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Abstract Three spikelets are formed at each rachis node of
the cultivated barley (Hordeum vulgare ssp. vulgare) spike.
In two-rowed barley, the central one is fertile and the two
lateral ones are sterile, whereas in the six-rowed type, all
three are fertile. This characteristic is determined by the
allelic constitution at the six-rowed spike 1 (vrs1) locus on
the long arm of chromosome 2H, with the recessive allele
(vrs1) being responsible for the six-rowed phenotype. The
Vrs1 (HvHox1) gene encodes a homeodomain-leucine
zipper (HD-Zip) transcription factor. Here, we show that
the Vrs1 gene evolved in the Poaceae via a duplication,
with a second copy of the gene, HvHox2, present on the
short arm of chromosome 2H. Micro-collinearity and
polypeptide sequences were both well conserved between
HvHox2 and its Poaceae orthologs, but Vrs1 is unique to the
barley tribe. The Vrs1 gene product lacks a motif which is
conserved among the HvHox2 orthologs. A phylogenetic
analysis demonstrated that Vrs1 and HvHox2 must have
diverged after the separation of Brachypodium distachyon
from the Pooideae and suggests that Vrs1 arose following

the duplication of HvHox2, and acquired its new function
during the evolution of the barley tribe. HvHox2 was
expressed in all organs examined but Vrs1 was predomi-
nantly expressed in immature inflorescence.
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Abbreviations
DNA Deoxyribonucleic acid
cv Cultivar
cDNA Complementary DNA
BLAST Basic local alignment search tool
NCBI National Center for Biological Information
ESTs Expressed sequence tags
PCR Polymerase chain reaction
CAPS Cleaved amplified polymorphic sequence
dCAPS Derived CAPS
RNA Ribonucleic acid
RT-PCR Reverse transcription PCR

Introduction

The grasses (Poaceae) form a monophyletic family of
monocotyledonous plants which includes all the cereal
crops, notably rice (Oryza sativa L.), maize (Zea mays L.),
wheat (Triticum aestivum L.), barley (Hordeum vulgare L.),
and sorghum (Sorghum bicolor L.). These cereals share a
common ancestor from which they have diverged over a
period of some 60 million years ago (Devos 2005);
nevertheless, some synteny has been retained between them
(Devos 2005; Gale and Devos 1998; Lu and Faris 2006).
For example, rice chromosome 4 and 7 align well with
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chromosome 2 of barley and wheat (Chen et al. 2009;
Devos 2005; Moore et al. 1995). With the complete rice
genomic sequence to hand (International Rice Genome
Sequencing Project 2005), it has become possible to
demonstrate both where collinearity has been retained at
the fine-scale level (Bennetzen and Ma 2003; Bossolini et
al. 2007; Faris et al. 2008; Srinivasachary et al. 2007; Yan
et al. 2003), and where it has collapsed as a result of
inversions, deletions, duplications, and other intrachromo-
somal rearrangements (Ilic et al. 2003; La Rota and Sorrells
2004; Li and Gill 2002; Liu et al. 2006; Tarchini et al.
2000). Other full grass species genome sequencing project
either completed or underway include those for sorghum
(Paterson et al. 2009; Sasaki and Antonio 2009) and
Brachypodium distachyon, a small genome, short growth
cycle, self-fertile, model temperate grass(Ozdemir et al.
2008).

Inflorescence structure is one of the main determinants
of grain yield in the cereals. The inflorescence can take the
form of a panicle (rice, sorghum, and maize) or a spike
(wheat, barley, and Brachypodium). Some evidence sup-
ports the notion that the spike has evolved from the panicle
(Vegetti and Anton 1995). The barley spike carries a set of
three spikelets at each rachis node. In “two-rowed” barley,
the two lateral spikelets are reduced in size and sterile, but
in the “six-rowed” type, all three spikelets are fertile. The
six-rowed phenotype is genetically determined by homo-
zygosity for the recessive allele (previously referred to as
vrs1) at the vrs1 locus, which has been identified as a
homeobox gene (HvHox1) encoding a transcription factor
containing a homeodomain (HD) with a leucine zipper
motif (Zip; Komatsuda et al. 2007). HD-Zip proteins have
been grouped into four families (Ariel et al. 2007), with the
Vrs1 gene product (VRS1) belonging to the family I.
Although HD can be found in all eukaryotic genomes, the
HD-Zip family is restricted to the plant kingdom. The HD-
Zip protein is dimerized by the Zip domain, and uses the
HD to bind specifically to dyad-symmetrical DNA recog-
nition sequences, based on the strict spatial relationship
between HD and Zip (Sessa et al. 1993). VRS1 is thought
to suppress the development of the lateral spikelets, since
its expression was restricted to the lateral-spikelet primordia
in the immature spikes (Komatsuda et al. 2007). The loss of
Vrs1 function resulted in the complete conversion of the
rudimentary lateral spikelets of a two-rowed barley into
fully developed fertile spikelets, just as in the six-rowed
type.

