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First episode psychosis (FEP), and subsequent diagnosis of schizophrenia or
schizoaffective disorder, predominantly occurs during late adolescence, is
accompanied by a significant decline in function and represents a traumatic experience
for patients and families alike. Prior to first episode psychosis, most patients experience a
prodromal period of 1–2 years, during which symptoms first appear and then progress.
During that time period, subjects are referred to as being at Clinical High Risk (CHR), as a
prodromal period can only be designated in hindsight in those who convert. The clinical
high-risk period represents a critical window during which interventions may be targeted
to slow or prevent conversion to psychosis. However, only one third of subjects at clinical
high risk will convert to psychosis and receive a formal diagnosis of a primary psychotic
disorder. Therefore, in order for targeted interventions to be developed and applied,
predicting who among this population will convert is of critical importance. To date, a
variety of neuroimaging modalities have identified numerous differences between CHR
subjects and healthy controls. However, complicating attempts at predicting conversion
are increasingly recognized co-morbidities, such as major depressive disorder, in a
significant number of CHR subjects. The result of this is that phenotypes discovered
between CHR subjects and healthy controls are likely non-specific to psychosis and
generalized for major mental illness. In this paper, we selectively review evidence for
neuroimaging phenotypes in CHR subjects who later converted to psychosis. We then
evaluate the recent landscape of machine learning as it relates to neuroimaging
phenotypes in predicting conversion to psychosis.
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INTRODUCTION

Schizophrenia is a debilitating illness that affects 1% of the global population (1, 2), shortens the
lifespan of those afflicted (3), and imposes a substantial financial burden on patients, their families,
and society (4, 5). Clinically, it is characterized by positive symptoms, such as hallucinations and
delusions, negative symptoms, such as anhedonia and amotivation, and cognitive symptoms, such
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FIGURE 1 | Summary of neuroimaging findings in non-converters (red) and converters (blue) at clinical high risk for psychosis. FA, Fractional Anisotropy; rCBF,
Regional Cerebral Blood Flow; CBV, Cerebral Blood Volume; DMN, Default Mode Network; DLPFC, Dorsolateral Prefrontal Cortex; STG, Superior Temporal Gyrus;
WM, Working Memory.
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as deficits in working memory, executive function, and
attention. Despite significant ongoing efforts to understand the
pathophysiology of this disease, currently available treatments
are generally only successful in ameliorating the positive
symptoms. However, it is the negative and cognitive symptom
burden that correlate most with overall decline in global
functioning and lifespan (6, 7), and no adequate treatments
currently exist. Thus, more and more efforts have begun to look
at early identification of illness, with the goals of predicting
disease onset and severity, and ultimately, prevention of
conversion to first episode psychosis.

Diagnosis of schizophrenia usually occurs in late adolescence
with the onset of a first psychotic episode. Prior to a first episode of
psychosis (FEP), patients experience a prodromal period of 1–2
years, during which symptoms of psychosis first appear in an
attenuated form and then progress. Prodromal symptoms are also
characterized by social withdrawal, increased isolation, and a global
decline in functioning (8–10). During that time period, subjects are
referred to as being at Clinical High Risk (CHR), as a prodromal
period can only be designated in hindsight in those who convert.
30–35% of clinical high risk subjects will experience a first psychotic
episode and be diagnosed with a primary psychotic disorder (11,
12). Of those who do not, approximately 7% will recover, 28% will
continue to experience persistent, attenuated psychotic symptoms,
and 65% will be diagnosed with another non-psychotic psychiatric
disorder (12). The clinical high risk period represents a critical
window during which targeted interventions may be developed
and applied. Therefore, predicting who among the this population
will convert is of critical importance.
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For the past 100 years, neuroimaging has taken a distinguished
role in providing new insights into the pathophysiology of
schizophrenia and is uniquely primed to evaluate the adolescent
brain both pre- and post-first psychotic episode. To date, a variety
of neuroimaging modalities have identified numerous differences
between CHR subjects and healthy controls. However, thus far the
majority of studies have been cross-sectional in design, and a
significant degree of variation among phenotypes have been
reported. Further complicating attempts at predicting conversion
is the increasingly recognized co-morbidity of other psychiatric
diagnoses among CHR subjects. In one study, 79% of CHR
subjects met criteria for comorbid psychiatric diagnoses,
including mood, anxiety, and substance use disorders (13). In a
follow up report, 60% of CHR subjects were diagnosed with
comorbid major depressive disorder, which was associated with
more pronounced negative and general symptoms, as well as
poorer prognosis (14). Comorbidity, thus far, has not been
associated with conversion to psychosis. Nevertheless, it has
become quite clear that phenotypes discovered between CHR
subjects and healthy controls are likely non-specific to psychosis
and generalized for major mental illness. In order to improve
prediction algorithms there needs to be a greater focus on
longitudinal studies that identify phenotypes present among
converters and non-converters.

