fibrosis to

changes of microRNA (miRNA) modulated by Ang II through

TGF-b1, unraveling that antifibrotic action of Ang II

antagonism is attributable to epigenetic control of fibrosis-

associated genes. Other mechanisms of Ang II-induced

fibrosis include ROS-dependent activation of hypoxia-

inducible factor-1. Finally, Ang II via angiotensin type 1

receptor regulates the activation and transdifferentiation of

pericytes and fibrocytes into scar-forming myofibroblasts.

Detachment and phenotypic changes of the former can lead

to the loss of peritubular capillaries and also contribute to

hypoxia-dependent fibrosis.
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Independently of the primary insult, progression of chronic
kidney disease (CKD) to end-stage renal failure is the
common outcome. The rate of decline of renal function
varies among nephropathies and for the same disease in
different individuals1 ‘ythe functional disturbances known
to occur in human renal failure are precisely those that occur
in animal experiment as a result of reduction in the amount
of functioning renal substance—that is, loss of nephron.’
(Robert Platt, Lumleian Lecture to the Royal College of
Physicians, London 1952).2 After 30 years of Platt’s obser-
vation, Brenner and colleagues, while deeper investigating the
structural and functional renal adaptation to nephron loss in
the model of renal ablation in the rat,3 identified glomerular
capillary hypertension as a leading cause of progressive deter-
ioration of remaining nephrons. Mathematical modeling of
the size-selectivity function of the glomerular membrane
suggested that elevated transcapillary hydraulic pressure
increased the population of large unselective pores perforat-
ing the glomerular membrane by a mechanism at least partly
mediated by angiotensin II (Ang II).4 Mechanical strain, as
results of glomerular hypertension, upregulates angiotensin
type 1 receptor (AT1R) and increases the production of Ang
II in cultured podocytes.5 Loss of podocyte–podocyte contact
and increased albumin permeability induced by Ang II in
these cells6 translate in the glomerular sieving dysfunction
observed in proteinuric nephropathies. The proteinuric ultra-
filtrate represents the way for spreading the disease from the
glomerulus to the tubulointerstitial compartment.

ANG II-INDUCED PROTEINURIA AND INTERSTITIAL FIBROSIS

Ang II-induced proteinuria is a leading cause of CKD pro-
gression. Proteins abnormally filtered through the glomerular
capillary have intrinsic toxicity on the proximal tubule
contributing to the development of interstitial inflammation,
fibrosis, and ultimately to kidney dysfunction.

Proximal tubular cells exposed in vitro to albumin
undergo apoptosis through a mechanism involving reduced
expression of its receptor megalin. Furthermore, overload
of plasma proteins stimulates proximal tubular cells to
synthesize and release pro-inflammatory substances includ-
ing Monocyte Chemoattractant Protein-1 (MCP-1/CCL2),
Regulated upon Activation, Normal T-cell Expressed and
Secreted (RANTES/CCL5), fractalkine/CX3CL1 that are
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potent chemoattractants for monocytes/macrophages, and
T lymphocytes.

Changes observed in vitro parallel those obtained in
proteinuric models in vivo. They showed apoptosis-induced
glomerular–tubule disconnection and inflammation via release
of cytokine including MCP-1 from activated proximal tubular
cells.7 A similar inflammatory pathway occurs in patients with
severe proteinuria in whom renal upregulation of MCP-1,
RANTES, and osteopontin, mainly in tubular epithelial cells,
correlates with the severity of the disease.8,9 Both injured
tubules and inflammatory cells enhance fibrogenesis by
activating interstitial fibroblasts via a paracrine mechanism
that involves the release of transforming growth factor (TGF)-
b1, the most potent inducer of epithelial-to-mesenchymal
transition (EMT). Albumin induces the upregulation of TGF-b
receptor type II expression in proximal tubular cells and makes
them more susceptible to the matrix-stimulatory actions of
TGF-b. Accumulation of extracellular matrix (ECM) proteins
by proximal tubular cells occurs concomitantly with the
induction of tissue inhibitors of metalloproteinases, (TIMP)-1
and TIMP-2, in response to albumin.7 Filtered C3 is also
recognized as a major promoter of injury in proteinuric
nephropathies as highlighted by cross-transplantation
experiments employing C3-deficient mice and wild-type
littermates. Mechanism of injury induced by C3 is attributed
to the formation of the C5b-9 membrane attack complex.10

