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Abstract
Infections with  have been marked with thePseudomonas aeruginosa 
highest priority for surveillance and epidemiological research on the basis
of parameters such as incidence, case fatality rates, chronicity of illness,
available options for prevention and treatment, health-care utilization, and
societal impact.  is one of the six ESKAPE pathogens that areP. aeruginosa 
the major cause of nosocomial infections and are a global threat because of
their capacity to become increasingly resistant to all available antibiotics.
This review reports on current pre-clinical and clinical advances of
anti-pseudomonal therapies in the fields of drug development, antimicrobial
chemotherapy, vaccines, phage therapy, non-bactericidal pathoblockers,
outer membrane sensitizers, and host defense reinforcement.
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In humans, the aquatic gamma-proteobacterium Pseudomonas 
aeruginosa may cause multiple infections that vary from local 
to systemic and from benign to life-threatening. The manage-
ment of the severe ocular1 and burn2 infections has made sub-
stantial progress during the last 20 years, but pneumonia and 
sepsis, particularly of ventilated patients in intensive care units  
(ICUs), are still burdened with high morbidity and lethality3,4. 
Chronic airway infections with P. aeruginosa are a major  
co-morbidity in patients with cystic fibrosis (CF)5, bronchiectasis6,  
or chronic obstructive pulmonary disease (COPD)7.

Infections with P. aeruginosa have been marked with the highest 
priority for surveillance and epidemiological research on the 
basis of parameters such as incidence, case fatality rates, chro-
nicity of illness, available options for prevention and treatment, 
health-care utilization, and societal impact8. P. aeruginosa  
is one of the six ESKAPE pathogens that are the major cause 
of nosocomial infections in the US and are a threat all over the 
world because of their capacity to become increasingly resist-
ant to all available antibiotics9. P. aeruginosa is equipped with a 
lowly permeable outer membrane and multiple transport sys-
tems, rendering it naturally resistant to many antimicrobial  
agents10. In addition to its intrinsic resistance common to all  
P. aeruginosa, the bacterium has the extraordinary capacity 
to develop resistance to nearly all available antimicrobials11. 
The most common underlying mechanisms in multidrug-resistant 
(MDR) and extensively drug-resistant (XDR) P. aeruginosa 
are alterations in porin channels, efflux pumps, target modifications, 
and β-lactamases (for example, AmpC and carbapenemases)12,13. 
Resistance may be acquired by the selection of mutations  
in chromosomal genes or horizontal uptake of resistance 
determinants. Of particular concern are mobile genomic 
islands and integrons encoding carbapenemases or extended- 
spectrum β-lactamases (ESBLs) frequently co-transferred with  
aminoglycoside-modifying enzyme determinants14,15.

This review deals with the current approaches to develop 
new modes of anti-pseudomonal therapies. The decision of 
major pharmaceutical companies to exit antibacterial research 
has triggered the formation of non-profit alliances that  
support academia, clinicians, and industry in the development of 
novel antimicrobials. For example, Combating Antibiotic Resist-
ant Bacteria (CARB-X) (https://carb-x.org/) is funded by the US 
Department of Health and Human Services, the National Insti-
tutes of Health, the Wellcome Trust, the Bill & Melinda Gates 
Foundation, and Germany’s Federal Ministry of Education 
and Research. CARB-X is investing up to $550 million (USD) 
from 2016 to 2021 to accelerate the development of innovative  
antibiotics and other therapeutics, vaccines, and rapid diag-
nostics to address drug-resistant bacterial infections. Several 
companies have received funds from CARB-X to develop anti- 
pseudomonal agents, namely inhibitors of virulence factors and 
antibiotic potentiators16. Support to develop novel drugs is also 
provided by the Innovative Medicines Initiative (IMI) funded 
jointly by the European Union and the European pharmaceutical  
industry. As described below, CARB-X and the IMI have 
been instrumental in speeding up the pre-clinical and clinical  
development of numerous anti-pseudomonal agents.

Antibiotics
Antimicrobial chemotherapy is still the cornerstone of anti-
pseudomonal treatment in clinical practice. P. aeruginosa is 
a naturally MDR organism, which may explain its success in 
becoming one of the most frequent nosocomial pathogens. Envi-
ronmental P. aeruginosa strains are commonly susceptible to 
broad-spectrum penicillins and cephalosporins, aminoglycosides, 
monobactams, carbapenems, and fluoroquinolones. Since the 
1980s, the intravenous combination therapy of piperacillin 
or ceftazidime with an aminoglycoside has been the standard 
of care to treat severe infections with P. aeruginosa, but the  
emergence of resistant organisms, particularly in the settings 
of intensive care or chronic persistence in vulnerable patient  
populations, has called for alternatives.