Phylogenetic analysis demonstrated that the origin of the
six-rowed phenotype was probably polyphyletic, both
temporally and spatially, and occurred via a series of
independent mutations at the Vrs1 (Komatsuda et al. 2007).
The higher seed set of the six-rowed type would have been
readily selected during the domestication process (Harlan et

al. 1973). Micro-collinearity between rice and barley is
disrupted in the Vrs1 region, but a Vrs1 ortholog has been
identified on rice chromosome 7 (Pourkheirandish et al.
2007). The barley EST (scsnp06322), mapping to the
centromere region of chromosome 2H, is homologous to rice
Os07g0581000 (LOC_Os07g39280), which co-locates with
the rice Vrs1 ortholog Os07g0581700 (LOC_Os07g39320),
(Pourkheirandish et al. 2007; Rostoks et al. 2005). This
genomic location suggests the original site of Vrs1 to be
the centromere region of chromosome 2H prior to the
chromosomal rearrangement, which has been responsible
for the local loss of synteny between rice and barley, but it
is plausible that Vrs1 evolved as a ‘copy’ of an indispens-
able ‘master’ gene, which is still present in its ancestral
location on chromosome 2H (Pourkheirandish et al. 2007).
Neither the structure nor the function of Vrs1 orthologs in
any of the other Poaceae members has been elucidated.
The objective of this study was to compare the genomic
organization of the regions containing a Vrs1 ortholog in a
set of Poaceae species, as a means of inferring the
refinement of the function of Vrs1 by gene duplication in
the speciation of barley.

Materials and methods

Plant materials

The two-rowed barley cv. Kanto Nakate Gold (KNG, NIAS
accession number JP 15436) and the six-rowed barley cv.
Azumamugi (AZ, JP 17209; maintained in the Gene Bank,
NIAS, Tsukuba, Japan) were intercrossed to allow the
development of a population of 99 F12 recombinant inbred
lines (RILs).The wild barley (H. vulgare ssp. spontaneum)
strain OUH602 was obtained from Research Institute for
Bioresources, Okayama University, Kurashiki, and used to
generate a population of 186 F7 RILs from the cross
OUH602 × KNG. A set of chromosome addition lines
(CALs), in which six of barley cv. Betzes chromosomes
(2H–7H) are present, in turn, in a background of bread
wheat cv. Chinese Spring (Shepherd and Islam 1981) were
kindly provided by Dr. A. K. M. R. Islam, Department of
Plant Science, Waite Institute, University of Adelaide,
Australia.

Barley full-length cDNA library

Seedling shoots and roots of cv. Haruna Nijo were used as a
source of mRNAs to construct full-length cDNA libraries,
following the methods described by Carninci et al. (1996).
A sample of clones was end-sequenced (both 5’ and 3’). A
detailed description of this library and its construction will
appear elsewhere.
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Searching for Vrs1 orthologs in Poaceae

Nucleotide-BLAST (BLASTN), protein–protein BLAST
(BLASTP), and translated nucleotide-protein BLAST
(TBLASTN) searches were made against the following
sequence databases: barley, Barley Full-Length cDNA End
Sequence Database of NIAS (unpublished); rice, Rice
Annotation Project Database (http://rapdb.dna.affrc.go.jp/)
and The Institute for Genomic Research (TIGR) Rice
genome annotation (http://rice.plantbiology.msu.edu/);
maize, MaizeSequence.org (http://www.maizesequence.
org/index.html); sorghum, Department of Energy Joint
Genome Institute (JGI) S. bicolor (http://genome.jgi-psf.
org/Sorbi1/Sorbi1.download.html); B. distachyon, BRA-
CHYPODIUM.ORG (http://www.brachypodium.org/);
wheat, TIGR Wheat Genome database (http://www.tigr.
org/tdb/e2k1/tae1/), and NCBI (http://blast.ncbi.nlm.nih.
gov/Blast.cgi).

Phylogenetic and peptide motif analysis

Sequence data were aligned using ClustalW2 software
(http://www.ebi.ac.uk/Tools/clustalw2/). A phylogenetic
tree was constructed by the neighbor-joining method, using
PAUP 4.0b10 software (Sinauer, Sunderland, Massachu-
setts) employing 100 bootstrap replicates. Insertion/deletion
characters were not included. Peptide motifs were analyzed
using the Surveyed conserved motif ALignment diagram
and the Associating Dendrogram (SALAD) database
(http://salad.dna.affrc.go.jp/salad/en/; Mihara et al. 2008).
A graphical display of motif composition was constructed
using Interactive SALAD analysis.

Barley ESTs data

Barley ESTs giving the best match to rice genes on
chromosome 7 were selected from the Gramene database
(http://www.gramene.org/Oryza_sativa_japonica/index.
html). The copy number of each EST was investigated
using Plant Repeat Database at Michigan State University
(http://plantrepeats.plantbiology.msu.edu/index.html). Ex-
on–intron junctions were assumed to be conserved between
rice and barley, and were extracted from NCBI BLAST 2
SEQUENCES (http://blast.ncbi.nlm.nih.gov/bl2seq/
wblast2.cgi).