In this narrative review, we selectively evaluate evidence for
neuroimaging phenotypes in CHR subjects who later converted
to psychosis. We then evaluate the recent landscape of machine
learning and prediction algorithms as they relate to neuroimaging
phenotypes in predicting conversion to psychosis.
September 2020 | Volume 11 | Article 567534
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STRUCTURAL PHENOTYPES

Enlarged Ventricles
The first report of enlarged ventricles in patients with
schizophrenia was in 1927 using pneumoencephalography
(PEG) to measure ventricular size (15). Despite early concerns
due to lack of controls and variation in methodology, this
observation is one of the most replicated findings in the
literature using both computed tomography (16) and magnetic
resonance imaging (17–19). Originally studied in chronic cases,
ventricular enlargement has been observed and well replicated in
first episode psychosis. In support of this, three meta-analyses
have reported ventricular enlargement in FEP patients (20–22).
All three found enlargement in the lateral ventricles compared to
controls, but two also observed enlargement of the 3rd ventricle
(21, 22). The 3rd ventricle was not measured in the third meta-
analysis (20).

As ventricular enlargement is such a consistent finding in FEP
patients, it is surprising that few studies have investigated
ventricular enlargement in the CHR population. To the best of
our knowledge, there are only two longitudinal studies evaluating
ventricular size in converters versus non-converters, and there are
discrepancies in their findings. Ziermans et al. evaluated 43 CHR
subjects, 8 of whom converted to psychosis, and found no difference
in lateral ventricular volume among converters and non-convertors
in post-hoc analysis (23). 3rd ventricular volume was not measured.
However, in a much larger study, Cannon et al. evaluated 274 CHR
subjects, of whom 35 converted to psychosis (24). They did not
observe enlarged lateral ventricles, but did observe expansion of the
3rd ventricle in CHR subjects who converted to psychosis compared
to both non-convertors and controls. Furthermore, a shorter
prodromal period before conversion was associated with greater
expansion of the ventricle.

Although not many studies appear to have looked specifically
at ventricular enlargement in CHR subjects, those that did failed
to find enlargement in the lateral ventricles at baseline. However,
one phenotype that warrants further investigation and
replication is enlargement of the 3rd ventricle in CHR subjects
at baseline that later convert to psychosis.

Decreased Grey Matter Volume
Reductions in grey matter volume in multiple brain regions have
been well established in patients with schizophrenia (25). In FEP,
multiple meta-analyses have reported whole brain reductions
in grey matter volume (20–22), as well as reductions in
hippocampal volume. Specifically, anterior hippocampal
volume deficits have been reported in FEP (26), with “anterior”
defined as containing the CA1, CA3, CA4, molecular layer, GC/
DG, and subiculum/presubiculum subfields. Deceases in grey
matter volume are also clinically relevant as they are positively
correlated with symptom severity (27). Furthermore, degree of
grey matter loss in the cerebellum within the first year of
diagnosis has been correlated with worsening of negative
symptoms and functional outcome at 5 year follow up (28).

