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Background and purpose: Automated subfield volumetry of hippocampus is desirable for use in temporal lobe ep-
ilepsy (TLE), but its utility has not been established. Automatic segmentation of hippocampal subfields (ASHS)
and the new version of FreeSurfer software (ver.6.0) using high-resolution T2-weighted MR imaging are candi-
dates for this volumetry. The aim of this study was to evaluate hippocampal subfields in TLE patients using ASHS
as well as the old and new versions of FreeSurfer.
Materials and methods:We recruited 50 consecutive unilateral TLE patients including 25 with hippocampal scle-
rosis (TLE-HS) and 25 without obvious etiology (TLE-nonHS). All patients and 45 healthy controls underwent
high-resolution T2-weighted and 3D-volume T1-weighted MRI scanning. We analyzed all of their MR images
by FreeSurfer ver.5.3, ver.6.0 and ASHS. For each subfield, normalized z-scores were calculated and compared
among groups.
Results: In TLE-HS groups, ASHS and FreeSurfer ver.6.0 revealed maximal z-scores in ipsilateral cornu ammonis
(CA) 1, CA4 and dentate gyrus (DG), whereas in FreeSurfer ver.5.3 ipsilateral subiculum showed maximal z-
scores. In TLE-nonHS group, there was no significant volume reduction by either ASHS or FreeSurfer.
Conclusions: ASHS and the new version of FreeSurfer may have an advantage in compatibility with existing his-
topathological knowledge in TLE patients with HS compared to the old version of FreeSurfer (ver.5.3), although
further investigations with pathological findings and/or surgical outcomes are desirable.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Temporal lobe epilepsy (TLE) is the most common focal epilepsy in
adults (Hauser et al., 1996). Hippocampal sclerosis (HS) is considered
the most frequent etiology of TLE and shows hippocampal atrophy
and T2/FLAIR hyperintensity on magnetic resonance imaging (MRI)
(Cendes et al., 2014). TLE with HS is classified as a distinct constellation
(Berg et al., 2010) in which surgical treatment can often achieve prefer-
able seizure outcome compared to drug therapy (Wiebe et al., 2001). A
recent pathological classification identifies three HS subtypes according
hippocampal sclerosis; ASHS,
nu ammonis; DG, dentate gyrus.
ational Center of Neurology and
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to subfields of neural loss (Cendes et al., 2014; Blumcke et al., 2013), and
HS subtypes are considered to have different clinical courses and surgi-
cal outcomes (Thom, 2014; Na et al., 2015).

Regarding structural neuroimaging of hippocampal subfields, recent
studies usingmanual procedures have achieved some successful results
(Mueller et al., 2009; Coras et al., 2014; Na et al., 2014). However, man-
ual segmentation requires extensive training aswell as time consuming
for its performance (Yushkevich et al., 2010). In addition, the presently
recommendedMRI protocol in epilepsy is still at 1.5- or 3.0-T in clinical
practice (Ramli et al., 2015), although some studies were performed
with 4.0- to 7.0-TMRI (Mueller et al., 2009; Coras et al., 2014). An auto-
mated procedure using 1.5- or 3.0-T MRI is thus desirable for practical
clinical application in TLE.

The authors of a 2014 study attempted to analyze hippocampal sub-
fields automatically using FreeSurfer and T1-weighed images (Schoene-
Bake et al., 2014). In TLE, but the results showed insufficient correlation
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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with pathological findings in some subfields. In addition, the validity of
hippocampal segmentation by FreeSurfer ver.5.3 faced various criti-
cisms (Wisse et al., 2014). In fact, no clinically useful method has ever
been established in this field. Responding to those criticisms, the new
version of FreeSurfer (ver.6.0) has been developed formore precise sub-
fields segmentation of hippocampus using high-resolution T2-weighted
images (Iglesias et al., 2015). Furthermore, the automatic segmenta-
tion of hippocampal subfields (ASHS) has emerged as a useful fully
automatic algorithm for multi-atlas-based labeling of hippocampal
subfields and adjacent cortical subregions also using high-resolution
coronal T2-weighted images (Yushkevich et al., 2010; Yushkevich et
al., 2015). T2-weighted images were also suggested to be more
suitable for analyses of hippocampus (Wisse et al., 2014). In addi-
tion, these automated methods may detect slight abnormalities of
hippocampus in TLE cases without clear etiology (so-called “MRI-
negative” TLE cases), which were reported by manual segmentation
procedures (Kim et al., 2013; Maccotta et al., 2015). The aim of this
study was to evaluate hippocampal subfields in TLE with HS and
MRI-negative TLE using these new automated methods, and to
compare the results with those of the hitherto-existing method.
We hypothesized that segmentation methods with high-resolution
T2-weighted images would detect more severe atrophy in the
supposed subfields such as CA1 or CA4/DG, especially in TLE with
HS cases.
2. Materials and methods