PCR amplification

Plant genomic DNA was extracted as described by
Komatsuda et al. (1998). PCR primers were designed from
the predicted exon regions with Oligo5 software (W.
Rychlick, National Bioscience, Plymouth, MN, USA) and
synthesized commercially (BEX, Tokyo, Japan) (Supple-

mentary Table 2). PCR amplification was carried out in
10μl reactions containing 0.25 U ExTaq polymerase
(Takara, Tokyo, Japan), 1× ExTaq polymerase buffer,
0.3 μM of each primer, 200 μM dNTP, 2 mM MgCl2,
0–5% v/v dimethyl sulphoxide (DMSO), and 20 ng
genomic DNA. Each PCR was cycled through a denaturation
step (94°C/5 min), followed by 30 cycles of 94°C/30 s,
55–65°C (primer-dependent)/30 s, 72°C/30–90 s with a
final incubation of 72°C/7 min. Amplicons were electro-
phoresed through either agarose (Agarose ME, Iwai
Kagaku, Tokyo, Japan) or a MetaPhor agarose (Cambrex
Bio Science Rockland Inc., Rockland, MA, USA) gels,
depending on their size, and were visualized by ethidium
bromide staining.

Development of CAPS and dCAPS markers

PCR products were purified using the QIAquick PCR
purification Kit (Qiagen, Germantown, MD, USA) and
subjected to cycle sequencing using a Big Dye Terminator
Kit (Applied Biosystem, Foster, CA, USA). Sequencing
reactions were purified by Agencourt CleanSEQ (Beckman,
Beverly, MA, USA), and analyzed with an ABI prism 3130
genetic analyzer (Applied Biosystem). Sequence data were
aligned by Sequencher DNA Sequencing Software (Hitachi-
Soft, Yokohama, Japan). Polymorphic restriction sites were
identified via the Restriction Maps option of Molecular
Toolkit (http://arbl.cvmbs.colostate.edu/molkit/mapper/) or
with dCAPS Finder 2.0 (http://helix.wustl.edu/dcaps/dcaps.
html). PCR products were digested at the recommended
temperature for 2–3 h in reactions of 15 μl of reaction
mixture containing 10 μl PCR products, 1× reaction buffer,
and 1 U restriction enzyme.

Genetic mapping

The AZ × KNG and OUH602 x KNG RILs population
were genotyped using polymorphic CAPS and dCAPS
markers, and MAPMAKER/EXP ver.3.0 (Lander et al.
1987) was used to integrate the resulting loci into the
linkage map constructed by Komatsuda and Tanno
(2004).

RNA extraction and RT-PCR assay

Total RNAwas extracted from various tissues by using TRIzol
(Invitrogen, Carlsbad, CA). A first-strand cDNAwas synthe-
sized with SuperScript II (Invitrogen). The first-strand cDNA
was used as a template, and amplification was performed for
30 or 40 PCR cycles (1 min at 94°C, 30 s at 60/65°C, 30 s at
72°C) followed by 7 min at 72°C. The primers for HvHox2
were 5′-GCGTGGTCGAGTGGTTTAGCCTGT-3′ (sense)
and 5′-GAGAGCTACCGGTACTACACTTGC-3′ (anti-
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Fig. 1 Phylogenetic analysis of the predicted peptide sequences of the
Vrs1 homologues among the Poaceae and HD-Zip family genes in A.
thaliana. The phylogenetic tree was constructed by the neighbor-

joining method using PAUP 4.0b10. Local bootstrap values after 100
replicates are indicated near the branching points
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sense). Vrs1 primers were 5′-GGTTTTTAGCATGAATTA
GAGTTTA-3′ (sense) and 5′-TATACAGGCTAAAAACCA
AAGATTA-3′ (antisense). Actin primers were 5′-
GTCCTTTTCCAGCCATCTTTC-3′ (sense) and 5′-CAA
GAATCGACCCTCCAATCC-3′ (antisense). RT-PCR assay
was performed at least twice for each sample.

Results

Identification of a Vrs1 paralog in barley

The best hit (E-value, e-110) from a BLASTN search based
on the Vrs1 cDNA sequence (accession no. AB259783) as a

Helix 1 Helix 2 Helix 3

Leucine zipper

Motif 7Motif 1 Motif 2 Motif 8

10         20         30         40 50         60
Bradi1g23460.1 MD------KQ ELFASSYMGT S--FLGANG- TAAVQGERPR ARRRRRRAAA ARCEDVDGGL 
HvHOX2 MD------KQ HLFGCSYVDA P--FFAATG- TAQGE-SRPR ARRRRRRAAR CGGGDGDGVE 
VRS1 MD------KH QLFDSSNVDT T--FFAANG- TAQGDTSKQR ARRRRRRSAR CGGGDGDGGE 
TA89015 MDRYGEKQQQ QQMFASYVDA S--LLAASG- EVQGE--RPR ARRRRRRGAR CVGGGGGGGE 
Os07g0581700 MDRYGEKQQQ QQMFASYVDA S--LLAASG- EVQGE--RPR ARRRRRRGAR CVGGGGGGGE 
Sb02g037560 MEE-----YD GLFPSAYVDS SSSLLVPNG- TAQGE--RPR ARRRRRRAPR CGGGG----D 
AC216056.3_FG006 MEQ-----YD GLFPSAYADS SSSLLMPNGS KAQGE--RPR ARRRRRRAAW CGGG-----E
AC187394.3_FG016 MEQ-----YD GLFPPAYVDS SSSLLLVPNA NGTAQEERPR ARRRRRRAAR CGGG---GGE 