To our knowledge, there is thus far only two reports that
examined whole brain grey matter volume in CHR subjects. One
reported a reduction in whole brain grey matter volume, (29),
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but the other did not (30), although the study may have been
underpowered. However, multiple subsequent studies in CHR
subjects have identified individual brain regions exhibiting grey
matter reduction both at baseline compared to controls and post-
conversion to psychosis. Two meta-analyses by the same group
revealed that subjects who converted to psychosis had baseline
reductions in the right inferior frontal gyrus and the right
superior temporal gyrus compared to non-converters (31, 32).
Although they didn’t follow subjects longitudinally, Iwashiro
et al. reported bilateral reduction of the pars triangularis within
the inferior frontal gyrus in CHR subjects, and the degree of
reduction was negatively correlated with severity of positive
symptoms (33). Another large study reported reduced grey
matter volume in the left parahippocampal cortex in CHR
convertors compared to non-convertors (34). Increased grey
matter loss in the right superior frontal, middle frontal and
medial orbitofrontal regions was reported in CHR subjects who
converted compared to both non-convertors and healthy
controls (24). Grey matter loss occurred in the absence of
treatment with antipsychotics, and reduction was also steeper
in convertors who exhibited shorter duration of prodromal
symptoms. An adjunct study to the previous report found a
positive correlation between severity of prodromal symptoms,
especially unusual thought content, and degree of grey matter
loss among converters (35). Decrease in the right prefrontal
region (36) and the right insular cortex (37) has been observed in
convertors compared to non-convertors. Degree of decrease in
the prefrontal region was associated with more severe negative
symptoms at baseline, and longitudinally, convertors showed
greater reduction over time compared to non-convertors. Finally,
decreased grey matter in the right medial temporal, lateral
temporal and inferior frontal cortex, and cingulate cortex
bilaterally was observed at baseline in those who in converted
compared to non-convertors (38). Collectively, these studies
consistently identify grey matter deficits in the prefrontal
cortex cingulate cortex and temporal lobes in CHR subjects
who convert to psychosis versus those who do not, indicating
that deficits in these regions may be more specific to psychosis
than generalized mental illness.

White Matter Deficits
Although grey matter deficits have received much of the focus of
investigation, multiple observations of white matter disruption
in patients with schizophrenia have been reported (39).
Postmortem data has revealed abnormal numbers and
morphology of oligodendrocytes (40, 41). Genome wide
association studies have also shown an increase in risk related
to single nucleotide polymorphisms in oligodendrocyte specific
genes (42). Furthermore, rodent models have shown that 2nd

trimester insults, especially maternal infection, a known risk
factor for schizophrenia (43), can produce a decrease in
fractional anisotropy (FA) in fronto-striatal-limbic circuitry
similar to that seen in the illness (44). Supporting these
discoveries, investigators have characterized white matter
abnormalities in the CHR population.

Voxel based morphometry of structural magnetic resonance
images has been used to investigate white matter volume in CHR
September 2020 | Volume 11 | Article 567534
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subjects. In a cross-sectional study, Witthaus et al. reported a
reduction in white matter volume in the right superior temporal
lobe in CHR subjects compared to controls. This observation was
enhanced in a separate cohort of FEP patients but not studied
longitudinally in order to compare converters vs non-converters
(45). However, imaging of the anterior genu of the corpus
callosum revealed a significant reduction in thickness in
CHR subjects who later converted to psychosis compared to
both controls and CHR subjects who did not convert (46).
Furthermore, the authors reported that a Cox regression
analysis revealed that mean anterior genu thickness was
predictive of transition to psychosis.

Diffusion tensor imaging, which indirectly measures the
integrity of white matter tracts based on the diffusion of water
molecules, has also been used to evaluate white matter integrity
in CHR subjects. Unfortunately, to date, most studies did not
follow CHR subjects longitudinally to evaluate baseline
differences in converters vs non-converters. Furthermore, the
findings are heterogeneous. Reduced fractional anisotropy has
been reported both globally (47), as well as in the cingulum
bundle (48), in cross sectional studies of CHR subjects at baseline
compared to healthy controls. Furthermore, Karlsgodt et al.
observed reduced FA in the superior longitudinal fasciculus
(SLF) (49) in a similar comparison of CHR subjects to
controls, and the SLF was also reported to exhibit increased
mean diffusivity, another measure of reduced white matter
integrity, in a different study (50). In a longitudinal study of
CHR subjects that converted to psychosis, decreased FA was
observed in the left frontal lobe (51). Bloemen et al. reported a
similar finding; decreased FA in the bilateral medial frontal lobes,
as well as the left putamen and the left superior temporal lobe in
CHR subjects who converted compared to non-convertors and
controls (52). However, not all investigations have yielded positive
results. Peters et al. evaluated the uncinate and arcuate fasciculi,
the anterior and dorsal cingulate, and subdivisions of the corpus
callosum and did not find any differences between CHR subjects
who converted to psychosis and those who did not (53).