One strategy for the treatment of MDR P. aeruginosa has 
been the revival of colistin and polymyxin B, old drugs 
that had been abandoned for many years because of their  
significant toxicity and side effects. Within a few years of 
more active therapeutic use, a growing number of strains have  
meanwhile developed resistance against these last-line peptide  
antibiotics17,18. Mutations in various two-component systems 
activate the arn operon, which modifies the lipid A moiety 
of the lipopolysaccharide (LPS) through the addition of  
4-amino-4-deoxy-L-arabinose, thereby rendering the bacterial  
cell resistant to the peptide antibiotic17,18.

An alternative strategy has been the development of mol-
ecules that overcome β-lactam antibiotic resistance. Two new  
cephalosporin-β-lactamase inhibitor combinations have recently 
been introduced into the clinic: ceftazidime-avibactam and  
ceftolozane-tazobactam19. Avibactam readily inactivates the  
chromosomal β-lactamase of P. aeruginosa AmpC. Tazobactam  
is a less potent inhibitor of AmpC but this is compensated by 
the new antibiotic component in this combination, ceftolozane,  
which is only poorly hydrolyzed by AmpC.

At the time of this writing, more than 90% of P. aeruginosa 
isolates around the world seem to be susceptible to colis-
tin, ceftazidime-avibactam, and ceftolozane-tazobactam15,20–23.  
Resistance to the latter two antibiotic–antibiotic inhibitor combi-
nations has been observed mainly in P. aeruginosa isolates that 
belong to the pandemic ST235 high-risk clone and carry novel  
isoforms of AmpD or ESBLs or both24,25.

Besides avibactam and tazobactam, other β-lactamase inhibi-
tors—that is, relebactam26–29, zidebactam30,31, nacubactam32,  
vaborbactam28, VNRX-513333, and AAI10126—are being tested in 
clinical trials.

An encouraging addition to the portfolio of anti-pseudomo-
nal β-lactams is the siderophore cephalosporin cefiderocol34,35. 
Cefiderocol is structurally related to the cephalosporins 
ceftazidime and cefepime by sharing side chains that block  
recognition and inhibit hydrolysis by β-lactamases. The nov-
elty resides in the extension of one side chain by a catechol  
2-chloro-3,4-dihydroxybenzoic acid moiety. The catechol side 
chain enables ferric iron ion binding. The cefiderocol iron ion 
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complex is recognized by active iron transport systems (such 
as PiuA) which transport cefiderocol across the outer membrane 
and to the periplasmic space36. After dissociation of the com-
plex, cefiderocol binds to penicillin binding proteins (PBP1a,  
PBP1b, PBP2, and PBP3) and inhibits peptidoglycan synthe-
sis, causing cell death. Compared with the anti-pseudomonal 
agents that are currently available for use in humans, cefiderocol 
had the strongest activity against MDR P. aeruginosa 
strains. Of all β-lactams, cefiderocol has the most extended  
stability to hydrolysis by β-lactamases and its periplasmic entry  
via active iron transport systems overcomes β-lactam resist-
ance associated with outer membrane permeability mutations in  
P. aeruginosa37.

Cefiderocol is more potent in vitro against MDR P. aeruginosa 
than ceftazidime-avibactam and ceftolozane-tazobactam38. Cefi-
derocol showed activity against AmpC-overproducing strains, 
low affinity for chromosomal AmpC β-lactamases, and a low 
propensity of temporal induction of AmpC β-lactamases of 
P. aeruginosa39. Cefiderocol is active against carbapenem- 
non-susceptible isolates, including serine carbapenemase- and  
metallo-β-lactamase-producing strains40,41.

Carbapenem-resistant Gram-negative bacteria represent the high-
est priority for addressing global antibiotic resistance. Cefi-
derocol may address this problem—at least for some years to 
come. A recently completed phase II clinical trial demonstrated 
clinical efficacy and safety of intravenous cefiderocol com-
pared with imipenem/cilastatin in patients with complicated  
urinary tract infections35. Clinical trials of hospital-acquired pneu-
monia and carbapenem-resistant infections (ClinicalTrials.gov 
identifiers NCT02321800, NCT02714595, and NCT03032380)  
are ongoing.

Novel non-β-lactam antimicrobials have also been developed 
to target MDR organisms42. Plazomicin is a sisomycin deriva-
tive that is unaffected by aminoglycoside-modifying enzymes. 
It was approved by the US Food and Drug Administration 
(FDA) for use in adults with complicated urinary tract infec-
tions. Its anti-pseudomonal activity is comparable to that of ami-
kacin and less potent than that of tobramycin, indicating that this  
compound will probably not be very useful for the treatment 
of infections with P. aeruginosa42. The same argument applies 
even more so to the tetracyclines eravacycline and omada-
cyline, which demonstrate antimicrobial activity against many 
Gram-positive and Gram-negative bacteria but are not active 
against P. aeruginosa42. In contrast, two novel fluoroquinolones,  
finafloxacin43,44 and delafloxacin44,45, which (depending on pH) 
exert anti-pseudomonal activity equivalent to or higher than  
that of ciprofloxacin, have recently become available.