70         80         90  * * 100        110        120
Bradi1g23460.1 L---LDPKKR RLSDEQVEML ELSFREERKL ETGRKVHLAA ELGLDPKQVA VWFQNRRARH 
HvHOX2 MDGGGDPKKR RLTDEQVEGL ELSFREERKL ETGRKVHLAA ELGLDPKQVA VWFQNRRARH 
VRS1 MDGGGDPKKR RLTDEQAEIL ELSFREDRKL ETARKVYLAA ELGLDPKQVA VWFQNRRARH 
TA89015 VDG-GDPKKR RLSDEQVEML ELSFREERKL ETGRKVHLAS ELGLDPKQVA VWFQNRRARH 
Os07g0581700 VDG-GDPKKR RLSDEQVEML ELSFREERKL ETGRKVHLAS ELGLDPKQVA VWFQNRRARH 
Sb02g037560 LDGGGDPKKR RLSDEQVEML ELSFREERKL ETGRKVHLAA ELGLDPKQVA VWFQNRRARH 
AC216056.3_FG006 LDGGGDPKKR RLSDEQAEML ELSFREERKL ETGRKVHLAA ELGLDPKQVA VWFQNRRARH
AC187394.3_FG016 LDGGGDHKKR RLTDEQVEML ELSFREERKL ETGRKVHLGA EIGLDPQQVA VWVPKRRAPP 

130        140        150        160 170        180
Bradi1g23460.1 KSKLLEEEFA KLKHAHDAAI LHKCHLENEV LRLKERLGVI EEEVTRLRSA GSCHATSGDG 
HvHOX2 KSKLLEEEFS KLKHAHDAAI LHKCHLENEV LRLKERLGAT EEEVRRLRSG AGSQAASGDG 
VRS1 KNKTLEEEFA RLKHAHDAAI LHKCHLENEL LRLKERLGAT EQEVRRLRSA AGSHGASVDG 
TA89015 KSKLLEEEFS KLKHAHDAAI LHKCHLENEV LRLKERLVVA EEEVRRLRSA AGSHTASGEG 
Os07g0581700 KSKLLEEEFS KLKHAHDAAI LHKCHLENEV LRLKERLVVA EEEVRRLRSA AGSHTASGEG 
Sb02g037560 KSKLLEEEFA KLKQAHDAAI LHKCHLENEV MRLKERLVLA EEELTRFRSA G-SHAVSGDG 
AC216056.3_FG006 KSKLLEEEFA KLKQAHDATI LHKCHLENEL MRVKDRLVLA EEELARFRSV G-SHAISGDG
AC187394.3_FG016 KRKLLEEEVG QVQQGTNAPF SQMATWKEGH ASYLSLFACA PILFSVHPHA P---------

190        200        210        220 230        240
Bradi1g23460.1 ---AGHH--- ----GSPSSS FSTGTCHHQQ QPGFTGG--- ADVMLGNDDL MMYVPDAEYG 
HvHOX2 GDAAGAVG-- -LCGGSPSSS FSTGTC--QQ HPGFSG---- ADVLGPDDDL MMCVPEYGG-
VRS1 GHAAGAVG-- -VCGGSPSSS FSTGTC--QQ QPGFSG---- ADVLGRDDDL MMCVPEWFLA 
TA89015 GDIMGLGGSG ACVAGSPSSS FSTGTC---Q PPSFGGG--- -DHLGDDD-- LVYVPEYGG-
Os07g0581700 GDIMGLGGSG ACVAGSPSSS FSTGTC---Q PPSFGGGGGG GDHLGDDD-- LVYVPEYGG-
Sb02g037560 GD-IMGRA-- -VCSGSPSSS FSTGTC---H QPGVDVG--- GGDHLGDDDQ LLYVPDYAY-
AC216056.3_FG006 GDAMMGRA-- -VCSGSPSSS FSTGTC---Q QP-------- -----GDDD- LLYFPDYAY-
AC187394.3_FG016 ---------- ---------- ---------- ---------- ---------- ----------

250        
Bradi1g23460.1 GAYADTSVA- EWFSLYGLM
HvHOX2 --YVDSSVV- EWFSLYGLI
VRS1 ---------- ---------
TA89015 --YADNSVV- EWFSLYGLI
Os07g0581700 --YADNSVV- EWFSLYGLI
Sb02g037560 ---ADNSVV- EWFSLYGLM
AC216056.3_FG006 ---ADNSVVD EWFRMYGLM
AC187394.3_FG016 ---------- ---------