Dendritic cells, the main professional antigen-presenting cell
population of the kidney, accumulate in the renal parenchyma
in proteinuric nephropathies in the vicinity of proximal tubular
cells. Epithelial–dendritic cell interaction leads to albumin
processing into antigenic peptides that activate immune cells.
Overall proteinuric state and inflammatory environment enable
dendritic cells to become immunogenic towards normally
ignored self-antigens providing a link among proteinuria,
autoimmunity, and renal disease progression.11

Targeting proteinuria by angiotensin-converting enzyme
(ACE) inhibitors alone or as combined therapy prevents
glomerular–tubule disconnection and atrophy and amelio-
rates interstitial inflammation and fibrosis.12

ANG II-INDUCED INTERSTITIAL FIBROSIS IS MEDIATED BY
TGF-b
Besides protein load, Ang II directly stimulates the TGF-b1
gene, protein expression in proximal tubular cells,13 and
triggers the production of plasminogen activator inhibitor-1
(PAI-1), ECM synthesis and deposition in the interstitial
space.14,15 TGF-b1 signaling includes Smad and non-Smad
pathways for the activation of its major effector and down-
stream target PAI-1. Kindlin-2, a b-integrin adaptor protein,
has been recently discovered to work as a TGF-b type I
receptor/Smad3 adapter protein that amplifies profibrogenic
effects of TGF-b1 through Smad3 signaling in tubular cells
in vitro and in vivo16 (Figure 1).

The non-Smad pathway involves reactive oxygen species
(ROS)-dependent-c-Src-mediated activation of epidermal
growth factor receptor and downstream signaling cascade.17

ROS also maintain receptor-activated Smads in a phos-
horylated state and are crucial for p53 activation that
interacts with Smads and transcriptional cofactors forming
transcriptionally active multiprotein complexes important
for maximal PAI-1 induction17 (Figure 1). Smad and non-
Smad signal integration contributes to renal fibrosis in
unilateral ureteral obstruction (UUO) and in diabetic
nephropathy.18

Control of ECM accumulation through the inhibition of
TGF-b1/PAI-1 has been proposed as the underlying mechan-
ism of the therapeutic effect of Ang II blockade in several
models of progressive nephropathies.19 In Munich Wistar
Fromter (MWF) rats with advanced nephropathy, ACE
inhibition induces regression of glomerular lesions and pre-
vents worsening of interstitial changes through significant
reduction of TGF-b1 expression.20 Moreover, add-on anti-
TGF-b antibody to ACE inhibitor attenuates interstitial
inflammation and accumulation of type III collagen and
abrogates tubular damage in rats with overt diabetic nephro-
pathy.21 Such studies paved the way for the use of fresoli-
mumab, a human monoclonal antibody, which neutralizes
the mammalian isoforms of TGF-b, in patients with primary
focal segmental glomerulosclerosis.22

CROSS-TALK BETWEEN ANG II AND TGF-b IN RENAL
FIBROSIS: MICRORNAS, POTENTIAL TARGETS OF THE
ANTIFIBROTIC EFFECT OF ANG II ANTAGONISM