Besides these analogues of classes of antimicrobials well known 
for their basic chemical structure and mode of antimicrobial 
action, anti-pseudomonal drugs that aim at a new target are  
being developed. Murepavadin, a 14–amino acid synthetic  
peptidomimetic, is a first-in-class antibiotic targeting outer  
membrane protein46. During the biogenesis of the outer mem-
brane, new LPS molecules are transported from their site of 

assembly on the inner membrane to the outer membrane by 
seven LPS transport proteins (LptA–G). The complex formed 
between the outer membrane protein LptD and the lipopro-
tein LptE is responsible for transporting LPS from the periplas-
mic side of the outer membrane to its final location on the cell  
surface. Murepavadin inhibits the LPS transport protein LptD in  
P. aeruginosa. Murepavadin was proven to be a very potent  
antibiotic highly specific to P. aeruginosa, including carbap-
enemase producers and ceftolozane/tazobactam-resistant and 
colistin-resistant strains. Murepavadin (96.7% of isolates  
susceptible) was more active than colistin (93.6%), fol-
lowed by ceftolozane/tazobactam (70.6%) and tobramy-
cin (47.5%)47,48. Two clinical trials have been evaluating the  
efficacy and safety of murepavadin in treating lower respira-
tory tract infections caused by P. aeruginosa (suspected or  
confirmed) among patients with ventilation-associated pneumonia 
or bronchiectasis unrelated to CF (ClinicalTrials.gov identifiers  
NCT02096315 and NCT02096328, respectively). However, by 
July 17, 2019, the studies were stopped because an unexpect-
edly high frequency of renal failures had been observed in study  
participants who had received murepavadin. The develop-
ment of an aerosolized formulation of murepavadin for a topical  
application will not be affected by this decision.

Murepavadin is a specific weapon against P. aeruginosa, which 
sets it apart from the large pipeline of natural and synthetic 
antimicrobial peptides that act against multiple taxa, includ-
ing P. aeruginosa. Several novel peptides with broad antimi-
crobial activity—for example, DGL13K49, Mel450, melimine50,  
cecropin B51, LBP-252,53, Pse-T254, 6K-F1755, MDP156, and 
MDP256—have recently been described.

Aerosolized anti-pseudomonal agents are the domain for the 
treatment of chronic airway infections of individuals with 
CF or bronchiectasis. Established options are the long-term 
inhalation with high-dose tobramycin57,58, colistin59–61, or  
aztreonam-lysine62–64. Emerging alternatives were the inhala-
tion of liposomal amikacin65 and, more recently, the inhalation  
with dry powder66,67 or liposomal68,69 ciprofloxacin or with  
liposomal levofloxacin70. As described below, the clinical drug 
development programs had to face unforeseen obstacles unre-
lated to the proven anti-pseudomonal activity of the formulations  
in vitro.

Liposomal amikacin can penetrate within airway secretions 
and within P. aeruginosa biofilms, making it an attractive thera-
peutic option for chronic pulmonary infections. A phase II 
study with once-daily liposomal amikacin demonstrated 
acute tolerability, safety, biologic activity, and efficacy in CF 
patients with P. aeruginosa infection71. However, apparently  
because of the results of a long-term rat inhalation carcino-
genicity study, the FDA placed a clinical hold on the phase III  
clinical trials with this patient cohort by August 2017 and requested 
more safety data. Thirteen months later, the FDA approved  
inhalation with liposomal amikacin for the treatment of lung  
disease with Mycobacterium avium complex (MAC) in patients 
with refractory disease. Thus, at least until the time of this  
writing, the journey ended with a new therapy for MAC but  
not for P. aeruginosa.
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Two phase III, double-blind, placebo-controlled trials— 
RESPIRE 167 and RESPIRE 266—examined the efficacy and 
safety of ciprofloxacin dry powder for inhalation (DPI) in  
patients with non-CF bronchiectasis who had experienced two or 
more exacerbations in the previous year and pre-defined bacteria 
in sputum, including P. aeruginosa, as a major pathogen.  
These two trials represent the largest clinical trial program 
ever conducted in bronchiectasis. RESPIRE 1 largely enrolled 
across Europe, North and South America, Australia, and Japan, 
whereas RESPIRE 2 focused on Asia and Eastern Europe. 
Patients received twice-daily ciprofloxacin DPI 32.5 mg or pla-
cebo in 14- or 28-day on/off treatment cycles for 48 weeks. The  
14-day on/off treatment cycles in RESPIRE 1 significantly pro-
longed time to first exacerbation and reduced the frequency 
of exacerbations. The same trends were seen in the 14-day  
cycle in RESPIRE 2 and the 28-day cycles but did not 
achieve significance. When the data were pooled, an aver-
age 24% reduction in exacerbations was calculated. Experts 
who commented on the outcome of the trials concluded that 
aerosolized dry powder ciprofloxacin is most likely to be of  
benefit in selected patients with poorly controlled disease and very 
frequent exacerbations72.