Fig. 2 Comparison between the deduced peptide sequences of VRS1,
HvHOX2 and its Poaceae orthologs. The three homeodomain helical
sequences are shown boxed, and a leucine zipper is indicated by

staring and underlining. Hyphens indicate a gap introduced to
facilitate alignment. Colored boxes show the motifs. Asterisks show
the position of Ala 84 (A) and Tyr 88 (Y) in VRS1
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query was the barley full-length cDNA clone Hv2074A10
(accession no. AB490233) extracted from the seedling
shoots and root of cv. Haruna Nijo (NIAS barley database).
Four lesser hits (E-values<e-10) were also identified from the
same library. The search using Vrs1 HD-Zip coding region as
the query sequence hit three entries (E-values<e-10) in the
same database. Vrs1 and Hv2074A10 shared an identical
exon/intron structure (Supplementary Fig. 1). The second
and third exons of both genes contained homeodomain-
leucine zipper motif. As a result, the Hv2074A10 was named
“HvHox2”. Alignment of the Vrs1 and HvHox2 cDNA
sequences identified a 300-bp insertion in Vrs1 and a 44 bp
insertion in the third exon of HvHox2 (Supplementary
Fig. 2). Neither the 300 nor the 44 bp sequences were
homologous to any accession in the public domain. The Vrs1
insertion resulted in the generation of a stop codon,
producing a polypeptide 14 residues shorter than the HvHox2
product (Supplementary Fig. 3). The deduced polypeptide
sequences of the HvHox2 (HvHOX2, 236 aa) and Vrs1
(VRS1, 222 aa) shared 88% identity in the HD-Zip domain
and 84% identity in the whole protein.

Identification of Vrs1 homologues in the Poaceae

The Vrs1 cDNA sequence was used to query each species
database in turn. Vrs1 homologues were present in rice
(Os07g0581700, Oshox14), B. distachyon (Bradi1g23460.1),
sorghum (Sb02g03750), and maize (AC216056.2_FG006
and AC187394.3_FG016). The presence of two (rather than
just one) Vrs1 homologues in maize probably reflects the
cryptic tetraploidy of the maize genome (Paterson et al.
2004; Swigonova et al. 2004; Wei et al. 2007). BLASTN
search using HvHox2 as the query sequence produced the
same hits. All the Vrs1 homologues contained an HD-Zip
motif (Supplementary Fig. 3).

Phylogenetic analysis of VRS1 homologues

Polypeptide sequences matching that of VRS1 were
selected by BLASTP or TBLASTN search against the
wheat, B. distachyon, rice, sorghum, and maize databases
(Supplementary Table 1). The top five sequences with
significant similarity to VRS1 were selected from each
taxon to form a phylogenetic tree. Arabidopsis thaliana
HD-Zip family (classes I–IV) proteins were included to
infer the class to which the Poaceae proteins belonged. The
resulting neighbor-joining tree showed a clear separation of
the four families of HD-Zip families, with each clad being
strongly supported by bootstrap analysis (Fig. 1). All the
VRS1 homologues clustered within the HD-Zip I family
(along with A. thaliana ATHB40, ATHB21, and ATHB53),
suggesting that these sequences are orthologous. The high
degree of similarity between VRS1 and HvHOX2 (boot-

strap support level 88%) suggests that they became
separated from one another after the separation of barley
(Fig. 1). The sister clad, containing the rice, B. distachyon,
wheat, sorghum and maize sequences, was also highly
supported (100%). The peptide motifs 1 and 7 within VRS1
form the homeodomain and motif 2 forms the leucine
zipper (Fig. 2). Motif 3, 4, and 6 were highly conserved
across all the orthologs (Supplementary Fig. 4)—their
function is unknown. Motif 8, in the C-terminal region of
the gene, was highly conserved across all the non-barley
orthologs and HvHOX2, but not in VRS1 (Fig. 2). Thus,
we concluded that HvHox2, rather than Vrs1, is probably
the original representative of the gene in barley.

Genetic mapping of HvHox2 in barley

HvHox2 mapped 27.1 cM from vrs1 on chromosome 2H
(OUH602 × KNG; Fig. 3). A more saturated map of the
HvHox2 region was obtained by including the loci
corresponding to 24 barley ESTs with homology to rice
genes in the chromosome 7 containing the rice HvHox2
ortholog Oshox14 (syn. Os07g0581700). PCR primers
targeting the predicted exon regions generated a single-
PCR product for 20 of these 24 ESTs (Supplementary
Table 2). CALs analysis assigned eight of 20 to chromo-
some 2H, with the remaining 12 non-assigned, because the
wheat and barley amplicons co-migrated on the gels. The
OUH602 and KNG amplicon sequence differed for ten of
the EST sequences, but in the contrast between AZ and
KNG, only one amplicon sequence was polymorphic.
Based on the OUH602×KNG RILs, five of the loci co-
segregated with HvHox2, mapping to a location 0.6 cM
proximal to the AV924741 and 3.7 cM proximal to
ABG602 on the short arm of chromosome 2H (Fig. 3).

Micro-collinearity in the Poaceae

The outcome of a study of fine-scale micro-collinearity in
the HvHox2 homologue region between rice chromosome 7
and B. distachyon Bd. 1 is shown in Supplementary Table 3.