Overall, decreased thickness in the corpus callosum and
decreased FA in the frontal and temporal lobes are the most
consistent phenotypes in convertors to psychosis. However, these
findings require further replication in larger sample sizes.
FUNCTIONAL PHENOTYPES

Regional Abnormalities
With the development of fMRI, researchers were able to move
beyond structural abnormalities and begin inferring changes in
cortical activity via localized changes in cerebral blood flow and
neurovascular coupling, either at rest or during specific cognitive
tasks, in relevant brain regions for schizophrenia. One of the
earliest and most consistent findings has been hippocampal
hyperactivity at baseline in patients with chronic disease (54).
The same finding was observed in first episode psychosis, as
well as decreased recruitment during a scene processing
task compared to controls (55). Interestingly, the degree of
Frontiers in Psychiatry | www.frontiersin.org 4
recruitment was inversely correlated with baseline activity. The
authors attributed these findings to a worsening imbalance in
excitation/inhibition as a result of interneuron dysfunction. To
evaluate hippocampal activity in CHR subjects, arterial spin
labeling (ASL) was used to measure regional cerebral blood
flow (rCBF) (56). CHR subjects exhibited increased rCBF in
the hippocampus, as well as in the basal ganglia and midbrain.
Furthermore, subjects whose symptoms improved and no longer
met criteria for CHR exhibited a significant reduction in left
hippocampal rCBF. Unfortunately, subjects were not followed
for progression to psychosis.

Multimodal imaging has been used to evaluate relationships
between hippocampal activity and other neurotransmitters in
CHR subjects. GABA concentration in the medial prefrontal
cortex (mPFC) was measured using magnetic resonance
spectroscopy (MRS), and a positive correlation was detected
with hippocampal rCBF in subjects who converted to psychosis
compared to non-convertors (57). MRI, fMRI, and MRS were
combined to measure grey matter volume, cerebral blood volume
(CBV), and glutamate in the hippocampus of CHR subjects, and
both elevated glutamate and CBV was observed compared to
controls (58). However, only baseline hippocampal atrophy
predicted conversion to psychosis.

Deficits in working memory and the dorsolateral prefrontal
cortex (DLPFC) have long been reported in patients with
schizophrenia (59, 60). To evaluate DLPFC recruitment during
working memory tasks, CHR subjects performed an item
recognition task at baseline and were then followed for 2 years
for conversion (61). CHR subjects performed as well as controls
during the task. However, CHR subjects who later converted to
psychosis showed a positive association between age and greater
activation of the DLPFC, inferior frontal gyrus, frontal eye fields,
and superior frontal gyrus, during verbal working memory tasks.
The authors speculate that the greater activation may reflect
compensatory activity. In CHR subjects who did not convert,
several regions were positively associated with age and greater
activation, but they were diffusely spread out throughout the
temporal, parietal and occipital lobes, and not in the frontal
lobes. Control subjects showed a negative association with age
and activation of the DLPFC during verbal WM tasks, which was
hypothesized to reflect maturation, and thus, greater efficiency of
the circuit. In a different working memory task, the superior
temporal gyrus (STG) showed reduced activation in controls,
greater activation in subjects with FEP, and an intermediate level
of activation in CHR subjects (62). The STG also failed to de-
couple with the middle frontal gyrus, a finding that was even
more pronounced in FEP subjects. Finally, CHR subjects showed
decreased activation in fronto-parietal regions during encoding
of a working memory task (63), along with increased activation
in the STG.

Network Abnormalities
The Default Mode Network (DMN) is an interconnected set of
brain regions, consisting of the mPFC, the posterior cingulate
cortex, the inferior parietal lobules, the precuneus, and the
medial temporal lobes. Functionally, the DMN is thought to be
involved in internal mentation, such as thoughts regarding one’s
September 2020 | Volume 11 | Article 567534

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Ellis et al. Neuroimaging in Clinical High Risk
self, thoughts about others, and reflecting on the past. Of
particular importance, multiple regions of the DMN exhibit
significant grey matter volume loss in patients with schizophrenia.
Therefore, it is unsurprising that functional DMN abnormalities
have been reported. In patients with schizophrenia, increased
activity at rest is routinely observed compared to controls, and the
degree of increase correlates to the severity of positive symptoms
(64, 65).