An alternative formulation to dry powder is the encapsula-
tion of drug into liposomes. Two randomized, double-blind, 
placebo-controlled, phase 3 trials—ORBIT-3 and ORBIT-4— 
investigated the safety and efficacy of inhaled liposomal  
ciprofloxacin69. The more than 500 study participants had had 
two or more pulmonary exacerbations treated with antibiotics in 
the prior 12 months, had non-CF bronchiectasis, and had a history 
of chronic P. aeruginosa lung infection. Compared with placebo,  
inhalation with liposomal ciprofloxacin led to a significantly 
longer median time to first pulmonary exacerbation in the 
ORBIT-4 but not in the ORBIT-3 trial. In a pooled analysis of 
data from the two trials, median times to first pulmonary exacer-
bation were 157 days in the placebo group and 222 days in the  
verum group, a non-statistically significant difference of  
65 days (0.82, 95% confidence interval (CI) 0.65–1.02; P = 0.074).

For both the two RESPIRE and ORBIT trials, the results were 
not replicated. The discrepant outcome was attributed to dif-
ferences in clinical practice and the vast ethnic, geographic, 
and endo-phenotypic heterogeneity of bronchiectasis72. Future 
trials should address these differences across the globe and 
should thoroughly characterize the endo-phenotype of indi-
vidual patients in order to identify the patient groups which  
benefit from specific modes of anti-pseudomonal treatment. 
Patient stratification within this highly heterogeneous group 
of patients makes sense in light of the experience with CF, 
which is a monogenic disorder of Caucasians. Most clinical 
studies on anti-pseudomonal chemotherapy in this more  
homogeneous patient population met their primary endpoints  
with smaller cohorts than the RESPIRE and ORBIT trials.

In randomized controlled trials, monotherapy with an aero-
solized anti-pseudomonal drug has been proven to be an 
effective measure to suppress chronic airway infections with  
P. aeruginosa in CF. Comparable data on inhaled combination 

therapy are still missing. P. aeruginosa biofilms grown in vitro 
typically consist of a stalk-forming subpopulation situated in 
the deeper layer with low metabolic activity and a cap-forming  
subpopulation in the upper layer with metabolically active 
cells73. Colistin preferentially kills the stalk subpopulation, 
whereas the cap-forming subpopulation is susceptible to the 
aminoglycoside tobramycin74. Owing to this observation in bio-
films as models for the sessile lifestyle of P. aeruginosa in CF 
airways, the sequential therapy with inhaled tobramycin and 
colistin was examined in an observational study with 41 CF  
patients with chronic P. aeruginosa infection75. Treatment was 
well tolerated and significantly improved patients’ lung function. 
An alternative to colistin-tobramycin may be aztreonam- 
tobramycin. When biofilms were grown in flow cells, the alter-
nation of tobramycin and aztreonam potentiated the bactericidal  
effect and the reduction in bacterial biomass76.

Meanwhile, combination inhalation therapy has become routine 
in clinical practice, but besides the open-label exploratory study 
mentioned above, no clinical trials have yet been published. 
More clinical data about the efficacy of systemic combination 
therapy are available. For example, an 11-year single-center 
retrospective analysis of the treatment of P. aeruginosa blood-
stream infections revealed that survival of patients receiving 
combination therapy (β-lactam-aminoglycoside or β-lactam- 
quinolone) was significantly higher than that of patients  
receiving β-lactam monotherapy77. A recently published meta-
analysis compared the outcome of empirical non-optimized 
double β-lactam combination therapy versus β-lactam plus  
aminoglycoside78. In the 164 cases from 13 randomized clini-
cal trials reported between 1972 and 1993, a response to  
P. aeruginosa was achieved in 58.5% for double β-lactam 
and 60.6% for β-lactam-aminoglycoside. The two regimens 
achieved similar clinical and microbiological responses, but  
nephrotoxicity and ototoxicity were significantly lower with  
double β-lactam combination therapy. These metadata are from 
a time period before broad-spectrum antibiotics were widely 
introduced into the clinic. Nevertheless, they tell us that dou-
ble β-lactams may be a useful therapeutic option because  
synergy may arise from the complementary inactivation of sets of 
PBPs. 

Modulators of bacterial cell wall, transport, signaling, 
or virulence
Mucoid alginate-overproducing P. aeruginosa strains are a  
phenotypical hallmark of chronic airway infections in individu-
als with CF. Bacterial alginate is made of alternating blocks of 
mannuronate homooligomers and mannuronate-guluronate 
heterooligomers, whereas the algal alginate also contains 
guluronate homooligomers. Algal-derived alginate oligomers  
enriched in guluronate homooligomers (oligoG) reduce the 
viscosity of sticky biofilms and potentiate anti-bacterial and 
anti-fungal compounds. OligoG DPI is being tested in IMI- 
supported phase 2 clinical trials whether they improve lung  
function and respiratory symptoms in patients with CF.