2.1. Participants

We recruited patientswith unilateral TLEwhowere examined at our
institute between December 2014 and July 2015. The diagnosis of
TLE was based on presence of simple or complex partial seizures
consistent with TLE, and focal epileptiform discharge predominantly
in unilateral temporal area as observed by conventional scalp
electroencephalogram. After diagnosis of TLE, all patients underwent
conventional MRI for visual evaluation of epileptogenic lesions by one
experienced neuroradiologist (N.S.). Patients with the following criteria
were excluded: a significant medical history of acute encephalitis, men-
ingitis, severe head trauma, or ischemic encephalopathy; suspicious
epileptogenic lesions (e.g., tumor, cortical dysplasia or vascular malfor-
mation) on MRI other than ipsilateral HS at the abnormal electroen-
cephalogram side; or epileptic paroxysms in extra-temporal regions
on electroencephalogram.

We divided the eligible patients into two groups based on the exis-
tence or non-existence of unilateral HS by the following criteria: ipsilat-
eral reduced hippocampal volume; increased T2 signal on the
hippocampus; and abnormal morphology (i.e., a loss of internal archi-
tecture of the stratum radiatum, a thin layer of white matter that sepa-
rates the dentate nucleus and Ammon's horn). Clinical data including
gender, age, onset age of epilepsy and number of anti-epileptic drugs
were also investigated.

A final total of 50 consecutive unilateral TLE patients were enrolled,
of which 25 patients showed HS onMRI (TLE-HS group, 13 females and
12males, 44.7 ± 11.8 years). No abnormalities were found in the other
25 patients (TLE-nonHS group, 14 females and 11 males, 42.9 ±
16.4 years). We also recruited 45 healthy age-matched subjects (23 fe-
males and 22 males, 42.6 ± 16.4 years) as a control group. There were
no significant differences among the three groups in age and gender
(one-way ANOVA and Pearson's χ2 test). TLE-HS group had earlier
onset age (16.2 ± 11.9, 29.0 ± 18.6 years, p b 0.01 by t-test) and took
more anti-epileptic drugs (2.48 ± 1.16, 1.60 ± 0.96, p b 0.01 by t-test)
compared to TLE-nonHS group.

All participants gave written informed consent. The study was ap-
proved by the Institutional Review Board at the National Center of Neu-
rology and Psychiatry Hospital.
2.2. MRI acquisitions

The MRI for all participants was performed on a 3.0-T MR system
with a 32-channel coil (PhilipsMedical Systems, Best, TheNetherlands).
The parameters of sequences were as follows. Three-dimensional (3D)
sagittal T1-weighted magnetization prepared rapid acquisition with
gradient echo (MPRAGE) images: repetition time (TR)/echo time (TE):
7.12 ms/3.4 ms; flip angle (FA): 10°; number of excitations (NEX): 1;
0.81 × 0.81 mm2 in plane resolution, 0.6 mm effective slice thickness
with no gap, 300 slices, matrix of 260 × 320; 26 × 24 cm field of view
(FOV); acquisition time 4:01 min. High-resolution T2-weighted images
were obtained as follows. TR/TE, 6000/78 ms; FA, 90°; NEX, 2,
0.43 × 0.43 mm2 in plane resolution, 2-mm slice thickness with no
gap; 32 slices, matrix of 476 × 377, 22 × 24 cm FOV, acquisition time
6:00 min.

We also added a routine MRI examination by the following three
protocols. Transverse conventional T1-weighted images: TR/TE: 602/
8.0ms, FA 70°, NEX 1, thickness 3.0mmwith 1.5-mmgap, 34 slices, ma-
trix 256 × 174, 23 × 18 cm FOV, acquisition time 3:33 min. Transverse
turbo spin echo T2-weighted images: TR/TE: 4704/80 ms, FA 90°, NEX
2, thickness 3.0 mm with 1.5-mm gap, 34 slices, matrix 368 × 215,
23 × 18 cmFOV, acquisition time 2:49min. Coronal fluid-attenuated in-
version recovery (FLAIR) images: TR/TE 10,000/120 ms, inversion time
2450 ms, FA 120°, NEX 2, thickness 3.0 mmwith 1.5-mm gap, 34 slices,
matrix 272 × 144, 23 × 18 cm FOV, acquisition time 3:00 min.

All participants underwent the same MR machine scan, and the
same images were applied to the automated volumetric processes. In
addition, experienced neuroradiologists visually confirmed the good
or fair parcellation in each volumetric analysis.

2.3. FreeSurfer volumetry of hippocampal subfields

FreeSurfer software ver.5.3 was used for calculation of hippocam-
pal subregions volumes using 3D T1-weighted images. This hippo-
campal subregion segmentation technique based on a prior
probabilistic atlas, and the Baysian modeling approach is fully auto-
matic and can be found online (www.freesurfer.net/fswiki/
HippocampalSubfieldSegmentation) (Van Leemput et al., 2009).
The calculated subregions were cornu ammonis (CA) 1, CA2/3,
CA4/dentate gyrus (DG), fimbria, subiculum, presubiculum, hippo-
campus, and hippocampal fissure (Fig. 1).