CHR subjects also exhibit functional abnormalities in the
DMN, although, to date, very few studies have investigated
differences between converters and non-converters. In a verbal
working memory task, healthy controls exhibited load dependent
decreases in DMN activity, whereas CHR subjects maintained
inappropriately elevated levels of DMN activity (66). CHR
deficits were similar to, but less pronounced than, those seen
in FEP subjects. Increased DMN connectivity, between the PCC/
Precuneus and vmPFC, in CHR subjects is also associated with
poorer clinical insight (67). Furthermore, graph theoretical
analysis revealed a progressive reduction in efficiency in the
DMN and an increase in network diversity in subjects who
converted to psychosis (68), indicating continuing changes in
brain networks as psychosis develops. Increased cerebellar-
default mode network connectivity was also reported at resting
state in CHR subjects (69). Specifically, there was increased
connectivity between the right Crus 1 of the cerebellum and
bilateral PCC/precuneus and between Lobule IX of the
cerebellum and the left superior medial prefrontal cortex.
There was also a positive correlation between precuneus
connectivity and SIPS and PANSS scores in CHR subjects.

Patients with chronic disease have also been shown to exhibit
functional dysconnectivity between the ventrolateral prefrontal
cortex (vlPFC) and the amygdala (70). To evaluate this
relationship prior to illness onset, CHR subjects were given an
emotion activation task, and functional connectivity between the
vlPFC and amygdala was evaluated (71). While performing the
task, CHR individuals exhibited a proportional increase in
activation in the amygdala and decrease in activation of the
vlPFC, whereas controls exhibited the opposite pattern.

Another highly reproduced finding in the CHR population is
disruptions in thalamocortical connectivity. Thalamocortical
connectivity is disrupted at baseline in CHR subjects, and even
more so in those who convert to psychosis (72). Specifically, there is
hypoconnectivity between the thalamus and the prefrontal cortex,
as well as the cerebellum. Furthermore, there is hyperconnectivity
between the thalamus and the sensory motor areas. A meta-analysis
on thalamocortical connectivity at baseline in CHR subjects found
hypoconnectivity between the thalamus and the middle frontal and
cingulate regions (73). Hyperconnectivity was found in motor,
somatosensory, temporal, occipital, and insular regions.
Furthermore, a strong negative correlation was found between
hypo and hyperconnectivity, indicating that abnormalities in one
are likely influencing abnormalities in the other. Finally,
hyperconnectivity in the cerebello-thalamo-cortical circuitry has
been reported, which correlated with degree of disorganized
symptoms and time to conversion (74). The finding was also
observed in patients with chronic schizophrenia.
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Together these studies indicate multiple focal and regional
abnormalities in functional connectivity in CHR subjects, some
of which seem to be specific to conversion to psychosis. Further
studies, specifically looking at conversion, are needed to validate
some of the more promising phenotypes, such as baseline
hippocampal activation and thalamocortical dysconnectivity.
INFLAMMATORY PHENOTYPES

Inflammation has long been associated with the pathophysiology
of schizophrenia (75). Winter births and maternal infections
(43), genetic risk associated with the major histocompatibility
complex (76), and subsequent discovery of the association of
complement protein C4A (77) all represent converging evidence
for the involvement of inflammation in the disease. Furthermore,
in CHR subjects, several lines of evidence indicate increased
inflammation prior to first episode psychosis. Increased
peripheral cytokines have been associated with both symptom
severity and degree of grey matter loss in CHR subjects (24), as
well as predicting conversion to psychosis (78), and peripheral
TNF-alpha levels have been shown to predict negative symptom
severity (79).