The intrinsic multidrug resistance of P. aeruginosa is partly based 
on its low outer membrane permeability. By 1983, Vaara and 
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Vaara introduced the concept of outer membrane–disorganizing 
sensitizers that make the outer membrane more perme-
able to amphiphilic and hydrophobic compounds79. For  
example, the non-bactericidal polymyxin B nonapeptide  
sensitized P. aeruginosa strains 2- to 40-fold to cipro-
floxacin, norfloxacin, and ofloxacin and 80- to 200-fold to the  
parent compound nalidixic acid, indicating that the higher anti- 
pseudomonal activity of fluoroquinolones compared with nalidixic 
acid was based not only on the more efficient inhibition 
of the DNA gyrase but also on a higher outer membrane  
permeability80. Now more than 30 years after the first report of 
three outer membrane sensitizers, the approved anti-protozoal 
drug pentamidine81 and the polymyxin B analogues SPR206  
and SPR74182,83 are in pre-clinical and clinical studies to re-fuel the 
anti-Pseudomonas pipeline.

P. aeruginosa uses quorum sensing, including the elastase 
(Las), rhamnolipid (Rhl), and Pseudomonas quinolone sig-
nal (PQS) systems, to regulate and coordinate population-wide 
group behaviors in infection processes like biofilm formation 
and the concerted secretion of virulence factors. Pathoblockers 
of the quorum sensing system abolish pathogenic features with-
out affecting cell viability, providing the basis for a lower drug- 
induced selection pressure84–87. Potent inhibitors of all known  
quorum sensing systems have been identified, but none of the  
novel compounds such as NX-As-401 (www.neembiotech.
com) has yet made it into clinical trials. The exceptions are 
the well-known macrolide antibiotics. In the late 1980s, Japa-
nese physicians reported that the chronic administration of 
erythromycin, clarithromycin, and azithromycin improved 
the clinical symptoms and prognosis of patients with chronic  
P. aeruginosa infections88. Azithromycin does not kill  
P. aeruginosa but inhibits protein biosynthesis and quorum  
sensing89. Azithromycin is now widely used for the treatment of 
chronic airway infections with P. aeruginosa in patients with 
COPD, bronchiectasis, or CF. Within the setting of the ICU, 
azithromycin showed a trend to prevent ventilation-associated 
pneumonia in intubated patients and significantly reduced  
the activation of quorum sensing–regulated virulence traits90.

Iron metabolism is another highly topical target of anti-pseu-
domonal drug development. Gallium is an iron mimetic91–95. Ga3+ 
has an ionic radius nearly identical to that of ferric iron Fe3+ and 
hence can replace iron in Fe3+-dependent biological systems. 
Unlike Fe3+, Ga3+ is not reduced under physiological conditions 
and thus inactivates iron-mediated redox cycling91–93. Gallium  
inhibited P. aeruginosa growth and biofilm formation and killed 
planktonic and biofilm bacteria in vitro91,92,94 and increased sur-
vival in a murine infection model91,92,95. Intravenous gallium 
treatment improved lung function in CF patients with chronic  
P. aeruginosa lung infection in a preliminary phase 1 clinical 
trial95.

Neutralization of virulence effectors is another currently pur-
sued approach to combat infections with P. aeruginosa. Some 
programs are supported by the CARB-X alliance. For exam-
ple, inhibitors are developed against the P. aeruginosa LasB 
elastase (https://antabio.com/programs), thereby targeting the 

bacterium’s ability to evade the immune system and cause dis-
ease and, when given alongside antibiotics, helping to clear  
P. aeruginosa infections. Other programs have focused on the 
machinery and virulence effectors of the type III secretion sys-
tem. Phenoxyacetamide inhibitors target the needle protein PscF 
that delivers the virulence effectors into the host cell96,97. Alter-
natively, monoclonal antibodies were generated against the PcrV 
protein that forms the tip of the injectosome complex98. Intrave-
nous KB001-A, an anti-PcrV PEGylated monoclonal antibody 
fragment, showed limited efficacy in CF patients infected with  
P. aeruginosa99. The repeated administration of KB001-A over 
16 weeks was associated with a small improvement of lung 
function and decrease of sputum inflammatory markers but 
did not prolong the time-to-need for antibiotics for worsen-
ing respiratory signs and symptoms100. Bispecific antibodies  
that block multiple evasion and subversion mechanisms in tan-
dem may be more efficacious101. In a murine bacteremic model 
of P. aeruginosa infection, the bispecific therapeutic antibody 
MEDI3902, targeting PcrV and the Psl exopolysaccharide, 
was shown to efficiently enhance neutrophil uptake, phago-
some acidification, and bacterial killing101. After completion of a  
phase 1 study102, passive immunization with MEDI3902 
(renamed Gremubamab) is currently in phase 2b develop-
ment for prevention of nosocomial P. aeruginosa pneumonia 
in patients undergoing mechanical ventilation (EVADE study  
funded by the IMI).