Fig. 3 Micro-collinearity among the Poaceae in the Vrs1 and HvHox2
regions. The maps of Brachypodium, rice, sorghum, and maize are
physical, and barley genetical. Dotted lines connect barley markers
with their Poaceae orthologs. Broken lines connect HvHox2 with their
Poaceae orthologs. In the barley genetic maps, OUH602 × KNG (left),
AZ × KNG (right), markers shown in italics are PCR marked loci
derived from RFLPs and AFLPs, while other markers are EST-
derived. Markers with ‘BC’ denote barley EST clusters: BC15586
(CB872532 and CA025026), BC11013 (BF064588 and BJ453556),
BC12348 (AJ468022 and CB881790), BC12063 (BU973565 and
BU987455), BC14030 (CA005338 and CA019164), BC17525
(AJ486478 and BQ664265), BC09675 (AV920420and BM100120)
and BC02453 (BM816591; after Pourkheirandish et al. 2007). Scale
bar shows 1 Mb

�

128 Funct Integr Genomics (2010) 10:123–133



AC231405.1
AC189043.3_FG029
AC189043.3_FG027
AC189043.3_FG021
AC189043.3_FG006
AC189043.3_FG005

AC194139.3
AC194139.3_FG016
AC194139.3_FG030
AC206615.3_FG009

AC205850.4_FG010
AC205850.4_FG002

AC213606.2_FG014

AC213606.2_FG003

AC204221.3_FG007

AC187339.3_FG006

AC204894.3

AC202142.4

AC206608.3

AC206608.3

AC214523.2_FG022

AC191663.3

Chr. 2S

AC208681.2_FG004
AC207886.3

AC202406.4_FG034
AC202406.4_FG037
AC202406.4_FG031

AC194628.3_FG016
AC194628.3_FG019

AC194970.4_FG024
AC194970.4_FG015
AC194970.4_FG022
AC194970.4_FG018
AC202186.4_FG018
AC202186.4_FG021

AC216056.3_FG006

AC190603.2_FG025
AC190603.2_FG026

AC206322.3
AC206322.3
AC206322.3

Chr. 2L Chr. 7

AC189758.3_FG015
AC189758.3_FG019

AC202166.2_FG014

AC214638.2_FG006
AC214638.2_FG009
AC214638.3
AC214638.2_FG026
AC206699.2_FG002
AC206699.2_FG005
AC206699.2_FG022
AC199935.2_FG008

AC200508.3_FG022

AC203327.3

AC200551.4

AC199392.4

AC205908.3
AC205908.3
AC205908.3

Chr. 10

Chr. 2

Chr. 6 Chr. 4 Bd. 5

AC187039.3_FG011

AC194977.2_FG018
AC194977.2_FG038
AC208626.2_FG022
AC208626.2_FG026
AC203986.3_FG035
AC203986.3_FG003
AC203986.3_FG021
AC203986.3_FG012
AC203986.3_FG019

AC196175.3_FG029

AC187394.3_FG016

AC214356.3_FG028
AC214356.3_FG029

AC210685.1_FG033
AC210685.1
AC210685.1_FG042
AC212002.3_FG006
AC212002.3_FG003
AC212002.3_FG020
AC212002.3_FG025
AC197343.3_FG020
AC197343.3_FG011

AC196175.3_FG005
AC196175.3_FG028

Sb02g037130
Sb02g037160
Sb02g037260
Sb02g037270
Sb02g037330
Sb02g037370
Sb02g037380
Sb02g037390
Sb02g037420
Sb02g037460
Sb02g037480
Sb02g037520
Sb02g037530
Sb02g037540
Sb02g037550
Sb02g037580
Sb02g037650
Sb02g037660
Sb02g037730
Sb02g037750
Sb02g037760
Sb02g037800
Sb02g037850
Sb02g037860

Sb06g023840
Sb06g023870
Sb06g023880
Sb06g023890
Sb06g023900
Sb06g023910
Sb06g023950
Sb06g023975
Sb06g023980
Sb06g023990
Sb06g024190
Sb06g024210
Sb06g024240
Sb06g024420

Sb06g024610
Sb06g024650
Sb06g024740
Sb06g024820
Sb06g024830
Sb06g024860
Sb06g024920

Os04g0538100
Os04g0538700
Os04g0538800
Os04g0538900
Os04g0539000
Os04g0539100
Os04g0539800
Os04g0540600
Os04g0540900
Os04g0541100
Os04g0541500
Os04g0544400
Os04g0544900
Os04g0545200
Os04g0548100
Os04g0551200
Os04g0552000
Os04g0553800
Os04g0555000
Os04g0555300
Os04g0555600
Os04g0556300

Os07g0573400
Os07g0573800
Os07g0574800
Os07g0575100
Os07g0575800
Os07g0576000
Os07g0577300
Os07g0577400
Os07g0577700
Os07g0577900
Os07g0578600
Os07g0581000
LOC_Os07g39290
Os07g0581300
Os07g0581400
Os07g0581700
Os07g0583600
Os07g0583700
Os07g0585100
Os07g0585500
Os07g0585600
Os07g0586000
Os07g0586500
Os07g0586700