Translocator Protein 18D (TSPO) is an outer mitochondrial
membrane protein with multiple functions that is found
throughout the body. Increased expression in the brain has
been linked to injury from any etiology (80), as well as
activation of both microglia and astrocytes (81, 82). Thus,
investigators have used PET imaging to measure degrees of
activation and try to extrapolate levels of inflammation in the
brains of patients with schizophrenia. Furthermore, given the
hypothesis that grey matter loss may be secondary to hyperactive
microglia, it was thought that elevated TSPO might be an
indicator of this activity. Early studies in chronic cases
reported an increase in TSPO signal in both total grey matter
(83) and in the hippocampus (84). Subsequently, investigators
began looking at CHR subjects for evidence of microglial
activation prior to FEP. Of note, multiple radiotracers have
been used to measure TSPO activation in the brain via PET
imaging. [11C]PK11195 was the first to be widely utilized.
However, due to the relative non-specific binding of
[11C]PK11195, 2nd generation radiotracers were developed
with significantly higher binding affinity; [11C]DAA1106, [18F]
FEPPA, and [11C]PBR28. However, due to the rs6971
polymorphism in the TSPO gene, a subject may be a high,
medium, or low-affinity binder of the newer radiotracers.
Therefore, genotyping of subjects prior to inclusion in a study,
which is not always performed, is essential for accurate data
interpretation. Complicating matters further, more recent
studies using the 2nd generation ligands have failed to show an
increase in TSPO in chronic disease (85, 86), and one meta-
analysis (87) concluded that there was a decrease in TSPO signal.

Evaluating multiple cortical and subcortical brain regions, no
evidence of increased TSPO signal was reported in CHR subjects
using [11C]PK11195 as the radioligand (88). Using the ligand
[18F]FEPPA in CHR subjects, and controlling for the TSPO
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rs6971 polymorphism, no differences were observed in either the
DLPFC or the hippocampus (89). Operating under the
hypothesis that microglial pruning may be causative in grey
matter loss, the same group then attempted to correlate changes
in TSPO with grey matter volume reductions in CHR subjects.
They found a positive correlation between increased TSPO signal
and grey matter volume loss in FEP, but not in CHR subjects
(90). Selvaraj et al. used the [11C]PBR28 ligand to investigate the
same relationship and also failed to observe an association
between cortical grey matter volumes and TSPO signal in CHR
subjects (91). They did find a negative association in patients
with schizophrenia, suggesting that TSPO may be related to grey
matter loss as the disease progresses. One positive finding has
been reported. Using [11C]PBR28, TSPO signal was elevated in
total grey matter in CHR subjects at baseline compared to
controls and was positively correlated with symptom severity
(92). Patients with schizophrenia exhibited the same finding.
Unfortunately, subjects were not followed longitudinally to
evaluate signal changes in those who converted.

Beyondmeasuring TSPO signal levels in isolation, other groups
have combined PET imaging with magnetic resonance
spectroscopy (MRS) in order to examine the relationship
between TSPO and other molecules. A negative correlation was
reported between glutathione levels, an anti-oxidant, and TSPO
using [18F]FEPPA, in the medial prefrontal cortex (mPFC) of
healthy volunteers (93). However, this association was not present
in CHR subjects, suggesting an abnormal redox status in this
population. No differences were seen in TSPO or glutathione levels
between groups in direct comparisons. Also in the medial mPFC, a
region highly implicated in the disease, GABA levels were
negatively associated with TSPO signal in CHR subjects (94).
Finally, PET imaging was used to measure dopamine release in the
prefrontal cortex (PFC) during a stress task in CHR subjects.
Subjects with lower stress induced PFC dopamine release
exhibited higher TSPO increase in the hippocampus (95).

Although the findings involving TSPO signal and
schizophrenia have been heterogeneous and controversial, no
studies have yet examined TSPO signal between CHR subjects
that converted to psychosis and those that did not. Given the
growing evidence for the involvement of inflammation, it may be
prudent to perform these experiments before closing the door on
this modality.
NEUROTRANSMITTER SPECIFIC
PHENOTYPES

Positron Emission Tomography (PET) is a common imaging
modality that has been used to study the dynamics of
neurotransmitter synthesis and release in patients with
schizophrenia. Using radiotracers, such as 3,4-dihydroxy-6-
[18F]fluoro-L-phenylalanine (18F-DOPA), researchers have
been able to establish that aberrations in neurotransmitter
systems, such as the dopaminergic system, are common in
patients with chronic disease (96). Abnormalities have been
found in presynaptic dopamine synthesis (97, 98), dopamine
Frontiers in Psychiatry | www.frontiersin.org 6
release following amphetamine administration (99, 100), and in
occupancy of D2 receptors (101, 102). PET is now being used to
examine neurotransmitter systems in the CHR population to
investigate if similar abnormalities are present prior to FEP.