MicroRNAs (miRNA) are a class of short, single-stranded
noncoding RNAs of B20–22 nucleotides in length that act as
post-transcriptional repressors. Tubulointerstitial fibrosis has
been recently linked to the loss or activation of those miRNA.
In this context, we have recently discovered miR-324-3p as a
new mediator of renal fibrosis.23 MiR-324-3p, identified as
the most highly expressed miRNA in microdissected
glomeruli from MWF rats with advanced nephropathy,
localizes to the glomerulus and, most abundantly, to
cortical tubules. The downstream target of miR-324-3p is
prolyl endopeptidase (Prep), also known as prolyl oligopep-
tidase, a serine protease that is involved in the metabolism of
Ang-I/Ang II into Ang-(1–7) and in the synthesis of the
antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline
(Ac-SDKP). Transfection of tubular epithelial cells with
miR-324-3p results in downregulation of Prep expression and
activity and increases susceptibility to developing pro-fibrotic
phenotype in response to TGF-b1, suggesting a feedback loop
sustaining fibrosis (Figure 1). In MWF rats, overexpression of
miR-324-3p is associated with reduced expression of Prep in
both glomeruli and tubular epithelium in fibrotic areas.
Unbalance between miR-324-3p and Prep is normalized by
ACE inhibitor that also increases urine and plasma Ac-SDKP
levels, hence attenuating tubulointerstitial fibrosis. These data
underline how dysregulation of the miR-324-3p and its target
Prep greatly limits the activation of the Ac-SDKP antifibrotic
pathway in the kidney, sensitizing MWF rats to Ang II and
TGF-b, which in turn favor progressive renal fibrosis. Ac-
SDKP that is formed from its precursor, thymosin b4, by
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Prep-mediated proteolytic activity has an important role in
collagen balance, as a decrease in endogeneous levels of the
peptide in the heart and kidneys promotes organ fibrosis.24

Exogenous administration of thymosin b4 plus prolyl
oligopeptidase inhibitor exacerbates both early and late
interstitial fibrosis in UUO mice through a PAI-1-depen-
dent effect. Conversely, Ac-SDKP administration decreases
both early and late fibrosis and inflammation lessening PAI-1
and TGF-b1 activation.25 Increased Ac-SDKP levels,
secondary to modulation of the miR-324-3p/Prep pathway
by ACE inhibitors, represent a mechanism complementary to
Ang II inhibition, whereby these drugs protect the kidney
from pro-fibrotic stimuli such as TGF-b1 (Figure 1). In
addition, inhibition of TGF-b/Smad signaling, through the
upregulation of Smad7, underscores the antifibrotic and anti-
inflammatory effects of Ac-SDKP in progressive renal
disease.26 TGF-b1 has been recently shown to promote
fibrosis by upregulating pro-fibrotic miR-21 and downregu-
lating antifibrotic miR-29 and miR-200 (Figure 1). Smad3-
mediated overexpression of miR-21 increases the expression
of ECM proteins, collagen 1, and fibronectin, and the
a-smooth muscle actin in renal tubular cells and in fibrotic
kidneys from animals with UUO.27,28 Conversely, inhibition
of miR-21 halts the progression of renal fibrosis in established
obstructive nephropathy27,28 and in type 2 diabetes.29 The

favorable effect of miR-21 inhibition was attributed to
restoring Smad7, an inhibitor of the TGF-b/Smad pathway
capable of reducing the expression of pro-inflammatory and
fibrotic markers.29 Altogether, these lines of evidence suggest
that miR-21 mediates renal fibrosis in both diabetic and non-
diabetic experimental nephropathies acting in a feed-forward
loop that amplifies TGF-b signaling. The translational
relevance of such findings rests on a recent study showing
that circulating miR-21 levels were associated with the
severity of the kidney fibrosis and renal function decline in
renal transplant patients.30