Novel formulations for anti-pseudomonal drug 
delivery
Impaired penetration of antimicrobials through bacterial bio-
films is one of the reasons for the failure of anti-pseudomonal 
therapy of burn wounds and chronic lung infections. Encap-
sulation of antimicrobials in nanocarriers may facilitate drug  
diffusion within the sticky biofilm matrix, protect the drug  
from unwanted degradation, confer controlled drug release, and 
increase uptake by the drug target. Anti-pseudomonal drugs 
such as ciprofloxacin103–105, meropenem106, tobramycin107,108,  
gentamicin109, or amikacin110 were encapsulated into liposomes 
or loaded into nanoparticles. The drug delivery systems were 
diverse in chemical nature and include anionic liposomes105,106,109, 
poly(lactic-co-glycolic) acid nanoparticles110,111, water-soluble 
chitosan oligosaccharide conjugates112, oil-in-water cross-linked 
polymeric nanocomposites113, graphen-oxide conjugates107, or 
solid lipid nanoparticles114, to name just a few. Alternatively, dry  
powders103,104,108,115 or hydrogels116–119 were formulated or wound 
dressings were coated with a topical antimicrobial such as silver 
oxynitrate120. Irrespective of the chosen formulation, most pub-
lished articles report that their formulation penetrates through 
mucus and biofilms, is more effective than the antimicrobial 
alone to eradicate biofilm formation, and mitigates infection  
and disease progression.

Vaccines
The provision of an effective vaccine to protect patient popu-
lations at risk from an infection with P. aeruginosa has been 
on the agenda of Pseudomonas researchers for many decades, 
but there are no licensed vaccines at present. In the 1990s, the 
Swiss Serum and Vaccine Institute developed an octavalent  
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P. aeruginosa O-polysaccharide-toxin A conjugate vaccine 
for immunization of healthy P. aeruginosa–negative patients 
with CF121. The persistence of high-affinity antibodies among 
immunized patients correlated with a significantly lower rate 
of infection after 4 to 6 years of observation. The vaccine was 
well received by the European CF community. Patients at my 
CF center regularly travelled to Bern, Switzerland, to receive 
boosters every two to three years until the stock was used up. 
A few years later, Döring et al. conducted a double-blind,  
placebo-controlled, multicenter trial with a flagella vaccine 
demonstrating that active immunization of patients with CF 
lowers the risk for infection with P. aeruginosa122. The third 
approach was the 20-year-long development of vaccines based 
on OprF-OprI outer membrane fusion proteins as antigen123. In 
the last pilot study, published in 2010, human volunteers were  
vaccinated with a systemic, nasal, or oral live vaccine based 
on attenuated live Salmonella (strains CVD908 and Ty21a), 
followed by a systemic booster124. Systemic and mucosal  
vaccines induced a comparable rise of serum antibody titers, 
but only nasal and oral vaccinations elicited a significant rise of  
IgA and IgG antibodies in the lower airways. At that time, the 
authors concluded that nasal and oral OprF-OprI vaccines were 
promising candidates for development of anti-pseudomonal  
immunization through inducing a specific antibody response in the 
lung.

These old data, including small clinical trials on burns and 
CF, provided evidence that a vaccine could be an effective 
measure to prevent infections with P. aeruginosa. Hence, the 
recombinant OprF-OprI vaccine was tested in a randomized,  
placebo-controlled, double-blind phase II/III study125, which 
was conducted in 800 mechanically ventilated ICU patients at  
52 trial sites in six European countries. Patients were vacci-
nated twice with either the P. aeruginosa vaccine candidate or 
a placebo at a 7-day interval in conjunction with standard-of-
care treatments for ICU patients. Although the trial confirmed 
good immunogenicity and an acceptable safety profile of the  
vaccine candidate, the primary endpoint of the phase II/III trial 
was not met. Therefore, findings from a previous phase II study 
that had shown a strong reduction in all-cause mortality were  
not confirmed.

The outcome of this largest-ever trial performed on a Pseu-
domonas vaccine was disappointing. Nevertheless, there are 
encouraging new data on other antigens. For example, a live aroA-
aroB attenuated Salmonella vaccine that uses a fusion between 
the P. aeruginosa type III secretion antigen PcrV expressed 
under the control of the sseA promoter and the S. enterica  
type III secretion effector protein SseJ has been constructed126. 
Compared with control mice, mice immunized with attenu-
ated Salmonella expressing this fusion had lower serum levels  
of pro-inflammatory cytokines and reduced bacterial loads in the 
spleen and lungs after P. aeruginosa infection. Importantly, in  
this model, immunized mice also showed significantly enhanced 
survival. Another novel strategy is the design of live-attenuated  
whole cell vaccines based on D-glutamate auxotrophy127. The 
enzyme glutamate racemase MurI converts the amino acid  
L-glutamate into its enantiomer D-glutamate, which is an essential 

component of peptidoglycan. In-frame deletion of the murI 
gene generated a live-attenuated P. aeruginosa auxotrophic 
strain that, upon local or systemic administration, triggered  
appropriate cellular immune responses and production of spe-
cific and cross-reactive antibodies in the vaccinated murine 
hosts and conferred long-term survival against lethal infec-
tions with P. aeruginosa but, on the other hand, was rapidly 
eliminated from the host without causing disease. Other groups  
showed protection in murine infection models by using the 
iron acquisition protein HitA128, PA5340 combined with 
PA3526-MotY129, PcrV with CpG oligodeoxynucleotide130, or  
the pilus proteins PilQ and PilA131 as vaccine antigens.