Increased 18F-DOPA uptake was reported in the striatum,
specifically the associative subdivision, of CHR subjects (103),
indicating increased dopamine synthesis capacity, a finding that
was replicated in a second cohort (104). Clinical follow up of the
first cohort revealed that CHR subjects with the highest level of
striatal dopamine synthesis converted to psychosis (105), and
that progression towards psychosis was associated with
increasing levels of dopamine (106). Other groups have also
found increased fluorodopa uptake in the associative striatum in
CHR subjects (107). Increased 18F-DOPA uptake has been
reported in the midbrain region in CHR subjects who
converted compared to non-convertors (108). 1H-MRS was
used to measure hippocampal glutamate activity and was
combined with 18F-DOPA dopamine synthesis capacity in the
evaluation of CHR subjects (109). Striatal dopamine synthesis
capacity predicted worsening psychotic symptoms at clinical
follow up, but not transition to psychosis, and was not
significantly related to hippocampal glutamate concentration.

Recently, investigators have begun combining fMRI with PET
imaging in order to correlate activation of implicated brain
regions with neurotransmitter dysfunction. When given a
verbal encoding and recognition task, CHR subjects showed a
positive correlation between medial temporal lobe activation and
striatal dopamine synthesis during encoding but not recognition
(110). When given the Salience Attribution Test, CHR subjects
were more likely to attribute motivational salience to irrelevant
stimuli, and dopamine synthesis capacity was negatively
correlated with hippocampal responses to irrelevant stimuli
(111). Magnetic Resonance Spectroscopy (MRS) was used
measure baseline hippocampal glutamate levels in CHR
subjects, and higher levels were recorded in subjects who
converted to psychosis (112). Higher levels were also associated
with a poor functional outcome.
MACHINE LEARNING AND PREDICTION
ALGORITHMS

The first part of this review summarized neural imaging
phenotypes observed in CHR subjects, with an emphasis on
subjects that converted to first episode psychosis compared to
subjects who did not. The second part of this review will discuss
the significant efforts that have been made using machine
learning approaches to translate those observations into
clinically relevant classification and prediction algorithms.
As discussed in previous sections, a significant number of
neuroimaging phenotypes have been discovered that
differentiate CHR subjects who converted from those who did
not. However, most of those studies evaluated average differences
at the group level, which do not allow for inference or prediction
at the individual level. With advances in computational methods,
the field could move forward from traditional neuroimaging
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analytic approaches to more sophisticated methodology that
would employ neuroimaging data to make clinically relevant
diagnoses and predictions. Machine learning, an application of
artificial intelligence, allows for multivariate analyses and pattern
recognition, which then allows for inference at the individual
level. There are multiple machine learning methods, but the most
common type applied to neuroimaging data in psychiatry has
been the support vector machine (SVM). An SVM is a form of
supervised learning, which learns by being trained on an initial
dataset of known outcome and is then validated by applying it to
another independent data set of known outcome [for further
review of SVM and neuroimaging datasets see Orru et al.,
Neurosci Biobehav Rev, 2012, ref (113)]. In the realm of CHR
subjects and psychosis, SVM has been used both in the
classification and diagnosis of CHR subjects, as well as
prediction of conversion to psychosis.

Machine Learning and Clinical Phenotypes
The first attempts at creating and validating risk calculators for
conversion to psychosis were based solely on clinical
symptomatology. From these early studies (11, 114), several
high risk symptoms were able to be identified, such as high
unusual thought content score, social impairment, and genetic
risk for schizophrenia plus recent functional decline, and were
part of one of the 1st psychosis risk calculators (115). The
calculator achieved a C-index, similar to AUC but applicable to
censored data, of 0.71, with a sensitivity and specificity of 66.7
and 72.1%, respectively, which indicates fair predictive
accuracy. Risk calculators using similar variables were also
created in China (116) and the UK (117) with equivalent
results. However, the early risk calculators were based on
inferences at the group level, making the applicability to the
individual unclear. The first study to apply machine learning
and SVM to clinical variables to predict individual transition to
psychosis came from the PACE clinic in Australia. Four
hundred sixteen subjects were included, and the accuracy of
individual prediction was 64.6% with reported sensitivity and
specificity of 68.6 and 60.6%, respectively (118). For an
excellent table summarizing studies of clinical predictors of
conversion to psychosis, see Worthington et al., Biol Psych,
2020, ref (119).