FreeSurfer software ver.6.0 (www.freesurfer.net/fswiki/
HippocampalSubfields) was also used for evaluation of hippocampal
subregions volumes with both 3D T1- and high-resolution T2-weighted
images (Iglesias et al., 2015). Officially, FreeSurfer ver.6.0 has not been
released yet, but in this study the module corresponds to the latest de-
velopment version (FreeSurfer6.0 dev-20,150,808)whichwill be part of
the upcoming ver.6.0 of the package. Thirteen regions were calculated
including CA1, CA2/3, CA4, granule cell layer of DG, fimbria, subiculum,
presubiculum, parasubiculum, molecular layer, hippocampus-amygda-
la-transition-area, hippocampal tail, whole hippocampus and hippo-
campal fissure (Fig. 1). Although FreeSurfer ver.6.0 accepts MRI scans
acquired with weightings other than T2, we adopted high-resolution
T2-weighted images because ASHS needs them and we considered the
same images would be appropriate for comparison.

2.4. ASHS volumetry of hippocampal subfields

Wealso applied the sameboth 3DT1- andhigh-resolution T2-weight-
ed images obtained from our participants to the open-source ASHS soft-
ware (https://sites.google.com/site/hipposubfields/) (Yushkevich et al.,
2015). After we selected “UPenn PMC Atlas” (Yushkevich et al., 2015) as
the Atlas Set, the software calculated the volumes of each subfield fully
automatically with a combination of multi-atlas label fusion and learn-
ing-based error correction. Ten regions of interest were delineated: CA1,

http://www.freesurfer.net/fswiki/HippocampalSubfieldSegmentation
http://www.freesurfer.net/fswiki/HippocampalSubfieldSegmentation
http://www.freesurfer.net/fswiki/HippocampalSubfields
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Fig. 1. (A): Examples of automatic hippocampal segmentation results by FreeSurfer ver.5.3 on 3D T1-weighed MRI in a healthy subject (a) and a patient with right hippocampal sclerosis
(b). (B): Examples of automatic hippocampal segmentation results by FreeSurfer ver.6.0 onhigh-resolution T2-weightedMRI in the sameparticipants as in (A). (C): Examples of automatic
hippocampal segmentation results by ASHS on high-resolution T2-weighted MRI in the same participants as in (A).
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CA2, CA3, DG, subiculum, entorhinal cortex, Brodmann area 35,
Brodmann area 36, collateral sulcus and miscellaneous parts (Fig. 1).

2.5. Statistical analysis

Analyses were performed using SPSS software (ver. 22.0 Japan,
Tokyo). For our comparisons of each subfield volumes among the TLE-
HS, TLE-nonHS, and control groups, we performed analysis of covari-
ance (ANCOVA) using age, gender and intracranial volume (ICV),
which was calculated by each targeted software of the analysis, as nui-
sance covariates, plus post-hoc Bonferroni correction. A p-value b 0.05
was considered significant.

Using z-scores, we aimed to compare the detectability of subfields'
atrophy among the different segmentationmethods. In each volumetric

Image of Fig. 1


60 D. Sone et al. / NeuroImage: Clinical 12 (2016) 57–64
technique and each subfield, we calculated volume z-scores by follow-
ing formula: volume z-score = (volumesubject – mean volumecontrol) /
standard deviation volumecontrol.

3. Results

3.1. Volumetric analyses of hippocampal subfields for TLE-HS group

Tables 1-3 present hippocampal subfield volumes calculated by
FreeSurfer ver.5.3, ver.6.0 and ASHS, respectively. For both sides of
focus, significant mean volume reductions were found only in the ipsi-
lateral hemisphere compared to the control group. Beyond that, a
weak expansion of hippocampal fissure in right TLE patients was
found only by FreeSurfer ver.5.3 (Table 1).

Mean z-scores in the ipsilateral side are shown in Fig. 2,which allows
us to evaluate the selectivity of atrophy in each subfield by each seg-
mentationmethod. In FreeSurfer ver.5.3, themaximal z-scoreswere ob-
served in ipsilateral subiculum andmost of ipsilateral subfields showed
similar values. On the other hand, the ipsilateral CA1, CA4 or DG showed
the maximal z-scores in FreeSurfer ver.6.0 or ASHS.

3.2. Volumetric analyses of hippocampal subfields for TLE-nonHS group

Tables 1-3 also show subfield volumes of TLE-nonHS group.
FreeSurfer ver.6.0 detected significant volume increases in left hippo-
campus-amygdala-transition-area in both left and right TLE (mean ±
SD z-scores: 1.59 ± 1.58, 1.01 ± 1.37, respectively). There would be
similar tendency in the right hippocampus-amygdala-transition-area,
but that's not significant. No other significant volume reductions or z-
scores were found by all the segmentation methods.