Both miR-29 and -200 families are targets of TGF-b
signaling. Progressive renal fibrosis in obstructive nephro-
pathy is associated with the downregulation of miR-29 in
fibrotic kidneys that acts as a downstream inhibitor for TGF-
b1-induced expression of collagen type I and III by renal
tubular cells.31 TGF-b1 downregulates the expression of the
miR-29 family (miR-29a, -29b, and -29c) in proximal tubular
epithelial cells, podocytes, and mesangial cells in culture, and
this effect results in increased expression of collagen I, III,
and IV.32 Low expression of miR-29a and miR-29c charac-
terizes advanced non-diabetic and diabetic experimental
nephropathies. In the latter model, treatment with the
Rho-associated kinase inhibitor fasudil or the angiotensin
receptor blocker losartan ameliorates proteinuria, structural
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Figure 1 | Transforming growth factor (TGF)-b1 mediates angiotensin II (Ang II)-induced renal fibrosis. (a) Smad and non-Smad signaling
contribute to the transcription of TGF-b1 target genes. Ang II via angiotensin type 1 receptor (AT1R) upregulates TGF-b1 expression. The
growth factor binds to TGF-b receptor II (TbRII), which activates TbRI resulting in the phosphorylation of R-Smads (that is, Smad3). Kindlin-2
mediates the interaction of TbRI with Smad3 favoring Smad3 activation. The phosphorylated Smad3 binds to the Co-Smad, Smad4 forming the
Smad complex that translocates into the nucleus and binds to Smad-binding elements (SBE) in promoter regions of target genes (that is,
plasminogen activator inhibitor-1 (PAI-1), microRNAs (miRNAs)). TGF-b1 also triggers reactive oxygen species (ROS) that activate epidermal
growth factor receptor (EGFR) signaling and p53, which in turn interacts with pSmad3 and other transcriptional cofactors sustaining gene
induction. (b) TGF-b1 promotes fibrosis through the Smad3-dependent regulation of miRNA. Upregulation of miR-324-3p that represses Prep-
dependent synthesis of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) amplifies TGF-b1 signaling.
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lesions, and interstitial ECM accumulation by restoring miR-
29a and -29c expression.32 As far as the miR-200 family, two
of its members, miR-200a and miR-141, are downregulated at
the early phase of UUO.33 In vitro, TGF-b1 induces down-
regulation of miR-200 family that represses E-cadherin
repressors resulting in EMT of renal tubular epithelial
cells.33 Moreover, in experimental diabetes, overexpression
of both TGF-b1 and TGF-b2 in the kidney cortex parallels
the downregulation of miR-200a and increases protein
expression of collagen type IV and fibronectin.34

ANG II-INDUCED RENAL FIBROSIS: ROLE OF ROS AND
HYPOXIA

ROS are important mediators of Ang II-induced EMT and
apoptosis leading to renal fibrosis. In tubular epithelial cells,
stably expressing AT1R, Ang II promotes ROS-dependent
activation of Src kinase that phosphorylates caveolin-1 and
epidermal growth factor receptor leading to extracellular
signal-regulated kinase activation and ultimately to EMT.
Prolonged epidermal growth factor receptor/extracellular
signal-regulated kinase signaling is inhibited by silencing
NADPH oxidase (Nox)4, a member of the Nox family in
mitochondria, which modulates the generation of ROS.35

Nox4 is the major source of ROS in the kidney cortex of db/
db mice36 to the extent that overexpression of catalase, a
scavenger of H2O2, in renal proximal tubules of db/db mice
attenuates interstitial fibrosis and tubular apoptosis.37,38

Excess generation of mitochondrial ROS is limited by Sirt3,
the main mitochondrial NAD-dependent deacetylase, through
the activation of antioxidant enzymes.39 Conversely, deletion
of Sirt3 in mouse embryo fibroblasts gives rise to higher ROS,
increases cell proliferation, and hypoxia-inducible factor
(HIF)-1a transcriptional activity.40 Sirt3 expression is down-
regulated by Ang II, via AT1R as documented in mice lacking
AT1R having however increased Sirt3 levels in the kidney.
These mice are protected from aging-induced oxidative
damage and live longer than wild-type littermates.41