Phage therapy
Given that antibiotic resistance is an increasing threat not only 
to human health but also to the production of food and to sus-
tainable development, phage therapy is regaining interest as 
an alternative or addition to antibiotic therapy for the treat-
ment of bacterial infections132. Phage therapy was abandoned 
in many countries with the advent of antibiotic therapy but has  
been continually developed in Eastern European countries 
with centers in Warsaw, Poland, and Tbilisi, Georgia133.  
Shotgun metagenome sequencing revealed that the phage cock-
tails sold in pharmacies in Georgia and Russia contained anti- 
pseudomonal phages134. A few case reports from Belgium and the  
US communicated the successful treatment of infections  
with MDR P. aeruginosa135,136.

Early this year, the outcome of the first clinical study on phage 
therapy was reported137. The study, conducted as a randomized 
controlled double-blind trial, compared the tolerability and  
efficacy of a cocktail of lytic anti-P. aeruginosa bacteriophages 
with standard of care for patients with burns. The primary  
endpoint—the median time to sustained reduction in bacterial  
burden—was reached in 47 hours in the standard-of-care 
group (hazard ratio 0.29, 95% CI 0.10–0.79; P = 0.018) versus  
144 hours (95% CI 48–not reached) in the group that received 
the phages. The finding that a standardized phage cocktail 
decreased bacterial burden in burn wounds more slowly than 
the standard of care is a strong indication that phage cock-
tails of fixed composition could unfavorably interfere with the  
evolutionary race between phage and bacterium by selecting 
phage resistance in the heterogeneous bacterial populations 
that vary from patient to patient. The personalized approach 
of choosing phages that specifically target the Pseudomonas 
bacteria in the individual host habitat may be more effective,  
although it will require rethinking of the regulatory agencies.

Research is very active in the pre-clinical arena. Practical 
themes are the setup of efficacious and safe antibacterial phage 
cocktails, the design of clever infection models, and the devel-
opment of phages as adjuvants of antibiotic therapy. More  
importantly, if we want to make phage therapy a success, we  
need an in-depth understanding of how the mutual evolution-
ary race of attack and resistance between phage and bacterium 
takes place. Phages are, in principle, a smart anti-pseudomonal 
weapon. They specifically target a narrow spectrum of hosts, 
self-amplify, kill antibiotic-resistant strains, and have limited 
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immunological effects in humans. However, it will not be a 
global anti-pseudomonal weapon. During chronic infection,  
P. aeruginosa may modify or delete all of its phage receptors. 
The author noticed that the majority of P. aeruginosa clones 
that persisted for five years or more in a CF lung had become  
pan-resistant to phages. 

Hygienic measures
P. aeruginosa is responsible for a wide range of acquired 
infections in critically ill patients. Microbiological monitor-
ing according to Clinical and Laboratory Standards Institute  
standards, antimicrobial stewardship, and infection control pro-
grams, including environmental cleaning and disinfection, hand  
hygiene, and education of personnel, have been demonstrated 
to prevent the development of resistance in P. aeruginosa138.  
Prophylactic antibiotic days and inadequate empiric antibiotic 
therapy are independent major risk factors for the emergence  
of MDR ventilator-associated pneumonia in the ICU139. Thus,  
prolonged exposure to unnecessary antibiotics should be avoided.

In the hospital setting, P. aeruginosa may contaminate sani-
tary facilities, humid medical devices, aqueous solutions, 
soaps, and detergents140. For example, recently published case 
reports identified sinks or flexible endoscopes as reservoirs for  
nosocomial transmission of P. aeruginosa141,142. Sinks in hos-
pitals are regularly contaminated with P. aeruginosa. Opening 
of water taps generates aerosols containing P. aeruginosa sink 
organisms that contaminate the faucet and hands during hand  
washing140. Installation of filters under all water faucets has been 
shown to prevent bacterial contamination of tap water143.

In the context of CF, patient-to-patient transmissions of  
P. aeruginosa were reported from CF clinics, summer camps, 
and rehabilitation centers5,144. Transmissible epidemic clones 
spread at CF clinics in Australia, Canada, Denmark, The  
Netherlands, and the UK5. Hence, infection prevention and con-
trol practices have been introduced into CF clinics encompass-
ing education, temporal separation of P. aeruginosa–positive and  
P. aeruginosa–negative patients, hand and cough hygiene, and 
cleaning and disinfection of equipment145. Retrospective and  
prospective observational studies performed after the introduction 
of cohort segregation have demonstrated decreases in the num-
bers of prevalent and incident cases of epidemic P. aeruginosa  
infections5.