4. Discussion

The present study provided hippocampal subfield volumes on MRI
in patients with unilateral TLE with or without HS and healthy subjects,
calculated automatically by the new and old versions of FreeSurfer and
Table 1
Mean (SD) volumes (mm3) of hippocampal subfields calculated by FreeSurfer ver.5.3.

TLE-HS (n=25)

Left TLE (n=12) Right TLE (n=13)

Left hemisphere

CA1 231.7 (43.1) 319.4 (43.8)

CA2/3 676.3 (166.9) 990.6 (147.9)

CA4/DG 370.6 (87.9) 563.9 (78.9)

Fimbria 58.5 (24.7) 75.8 (20.0)

Subiculum 436.9 (92.2) 635.2 (65.0)

Presubiculum 361.7 (69.4) 488.8 (38.6)

Hippocampus 258.5 (55.4) 384.6 (69.2)

Hipp_fissure 46.2 (22.7) 56.6 (18.5)

Right hemisphere

CA1 338.5 (35.0) 248.2 (46.5)

CA2/3 1052.4 (129.6) 698.4 (119.9)

CA4/DG 591.1 (69.9) 392.1 (69.2)

Fimbria 87.9 (14.7) 58.7 (19.5)

Subiculum 660.3 (57.6) 442.2 (70.2)

Presubiculum 480.9 (46.7) 327.9 (49.1)

Hippocampus 377.7 (34.2) 272.1 (66.5)

Hipp_fissure 53.6 (15.8) 59.0 (16.1)

hipp_fissure : hippocampal fissure. Shaded areas denotesignificant volume changes comp
ASHS. To our best knowledge, this is the first study to apply ASHS and
FreeSurfer ver.6.0 for evaluation of the hippocampus in patients with
TLE. Our results showed that ASHS and FreeSurfer ver.6.0 detected se-
vere volume loss of ipsilateral CA1 and CA4/DG in TLE patients with
HS compared with the other subfields and compared with the old ver-
sion of FreeSurfer, which accords with pathological findings of HS
(Thom, 2014). The twomethods with high-resolution T2-weighted im-
ages may thus become clinically useful to evaluate detailed hippocam-
pal subfields in TLE patients.

In the present study, we obtained inconsistent volume estimation of
FreeSurfer ver.5.3 findings with anatomical evidence of hippocampus.
For example, FreeSurfer ver.5.3 estimated CA2/3 as the largest subfield,
whereas CA1 was the smallest in healthy subjects (Table 1) despite the
existence of anatomical information that CA1 is the largest and CA2/3 is
the smallest subfield (Simic et al., 1997). On the other hand, ASHS and
FreeSurfer ver.6.0 commonly estimated CA1 as the largest part (Tables
2, 3). But ASHS produced larger volumes for CA1 than FreeSurfer, and
smaller volumes for CA2–3. Histology studies have reported volumes
around 600–700 mm3 for CA1 and 100–200 mm3 for CA2–3 (Simic et
al., 1997), and then ASHS may have a tendency to underestimate
CA2–3. In addition, severe ipsilateral CA2 volume loss in ASHS could
be inconsistent with the pathology, because CA2 should be relatively
spared in HS (Thom, 2014). Probably, ASHS may need an improvement
in this point. In TLE-HS group, the results of ASHS and FreeSurfer ver.6.0
showed severely low z-scores in ipsilateral CA1 and CA4/DG, whereas
FreeSurfer ver.5.3 captured the most severe volume reductions in ipsi-
lateral subiculum, although the main pathological lesions of HS should
be those of CA and DG (Cendes et al., 2014; Thom, 2014). The reason
for this result might be because large parts of the subfields are assigned
to adjacent subfields in FreeSurfer ver.5.3, as was reported (Wisse et al.,
2014). The two other methods' results— i.e., in the unilateral TLE pa-
tients with HS ipsilateral CA1 and CA4/DG showedmore severe volume
reductions compared to other subfields—accords with the pathological
findings of HS (Thom, 2014). For clinical practice, the running time of
the software would be important. The average time for the analysis of
one subject was about 50 min with Q-option and Sun. Grid Engine in
TLE-nonHS (n=25)
Control (n=45)

Left TLE (n=12) Right TLE (n=13)

308.5 (45.4) 328.9 (51.4) 319.6 (34.4)

1000.8 (181.7) 1036.5 (180.4) 977.4 (120.3)

567.5 (104.7) 585.3 (91.7) 554.6 (59.7)

81.4 (27.7) 86.0 (21.8) 83.9 (19.4)

634.1 (89.6) 659.6 (123.4) 643.9 (57.3)