ROS are involved in the activation of HIF-1, a hetero-
dimeric transcription factor that has a key role in cellular
adaptation to different oxygen concentrations. Under nor-
moxia, the oxygen-sensitive HIF-1a subunit is hydroxylated
at specific proline residues by prolyl-4-hydroxylase domain
(PHD) proteins, enabling interaction with von Hippel–
Lindau-E3 ubiquitin ligase complex that targets HIF-1a for
proteasomal degradation. Ang II activates HIF-1a through
the generation of ROS that increase HIF-1a translation and
inactivate PHD promoting HIF-1a stabilization under non-
hypoxic conditions42 (Figure 2). A recent study has demon-
strated a functional link between the activation of HIF-1a
and the pro-fibrotic effects of Ang II in renal medullary
interstitial cells.43 The mechanism whereby Ang II stabilizes
HIF-1a in these cells is dependent on H2O2-mediated
inhibition of PHD2 activity, the predominant PHD in the
kidney. Gene silencing of HIF-1a blocks Ang II-induced
transcription of pro-fibrotic markers TIMP-1 and collagen
I/III as well as of proliferating nuclear antigen and vimentin

(Figure 2). In vivo, kidneys infused with Ang II show positive
staining for both HIF-1a and a-smooth muscle actin in renal
medullary interstitial cells.43 Altogether, these findings
suggest that Ang II-induced interstitial fibrosis mediated by
HIF-1a requires cell transdifferentiation possibly including
EMT. Interestingly, targeting Ang II signaling by angiotensin
receptor blocker valsartan reduces renal expression of HIF-1a
and its target gene TIMP-1 and attenuates interstitial fibrosis
in streptozotocin-diabetic rats.44

Activation of the HIF system induces a cell type-
dependent molecular response that has an impact on differ-
ent disease outcomes. Activation of HIF-1 signaling in renal
epithelial cells by hypoxia also promotes fibrosis.45 Increased
expression of HIF-1 and its target genes has been detected in
fibrotic areas of renal tissues microdissected from patients
with diabetic and IgA nephropathy.45 Of note, ACE has been
identified as a novel target of HIF-1a that binds and trans-
activates the ACE promoter directly. Increased Ang II in turn
downregulates ACE2 protein expression as observed in later
stages of hypoxia.46 This mechanism, underlying vessel
remodeling in hypoxic pulmonary hypertension, can be
envisaged as a functional loop to sustain Ang II-driven renal
fibrosis.

Ang II causes hypoxia of the tubulointerstitium by
inducing structural and functional changes of microvascular
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Figure 2 | Reactive oxygen species (ROS) mediate angiotensin II
(Ang II)-induced renal interstitial fibrosis via hypoxia-inducible
factor-1a (HIF-1a). Under normoxia, prolyl-4-hydroxylase domain 2
(PHD2) hydroxylates HIF-1a at specific proline residues allowing for
recognition by pVHL/E3 ubiquitin ligase complex that ubiquinates
and targets HIF-1a for proteasomal degradation. Ang II-induced
H2O2, by limiting the availability of ferrous iron and ascorbate,
inactivates PHD2 promoting HIF-1a stabilization. HIF-1a interacts
with the HIF-1b forming an active heterodimer that translocates into
the nucleus and binds to hypoxia-response elements (HRE) in
promoter regions of the target genes (collagen I/III, TIMP-1,
proliferating nuclear antigen (PCNA), vimentin). 2-OG, 2-oxoglutarate;
Ub, ubiquitin.
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endothelium (reviewed in Nangaku and Fujita47). Loss of
peritubular capillaries by Ang II is associated with tubu-
lointerstitial fibrosis, events that well correlate with residual
renal function in patients with CKD. Decline in renal oxyge-
nation may manifest before microvascular rarefaction as a
consequence of low peritubular capillary blood flow because
of vasoconstrictor effect of Ang II on glomerular efferent
arterioles.47 Targeting Ang II attenuates tubular hypoxia and
interstitial inflammation and fibrosis in models of CKD.48,49

Preservation of the structural integrity and luminal patency
of peritubular capillaries is part of the protective effect that
improves renal oxygenation.48 Increased renal cortical micro-
vascular pO2

50 and decreased oxygen consumption factored
by sodium transport have been claimed as additional mech-
anisms of renoprotection by Ang II blockade that enhance
renal blood flow and glomerular filtration rate.51