Enhancement of host defense
Active immunization of vulnerable patient groups is the clas-
sic approach to prevent microbial infection. But in real-life 
situations such as an acute illness requiring hospitalization, 
the time span to mount protective antibody titers may be too  
long to be clinically meaningful.

In the ICU, treatment with antibiotics often is live-saving but is 
also a major risk factor for subsequent nosocomial lung infection 
with P. aeruginosa. A recent study by Robak et al. demonstrates 
that the ICU patient’s susceptibility to secondary Pseudomonas 
infection is caused by antibiotic-associated secondary IgA  
deficiency146. Depletion of the resident microbiota by broad- 
spectrum antibiotic treatment inhibits the stimulation of pulmo-
nary IgA production mediated by microbiota-dependent activation  

of Toll-like receptors and the tumor necrosis factor (TNF) 
family cytokine APRIL (a proliferation-inducing ligand). If  
antibiotic-pretreated mice received IgA by the nasal route, 
their antibacterial defense against P. aeruginosa was partially 
restored. The authors propose that ICU patients on broad- 
spectrum antimicrobial therapy may benefit from prophylactic  
or therapeutic pulmonary IgA administration or both.

Cell-based treatment is another emerging option to target  
airway infections with P. aeruginosa147. Therapeutic phagocytes 
such as macrophages can be produced from induced pluripotent 
stem cells (iPSCs) in industry-compatible, stirred-tank biore-
actors. iPSC macrophages rescued mice from P. aeruginosa-
mediated acute infections of the lower respiratory tract within 
4 to 8 hours after intra-pulmonary transplantation and reduced  
bacterial load147. This type of cell therapy may become an option  
for the treatment of congenital or acquired immune deficiency.

Conclusions
The ESKAPE pathogens are the tip of the iceberg of the global 
antibiotic crisis. Many regions in the world now face infections 
with P. aeruginosa that is colistin- or carbapenem-resistant or 
both. Fortunately, the traditional approach to develop deriva-
tives of validated scaffolds is still promising. The novel β-lactam 
inhibitors and siderophore cephalosporin are active against 
almost all current P. aeruginosa. The modification and combi-
nation of lead modules that tackle well-characterized bacterial  
targets constitute a rather safe approach to come up with 
an antimicrobial that will show efficacy and safety in  
clinical trials. The development of compounds against novel  
targets should be more rewarding in the long run. However, 
as we now experience with the currently most potent anti- 
pseudomonal agent, murepavadin47,48, the risk of off-target side  
effects is high and the compound may fail in clinical trials.

Pathoblockers have finally come of age81,84–87. Ten to forty years 
after the proof-of-principle experiments showing that small 
molecules may reduce fitness or virulence of P. aeruginosa 
without being bactericidal themselves were published79,98,148, 
the first sensitizers are now being examined in clinical  
studies83. For example, the iron biomimetic gallium attacks  
P. aeruginosa at its metabolic achilles’ heel91–95. The outcome 
of the first clinical study is encouraging95; however, we still 
do not know whether gallium will drive P. aeruginosa cells 
into an iron deficiency status that may promote the adverse  
production of virulence factors149.

Given the threat of bacteria that are pan-resistant  
to the patient’s P. aeruginosa isolates, phage therapy is  
re-emerging as an attractive alternative to treat infections with  
P. aeruginosa. The outcome of the first high-standard clinical trial, 
published earlier this year, taught us that predetermined phage 
cocktails will probably not be the solution137. Some P. aerugi-
nosa strains will not be susceptible or will rapidly become resist-
ant to the administered phages. To make phage therapy globally  
efficacious, we need a personalized approach as was recently 
demonstrated for a life-threatening infection with Mycobacterium 
abscessus150. Phage cocktails should be formulated on a case-
by-case basis to specifically target of phage therapy. However,  
phage therapy will leave its niche only if the regulatory agencies  
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change the legal rules and permit personalized medicine on  
a large scale.

The development of antimicrobials is the classic approach to 
fight infections with P. aeruginosa. Only recently, the scientific 
community started to adopt the concept that the enhance-
ment of host defense may be a promising alternative to conquer 
a nosocomial pathogen that causes severe infections in vulner-
able populations but is more or less innocent for the healthy 
immunocompetent host. Relying on clinical experience  
in the ICU of the often disastrous course of secondary Pseu-
domonas pneumonias, researchers are becoming aware of the 
importance of the interplay between immune status and micro-
biome to contain this nosocomial pathogen146. The enhance-
ment of innate and adaptive immunity is a promising approach 
to vanquish MDR and XDR P. aeruginosa. Bispecific therapeutic  
antibodies101,102 and local transfer of isogenic iPSC-derived 
immune cells147 could become the weapons of the future to 
prevent the fatal outcome of P. aeruginosa pneumonia and  
sepsis in ICU patients.
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