497.4 (78.9) 493.8 (88.5) 498.0 (65.7)

363.1 (65.7) 374.9 (66.3) 394.4 (46.6)

39.7 (14.2) 44.3 (13.1) 42.6 (13.2)

332.5 (55.7) 347.5 (47.4) 344.7 (33.6)

1033.8 (168.4) 1055.6 (203.3) 1038.0 (123.2)

588.4 (107.5) 584.2 (109.1) 589.1 (72.7)

81.2 (24.6) 74.9 (18.6) 80.8 (17.2)

655.8 (76.2) 642.4 (111.9) 657.3 (71.6)

484.4 (70.7) 446.6 (75.6) 474.6 (55.9)

372.0 (68.9) 366.7 (70.5) 382.6 (51.3)

51.6 (13.6) 53.1 (17.5) 56.5 (17.9)

ared to control group by Bonferroni correction following an ANCOVA.   



Table 2
Mean (SD) volumes (mm3) of hippocampal subfields calculated by FreeSurfer 6.0.
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ASHS (26 h without Q-option), whereas FreeSurfer ver.6.0 required
about 18 h per person on average (16 h on the main recon-all pipeline,
2 h on the subfield segmentation), using our computer (Gird Computing
Server, CPU Intel Xeon ×5690 (3.46 GHz, 6 cores, 12 MB
L3Cache)*2 cpu, Memory 48 GB).

In 2013, International League Against Epilepsy (ILAE) classified HS
into three groups based on histological patterns of subfield neuronal
loss and gliosis (Blumcke et al., 2013). HS type 1 is the most common
(60%–80%) and shows neuronal loss in CA1, CA3 and CA4/DGwith rela-
tive sparing of CA2 (Thom, 2014). Types 2 and 3 are relatively rare
(b10%). Type 2 shows complete neuronal loss in CA1 with rather mild
pathology in all other subfields, whereas Type 3 presents predominant
neuronal loss in CA4/DG (Cendes et al., 2014). Although TLE is consid-
ered surgically treatable in general, a certain number of patients experi-
ence seizure recurrence within several years (McIntosh et al., 2004).
Additionally, in TLE with HS surgical outcome could depend on the
three pathological types; types 2 and 3 have poorer surgical outcomes
(Na et al., 2015). Another study suggested that DG pathology could be
associated with postsurgical seizure outcome and other clinical charac-
teristics (Blumcke et al., 2009). It is thus desirable that the type of HS
could be predicted preoperatively because it could lead to a better
selection of operative methods as well as prognostic prediction. CA4/
DG volumetry on 3.0-T MRI with manual procedure was indicated to
have probable prognostic value (Na et al., 2014). The previous attempt
to analyze hippocampal subfields of TLE with HS automatically using
the old version of FreeSurfer failed to show concordancewith patholog-
ical neuronal loss in CA2/3 and CA4/DG (Schoene-Bake et al., 2014), and
thus more accurate analyses of MRI findings are needed for better eval-
uations of postsurgical prognoses. Here we applied ASHS and the new
version of FreeSurfer to TLE patients with HS for the first time, and our
results demonstrated the ability to detect pathologically-concordant at-
rophy in hippocampal subfields. Although we did not investigate the
present patient series' surgical seizure outcomes, we speculate that
they could become clinically useful and fully reproducible methods for
noninvasive evaluations of postsurgical prognosis as well as pathologi-
cal types in TLE patients with HS.

We did not observe any significant reductions in mean volumes of
hippocampal subfields in TLE-nonHS group, which is without obvious
etiology (so-called “MRI-negative” TLE). Although some cases might
show low z-scores in some subfields individually, the pathological
meaning of such results were not confirmed in this study. As for volu-
metric analyses of the mesial temporal structure, some earlier studies



Table 3
Mean (SD) volumes (mm3) of hippocampal subfields calculated by ASHS.
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reported no significant abnormalities in MRI-negative TLE (Mueller et
al., 2006; Alhusaini et al., 2013). On the other hand, FreeSurfer ver.6.0
captured volume increases in hippocampus-amygdala-transition-area
in TLE-nonHS group. In recent years, an increasing number of cases of
TLE showing ipsilateral amygdala enlargement without any other etiol-
ogies have been reported (Bower et al., 2003; Lv et al., 2014) and contra-
lateral amygdala enlargement was also suggested (Coan et al., 2013).
Possibly, FreeSurfer ver.6.0 might detect such volume increases, al-
though we excluded cases with obvious lesions on MRI. In any case, it
appears that we may need a more homogeneous patient population or
a greater number of patients to detect volume changes in MRI-negative
TLE, and there is much to do in this field.