CONTRIBUTION OF ANG II TO THE ACTIVATION OF
FIBROBLAST–MYOFIBROBLAST PRECURSORS IN RENAL
FIBROSIS

Proliferating fibroblasts and, their contractile and potentially
invasive subtype, myofibroblasts are the main sources of
interstitial ECM deposition during fibrogenesis. The origin of
these activated cells is still a matter of debate. Evidence was
provided both for EMT in tubular epithelium52 and
endothelial-mesenchymal transition.53 However, fate mapping
studies, using reporter genes that track fibrillar collagen-
producing cells, identified pericytes rather than the epithelium
as a source of scar-forming myofibroblasts in animal models of
CKD.54 Pericytes are mesenchyme-derived mural cells located
to the abluminal side of endothelial cells in the micro-
vasculature. Pericyte–endothelial cell cross-talk is crucial for
maintenance of stability of kidney peritubular microvascula-
ture. Upon kidney injury, pericytes detach from endothelial
cells and migrate into the interstitial space where they
transdifferentiate into myofibroblasts driving fibrosis, dysan-
giogenesis, and ultimately microvasculature rarefaction.54

Ang II, via AT1R, stimulates migration of retinal micro-
vascular pericytes through a mechanism involving platelet-
derived growth factor-BB and TGF-b1, but not MMPs.55

TGF-b1 signaling from the injured tubular epithelium also
activates pericyte–myofibroblast transition during kidney
fibrosis as it occurs after UUO.54 Moreover, in the remnant
kidney model upregulated TGF-b1 mRNA expression in
proximal tubular cells, busy to reabsorb excess proteins,
parallel peritubular accumulation of a-smooth muscle actin-
positive myofibroblasts and inflammatory cells.56 Treatment
with an ACE inhibitor abrogates TGF-b1-mediated induction
of myofibroblast formation by limiting excess protein
accumulation and interstitial inflammatory cell infiltra-
tion.56 Consistently, a combined treatment with an ACE
inhibitor and an endothelin A receptor antagonist abrogates
tubular damage, interstitial inflammation, and fibrosis by
normalizing tubular expression of TGF-b1 and preserving
peritubular capillary structure in advanced diabetic
nephropathy.57

Besides pericytes, circulating bone marrow–derived fibrocytes
are precursors of fibrogenic myofibroblasts. They develop as
mature cells in the bone marrow and migrate as pre-differ-
entiated collagen-producing cells into the injured kidney
through a chemokine receptor-dependent mechanism.58

Ang II activates fibrocytes by increasing pro a1 chain of
type I collagen and TGF-b1 mRNA expression. Infusion of
Ang II in mice promotes progressive renal fibrosis by
increasing the number of fibrocytes both in the kidney and
in the bone marrow. These effects are reduced by AT1R
blockade with valsartan and exacerbate in AT2R-null mice.
Deficiency of AT2R signaling also worsens, whereas valsartan
improves interstitial fibrosis in UUO mice by differently
modulating the number of fibrocytes in the bone marrow and
their recruitment and activation in the injured kidney.59

Blocking fibrocyte to myofibroblast differentiation by angio-
tensin receptor blocker might have therapeutic potential
in patients with CKD where the number of fibrocytes
infiltrating the renal interstitium correlates with the severity
of tubulointerstitial lesions.59

CONCLUSIONS

Targeting Ang II by AT1R blockers or ACE inhibitors as
mono or multimodal therapy halts the progression of CKDs
toward end-stage renal failure. Regression of proteinuria
confers protection from tubular injury, interstitial inflamma-
tion, and fibrosis in advanced stage of the disease. TGF-b1
and ROS are the key mediators of the pro-fibrotic effects of
Ang II that involve activation and transdifferentiation of
renal resident or circulating bone marrow–derived fibrogenic
precursor cells and the regulation of intracellular pathways
responsible for induction and stabilization of ECM proteins.
Among signaling, miRNA and the PHD-HIF axis have been
identified as new potential therapeutic targets of Ang II
antagonism.
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