Bradi1g23920.1
Bradi1g23900.1
Bradi1g23770.1
Bradi1g23750.1
Bradi1g23670.1
Bradi1g23640.1
Bradi1g23630.1
Bradi1g23600.1
Bradi1g23590.1
Bradi1g23560.1
Bradi1g23500.1
Bradi1g23490.1
Bradi1g23480.1
Bradi1g23470.1
Bradi1g23460.1
Bradi1g23350.1
Bradi1g23340.1
Bradi1g23250.1
Bradi1g23190.1
Bd1
Bradi1g23140.1
Bradi1g23100.1
Bradi1g23090.1

Bradi5g16980.1
Bradi5g17000.1
Bradi5g17020.3
Bd5
Bradi5g17030.1
Bradi5g17050.1
Bradi5g17070.1
Bradi5g17110.1
Bradi5g17120.1
Bradi5g17150.1
Bradi5g17160.1
Bradi5g17360.1
Bradi5g17390.1
Bradi5g17410.1
Bradi5g17530.1
Bradi5g17700.1
Bradi5g17760.1
Bradi5g17880.1
Bradi5g17940.1
Bradi5g17950.1
Bradi5g18000.1

BC15586
BQ468542

CF317052
BC11013

vrs1

BC12348

BC12063

CX626461

BC14030

0.11

0.038

0.008
0.008

0.053

0.13

0.11

0.14

BJ482037
BC17525

MWG503

MWG882

1.19

1.0

7.6

3.8

ABG602

MWG801

cMWG699

34.4

4.5

cM

Chr. 2H genetic

Chr. 7 Bd. 1

1Mb

BC09675
BC02453

Maize Sorghum Rice Brachypodium Barley

ABG602

AV924741

BQ465824

BG365279

BF619984

BQ458483

HvHox2

BJ451001

3.1

0.6

21.9

cM

MWG801

vrs1

MWG882

5.2

10.3

Funct Integr Genomics (2010) 10:123–133 129



A series of BLASTN searches based on rice cDNA queries
showed that both gene contents and orthologs order was well
conserved between these two species (Fig. 3). Similarly,
micro-collinearity in the HvHox2 region was conserved
between rice chromosome 7, sorghum chromosome 6, and
maize chromosomes 2 S and 10 (Fig. 3). Micro-collinearity
was also conserved in the Vrs1 region (rice chromosome 4,
B. distachyon Bd. 5, sorghum chromosome 2 and maize
chromosome 2 L and 7—see Fig. 3). However, there were
no Vrs1 orthologs present in this region in any of these
species.

Expression analysis of HvHox2 and Vrs1

RT-PCR analysis showed that HvHox2 was expressed in all
four organs tested (leaves, shoots and roots of the seedlings,
and immature inflorescences in 5 mm long; Fig. 4). Vrs1
was strongly expressed in the immature inflorescences but
slightly or not expressed in the other organs. There was no
difference of gene expression pattern between AZ and
KNG.

Discussion

A duplication of HvHox2 gave rise to Vrs1

Micro-collinearity can be disrupted by inversion, tandem
duplication, indel formation, or transposition (Devos 2005).
Two alternative hypotheses have been proposed to account
for the loss of micro-collinearity between barley and rice in
the Vrs1 region: (1) the chromosomal segment containing
Vrs1 was transposed from the short arm to the long arm
within chromosome 2H; or (2) Vrs1 evolved from a copy of
an indispensable master gene, which is still present in its
ancestral location on chromosome 2H (Pourkheirandish et
al. 2007). The results of the present study are supportive of
the latter hypothesis, since the phylogenetic analysis
suggested that HvHox2 and Vrs1 are paralog (Fig. 1), while
the comparative genetic mapping showed that the ancestral
copy is HvHox2, not Vrs1 (Fig. 3). The duplication of
HvHox2 must have occurred after the separation of B.
distachyon from the Pooideae (Fig. 1), an event which has
been timed at ~35–40 million years ago (Catalan and
Olmstead 2000). It seems probable that HvHox2 and Vrs1
diverged after the split between Triticum and Hordeum,
because no Vrs1 homologue is represented in the wheat
EST database, whereas a wheat HvHox2 ortholog has been
identified. Vrs1 is present in H. vulgare ssp. spontaneum
(Komatsuda et al. 2007; this study) and H. bulbosum (M.
Pourkheirandish et al. unpublished) but until its distribution
among Hordeum spp. more generally has been established,
it is not possible to estimate how early during the evolution

of this tribe the duplication event occurred. Although it is
not possible to exclude the possibility of the ‘duplicated’
Vrs1 pseudogene formation in process of the speciation in
the other taxa of Poaceae, a BLAST search did not detect
any pseudogenes located in the Vrs1 region in other species
(Fig. 3, Supplementary Table 4).