We also calculated volumes of extra-hippocampal related regions
such as entorhinal cortex, Brodmann area 35 and 36 by ASHS. These in-
teresting cortical regions have been indicated to be associatedwith hip-
pocampus and with memory function (Ranganath and Ritchey, 2012;
Guedj et al., 2010). There have been several reports about entorhinal
cortex volume reductions in TLE (Bernasconi et al., 2003a; Jutila et al.,
2001) and indications of an association with temporal lobe damage
(Bernasconi et al., 2003a, 2003b). A study of functional aspects sug-
gested a correlation between entorhinal cortex and memory impair-
ment in TLE (Schwarcz and Witter, 2002). Interestingly, an essential
role of generation of ictal discharges or epileptogenicity in entorhinal
cortex was described (Ren et al., 2014; Bartolomei et al., 2005). In our
study, ASHS also detected significant volume reductions of ipsilateral
entorhinal cortex subfields in right TLE-HS group. In ASHS, Brodmann
area 35 and 36 account for perirhinal cortex (Yushkevich et al., 2015).
Concerning the function of perirhinal cortex in TLE, a relationship
between perirhinal cortex and anxiety and recognition memory was
suggested in rats (Hannesson et al., 2005). A similar relation between
entorhinal/perirhinal cortex and recognitionmemorywas also reported
in human beings in a study using 18F-FDG-PET (Guedj et al., 2010). Our
present findings described significant mean volume reductions in ipsi-
lateral Brodmann area 35 of patients with left TLE with HS, which
could possibly be associatedwith theirmemory functions. Although fur-
ther investigations assessing cognitive functions are needed, our results
are partly consistentwith these previous suggestions about the entorhi-
nal/perirhinal cortex, and the use of ASHS could enable noninvasive
evaluations of correlation between entorhinal/perirhinal cortex vol-
umes and cognitive functions or psychiatric symptoms of TLE patients.

This study has several limitations. First, patients' pathological find-
ings and surgical outcomes were not available. For comparison of seg-
mentation methods, a direct comparison with pathological findings,
for example using area under receiver operating characteristic curves,
must be desirable. Although further investigations that include such
data are absolutely needed, the validity and reliability of ASHS have al-
ready been demonstrated in healthy subjects and patients with mild
cognitive impairment (Yushkevich et al., 2015), and the same goes for
FreeSurfer ver.6.0 (Iglesias et al., 2015). Regarding FreeSurfer ver.5.3, a
comparison between MRI subfield volumetry and histopathological
findings in TLE patients with HSwas reported in which there was a sig-
nificant correlation in CA1 and no significant correlations in CA2/3 or
CA4/DG (Schoene-Bake et al., 2014). Since the existing procedure has
several problems and new methods are desirable in this field, we pro-
pose that it would be meaningful to compare FreeSurfer and ASHS in
the same patients with TLE. Second, each subgroup based on existence



Fig. 2.Mean (±SD) z-scores of the ipsilateral hippocampal subfields calculated by FreeSurfer (FS) ver.5.3, ver.6.0 and ASHS in TLEwithHS. *p-values of themean volumes compared to the
control group by Bonferroni correction following an ANCOVA. sub: subiculum, presub: presubiculum, Hipp: hippocampus, Fis: hippocampal fissure, GC-DG: granule cell layer of DG,
parasub: parasubiculum, mol: molecular layer, HATA: hippocampus-amygdala-transition-area, tail: hippocampal tail, whole: whole hippocampus, MISC: miscellaneous parts, ERC:
entorhinal cortex, 35/36: Brodmann area 35/36, CS: collateral sulcus.

63D. Sone et al. / NeuroImage: Clinical 12 (2016) 57–64
of HS and laterality of focus had a relatively small number of patients for
comparison. However, we were nevertheless able to detect significant
differences in various analyses of the TLE-HS group, whereas no signifi-
cance was found in the TLE-nonHS group except for slight volume in-
crease in hippocampus-amygdala-transition-area. Concerning TLE-
nonHS, it would also be difficult to recruit a homogeneous series com-
pared with TLE-HS patients, whose imaging findings are already
established. Therefore, our findings about TLE-nonHS should probably
be regarded as preliminary. Additionally, there would be a possibility
that the altered T2 signal and unsharpness of the dark layer in HS
could affect the results of ASHS and FreeSurfer ver.6.0. Regarding this
dark layer issue, that would be independent of whether we use
FreeSurfer, ASHS or manual segmentation. Especially, CA1 and CA4/DG
can be influenced by this problem, because the dark layer separates
these subfields. Our visual confirmation of parcellation can also cause
a limitation, particularly in FreeSurfer ver.6.0 with detailed small seg-
mentations. Although our results should be interpreted with these lim-
itations, we consider that the two methods with high-resolution T2-
weighed images have made some progress compared to the one with
only T1-weighed images, which detected more severe atrophy in the
subiculum in cases with HS.

5. Conclusions

ASHS and FreeSurfer ver.6.0may have an advantage in compatibility
with existing histopathological knowledge compared to FreeSurfer
ver.5.3, and may become effective methods to evaluate detailed hippo-
campal subfields as well as adjacent related cortices in TLE patients,
especially those with HS, non-invasively and fully automatically. The
use of these automated hippocampal segmentation with high-resolu-
tion T2-weighted images may lead to better prognostic predictions
and selections of treatment, and a fuller understanding of TLE.

Conflicts of interest

None.

References

Alhusaini, S., Scanlon, C., Ronan, L., et al., 2013. Heritability of subcortical volumetric traits
in mesial temporal lobe epilepsy. PLoS One 8, e61880.

Bartolomei, F., Khalil, M., Wendling, F., et al., 2005. Entorhinal cortex involvement in
human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study.
Epilepsia 46, 677–687.

Berg, A.T., Berkovic, S.F., Brodie, M.J., et al., 2010. Revised terminology and concepts for or-
ganization of seizures and epilepsies: report of the ILAE commission on classification
and terminology, 2005–2009. Epilepsia 51, 676–685.

Bernasconi, N., Bernasconi, A., Caramanos, Z., et al., 2003a. Mesial temporal damage in
temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and
parahippocampal region. Brain 126, 462–469.

Bernasconi, N., Andermann, F., Arnold, D.L., et al., 2003b. Entorhinal cortex MRI assess-
ment in temporal, extratemporal, and idiopathic generalized epilepsy. Epilepsia 44,
1070–1074.

Blumcke, I., Kistner, I., Clusmann, H., et al., 2009. Towards a clinico-pathological classifica-
tion of granule cell dispersion in human mesial temporal lobe epilepsies. Acta
Neuropathol. 117, 535–544.

Blumcke, I., Thom, M., Aronica, E., et al., 2013. International consensus classification of
hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE
Commission on Diagnostic Methods. Epilepsia 54, 1315–1329.

Bower, S.P., Vogrin, S.J., Morris, K., et al., 2003. Amygdala volumetry in “imaging-negative”
temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 74, 1245–1249.

http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0005
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0005
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0010
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0010
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0010
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0015
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0015
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0015
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0020
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0020
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0020
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0025
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0025
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0025
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0030
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0030
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0030
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0035
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0035
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0035
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0040
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0040
Image of Fig. 2


64 D. Sone et al. / NeuroImage: Clinical 12 (2016) 57–64
Cendes, F., Sakamoto, A.C., Spreafico, R., et al., 2014. Epilepsies associated with hippocam-
pal sclerosis. Acta Neuropathol. 128, 21–37.

Coan, A.C., Morita, M.E., de Campos, B.M., et al., 2013. Amygdala enlargement in patients
with mesial temporal lobe epilepsy without hippocampal sclerosis. Front. Neurol. 4,
166.

Coras, R., Milesi, G., Zucca, I., et al., 2014. 7 T MRI features in control human hippocampus
and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia 55,
2003–2016.

Guedj, E., Barbeau, E.J., Liegeois-Chauvel, C., et al., 2010. Performance in recognition mem-
ory is correlated with entorhinal/perirhinal interictal metabolism in temporal lobe
epilepsy. Epilepsy Behav. 19, 612–617.

Hannesson, D.K., Howland, J.G., Pollock, M., et al., 2005. Anterior perirhinal cortex kindling
produces long-lasting effects on anxiety and object recognition memory. Eur.
J. Neurosci. 21, 1081–1090.

Hauser,W.A., Annegers, J.F., Rocca,W.A., 1996. Descriptive epidemiology of epilepsy: con-
tributions of population-based studies from Rochester, Minnesota. Mayo Clin. Proc.
71, 576–586.

Iglesias, J.E., Augustinack, J.C., Nguyen, K., et al., 2015. A computational atlas of the hippo-
campal formation using ex vivo, ultra-high resolution MRI: application to adaptive
segmentation of in vivo MRI. NeuroImage 115, 117–137.

Jutila, L., Ylinen, A., Partanen, K., et al., 2001. MR volumetry of the entorhinal, perirhinal,
and temporopolar cortices in drug-refractory temporal lobe epilepsy. AJNR Am.
J. Neuroradiol. 22, 1490–1501.

Kim, H., Mansi, T., Bernasconi, N., 2013. Disentangling hippocampal shape anomalies in
epilepsy. Front. Neurol. 4, 131.

Lv, R.J., Sun, Z.R., Cui, T., et al., 2014. Temporal lobe epilepsy with amygdala enlargement:
a subtype of temporal lobe epilepsy. BMC Neurol. 14, 194.

Maccotta, L., Moseley, E.D., Benzinger, T.L., et al., 2015. Beyond the CA1 subfield: local hip-
pocampal shape changes in MRI-negative temporal lobe epilepsy. Epilepsia 56,
780–788.