The HvHox2 sequence is highly conserved
among the Poaceae

The HD-Zip I genes share intron and exon distribution
(Ariel et al. 2007), and HvHox2 and its Poaceae orthologs
have a similar genomic structure, including HD-Zip motif
and peptide motifs (Fig. 2). The expression of HD-Zip I
genes is regulated by drought, cold, and osmotic stresses,
and by various hormones (Dezar et al. 2005; Himmelbach
et al. 2002; Olsson et al. 2004; Rueda et al. 2005).
Treatment of A. thaliana plants with either abscisic acid
or salt increased the transcription of ATHB21, -40, -53
genes which are phylogenetically closest to the HvHox2
(Fig. 1). Most HD-Zip genes (including the three above) are
expressed (in seedlings, roots, leaves, stems, and flowers),
but a few show organ-specific patterns of expression
(Agalou et al. 2008; Henriksson et al. 2005). HvHox2 was
expressed in the leaves, shoots, roots, and immature
inflorescences, while Vrs1 was expressed only in the
immature inflorescences (Fig. 4). In situ hybridization
showed that Vrs1 expression was very much localized to
the lateral-spikelet primordia in spikes at the triple-mound
stage and glum-primordium stages (Komatsuda et al. 2007),
with zero detectable expression in young leaves (Fig. 4).
While HvHox2 and Vrs1 may regulate a wholly or partially
overlapping set of downstream genes, their biological
functions may have been differentiated by their expression
profile. On the basis of polypeptide sequences, it seems
likely that the molecular role of HvHox2 and its Poaceae
orthologs is identical. Within barley itself, the genome
sequence of HvHox2 (accession no. AB490234) in the two-
rowed type (KNG and Haruna Nijo) is the same as that in

Actin

Vrs1

HvHox2

A K K K

SP L M R

A A A K

Fig. 4 Expression analysis of HvHox2 and Vrs1 by RT-PCR. SP,
immature inflorescence (5 mm in length); L leaves of seedling, M
coleoptile node segment of seedling, R roots of seedling. A six-rowed
barley cv. Azumamugi, K two-rowed barley cv. Kanto Nakate Gold
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the six-rowed type (AZ and Morex) (Supplementary
Fig. 1), whereas the Vrs1 sequence is remarkably variable
among these same cultivars (Komatsuda et al. 2007). The
lack of a Oshox14 mutant in the Tos17 insertion mutant
collection (Hirochika 2001) does not contradict with the
notion that HvHox2 is essential for plant growth and
development in the cereals. In contrast, the loss of Vrs1
function both in natural variants, and in many induced
mutants (including the total deletion of the gene) indicates
that Vrs1 is non-essential for plant growth and development
(Komatsuda et al. 2007).

Neo-functionalization of Vrs1

Gene duplication is closely associated with creation of
novel gene functions (Force et al. 1999). Most paralogs are
lost after few million years, but those which either gain a
new function (“neo-functionalization”) or cover old func-
tion (“sub-functionalization”) survive. In rice, the two
C-class MADS box genes OSMADS3 and OSMADS58,
which were generated by a gene duplication, have been
partially sub-functionalized (Yamaguchi et al. 2006). While
HvHox2 probably has retained its ancestral functions, Vrs1
may have acquired the role of suppressing the lateral-
spikelet development (Fig. 4). Vrs1 expression was local-
ized to the lateral-spikelet primordia (Komatsuda et al.
2007). Presumably, this phenotype is associated with a
selective advantage in nature (Pourkheirandish andKomatsuda
2007). It is unclear, however, whether the recruitment of
Vrs1 to its present function occurred before or after the gain
of the triplet in Hordeum.

HD-Zip proteins form dimers that recognize the pseudo-
palindromic DNA sequence (Chan et al. 1998; Palena et al.
1999, 2001). Two residues in helix II, and one in the loop
between helix I and helix II make contact with the target
DNA (Tron et al. 2004), and these contacts are critical for
aligning the recognition helix correctly. In the VRS1 protein,
the glycine 84 and histidine 88 residues present in the helix II
region of HvHOX2 and its Poaceae orthologs have been
mutated to alanine 84 and tyrosine 88, respectively (Fig. 2).
One, or both of these alterations may change either binding
affinity or the target DNA sequence. However, if HvHOX2
and VRS1 still share the same target DNA sequence and
retain the same level of affinity, it is possible that VRS1
competes with HvHOX2 to bind to cis-elements of down-
stream genes. Since Vrs1 is expressed only in the lateral-
spikelet primordia, VRS1 would tend to out-compete
HvHOX2 for binding in the lateral-spikelet primordia. The
300-bp insertion into the Vrs1 sequence both introduced a
new stop codon (Supplementary Fig. 3) and removed a
conserved peptide in motif 8 in the C-terminal region
(Fig. 2). The role of the motif 8 is not annotated in the
protein family (Pfam) database (http://pfam.sanger.ac.uk/),

but its loss may be sufficient to differentiate the functions of
the Vrs1 and HvHox2 gene products. Transcriptional co-
activators enhance transcription by interacting with both
general and gene-specific transcription factors (Zanetti et al.
2004). Thus, motif 8 in HvHOX2 could interact with certain
classes of transcriptional co-activators, and then act as an
activator for the transcription of downstream genes, while
VRS1 would not be able to replicate this interaction as it
lacks motif 8. The formation of HvHOX2/VRS1 hetero-
dimers may reduce the concentration of HvHOX2 homo-
dimer in the cell. None of the above three hypotheses are
mutually exclusive, so may be combined to explain the
function of Vrs1.
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