McIntosh, A.M., Kalnins, R.M., Mitchell, L.A., et al., 2004. Temporal lobectomy: long-term
seizure outcome, late recurrence and risks for seizure recurrence. Brain 127,
2018–2030.

Mueller, S.G., Laxer, K.D., Cashdollar, N., et al., 2006. Voxel-based optimizedmorphometry
(VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without
mesial temporal sclerosis. Epilepsia 47, 900–907.
Mueller, S.G., Laxer, K.D., Barakos, J., et al., 2009. Subfield atrophy pattern in temporal lobe
epilepsy with and without mesial sclerosis detected by high-resolution MRI at
4 Tesla: preliminary results. Epilepsia 50, 1474–1483.

Na, M., Liu, Y., Shi, C., et al., 2014. Prognostic value of CA4/DG volumetry with 3 T magnet-
ic resonance imaging on postoperative outcome of epilepsy patients with dentate
gyrus pathology. Epilepsy Res. 108, 1315–1325.

Na, M., Ge, H., Shi, C., et al., 2015. Long-term seizure outcome for international consensus
classification of hippocampal sclerosis: a survival analysis. Seizure 25, 141–146.

Ramli, N., Rahmat, K., Lim, K.S., et al., 2015. Neuroimaging in refractory epilepsy. Current
practice and evolving trends. Eur. J. Radiol.

Ranganath, C., Ritchey, M., 2012. Two cortical systems for memory-guided behaviour. Nat.
Rev. Neurosci. 13, 713–726.

Ren, H., Shi, Y.J., Lu, Q.C., et al., 2014. The role of the entorhinal cortex in epileptiform ac-
tivities of the hippocampus. Theor. Biol. Med. Model. 11, 14.

Schoene-Bake, J.C., Keller, S.S., Niehusmann, P., et al., 2014. In vivo mapping of hippocam-
pal subfields inmesial temporal lobe epilepsy: relation to histopathology. Hum. Brain
Mapp. 35, 4718–4728.

Schwarcz, R., Witter, M.P., 2002. Memory impairment in temporal lobe epilepsy: the role
of entorhinal lesions. Epilepsy Res. 50, 161–177.

Simic, G., Kostovic, I., Winblad, B., et al., 1997. Volume and number of neurons of the
human hippocampal formation in normal aging and Alzheimer's disease. J. Comp.
Neurol. 379, 482–494.

Thom, M., 2014. Review: hippocampal sclerosis in epilepsy: a neuropathology review.
Neuropathol. Appl. Neurobiol. 40, 520–543.

Van Leemput, K., Bakkour, A., Benner, T., et al., 2009. Automated segmentation of hippo-
campal subfields from ultra-high resolution in vivo MRI. Hippocampus 19, 549–557.

Wiebe, S., Blume, W.T., Girvin, J.P., et al., 2001. A randomized, controlled trial of surgery
for temporal-lobe epilepsy. N. Engl. J. Med. 345, 311–318.

Wisse, L.E., Biessels, G.J., Geerlings, M.I., 2014. A critical appraisal of the hippocampal sub-
field segmentation package in FreeSurfer. Front. Aging Neurosci. 6, 261.

Yushkevich, P.A., Wang, H., Pluta, J., et al., 2010. Nearly automatic segmentation of hippo-
campal subfields in in vivo focal T2-weighted MRI. NeuroImage 53, 1208–1224.

Yushkevich, P.A., Pluta, J.B., Wang, H., et al., 2015. Automated volumetry and regional
thickness analysis of hippocampal subfields and medial temporal cortical structures
in mild cognitive impairment. Hum. Brain Mapp. 36, 258–287.

http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0045
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0045
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0050
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0050
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0050
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0055
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0055
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0055
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0060
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0060
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0060
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0065
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0065
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0065
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0070
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0070
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0070
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0075
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0075
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0075
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0080
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0080
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0080
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0085
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0085
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0090
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0090
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0095
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0095
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0095
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0100
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0100
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0100
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0105
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0105
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0105
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0110
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0110
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0110
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0115
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0115
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0115
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0120
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0120
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0125
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0125
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0130
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0130
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0135
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0135
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0140
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0140
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0140
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0145
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0145
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0150
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0150
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0150
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0155
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0155
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0160
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0160
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0165
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0165
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0170
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0170
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0175
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0175
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0180
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0180
http://refhub.elsevier.com/S2213-1582(16)30106-1/rf0180

	Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-�resolution T2-�weighed MR imaging
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. MRI acquisitions
	2.3. FreeSurfer volumetry of hippocampal subfields
	2.4. ASHS volumetry of hippocampal subfields
	2.5. Statistical analysis

	3. Results
	3.1. Volumetric analyses of hippocampal subfields for TLE-HS group
	3.2. Volumetric analyses of hippocampal subfields for TLE-nonHS group

	4. Discussion
	5. Conclusions
	Conflicts of interest
	References