These early pioneering studies were useful in identifying which
symptoms represent the greatest risk for conversion and showing
the applicability of using machine learning to make predictions at
the individual level. However, one inescapable conclusion from
these studies is that while progress has been made in using machine
learning to expand the predictive capabilities of risk calculators,
clinical and demographic variables alone cannot predict
individualized risk for conversion with a high enough accuracy to
be clinically relevant. As discussed below, a combination of
modalities and phenotypes will likely be necessary.

Machine Learning and Neuroimaging
Phenotypes
Building upon the neuroimaging phenotypes between in CHR
subjects, investigators have built machine learning algorithms
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to classify CHR subjects based on neuroimaging scans using
structural and functional data sets. For example, Bendfeldt
et al., evaluated fMRI data during a verbal working memory
task from 19 CHR subjects and 19 controls and were able to
separate CHR subjects from Controls with a balanced accuracy
of 76.2% (sensitivity 89.5% and specificity 63.2%) (120).
However, their algorithm could not correctly classify CHR
from FEP or FEP from controls, likely due to small sample
size. Another fMRI study of 34 CHR subjects and 37 controls
focused on regional homogeneity, which summarizes
functional connectivity between a given region and its local
neighboring regions, and was able to classify CHR subjects with
a sensitivity and specificity of 88 and 91%, respectively (121). In
doing so, they noted that CHR subjects exhibited significant
decreases in regional homogeneity in the left inferior temporal
gyrus and increases in the right inferior frontal gyrus and right
putamen compared with the controls. Of importance, Salvador
et al. attempted to use structural MRI and a wide range of
machine learning methods, as well as multiple structural
metrics, to classify schizophrenia subjects versus controls
(122). However, the largest balanced accuracy did not exceed
75%. Furthermore, their sample size of 128 patients with
schizophrenia and 127 controls was considerably larger than
the two previous studies. These results imply that, like clinical
predictors, neuroimaging datasets alone may not be enough to
achieve a level of accuracy necessary to be clinically relevant.
One way investigators have sought to increase classification
accuracy is by applying machine learning to multimodal
datasets. For example, Valli et al. utilized machine learning to
classify CHR subjects from controls by combining univariate
and multivariate analyses to look at structural MRI and
functional MRI during a verbal memory task (123). SVM
applied to the structural MRI datasets identified CHR
subjects from Controls with an accuracy of 72% (sensitivity
and specificity of 68 and 76%, respectively). They also identified
univariate differences at the group level in the fMRI data in the
left middle frontal and precentral gyri, supramarginal gyrus,
and insula as well as the right medial frontal gyrus. Finally, Lei
et al. used SVM to analyze structural MRI datasets of both grey
and white matter and rs-fMRI to classify schizophrenia vs
controls and obtained an accuracy of 90.83% (124). The study
utilized a multi-site design, which resulted in 295 patients and
452 controls at 5 different sites. Of note, they analyzed the
datasets collected at each site separately because the SVM
algorithm created for each dataset did not perform well when
applied to the datasets at the other sites, a phenomenon that
will be further discussed below.

Two other studies used machine learning to discover new
phenotypes in the classification of CHR subjects. Chung et al.
trained a machine learning algorithm on grey matter volumes in
healthy subjects and correlated those measurements to subjects’
chronological age to create a “brain age” (125). They then applied
their algorithm to structural MRI scans from 275 CHR subjects.
The difference between the estimated brain age and the
chronological age was termed the “brain age gap”. Overall,
CHR subjects exhibited a brain age gap of 0.64[2.16] years.
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Younger CHR subjects (12–17 years) who later converted
exhibited a brain age gap of 1.59 years. Furthermore, the top
25 (out of 92) brain regions studied aligned with areas of
significance to schizophrenia. A similar study used cognitive
measures to create an algorithm to predict “neurocognitive age”
relative to chronological age, and found that CHR subjects have
delayed neurocognitive maturation of approximately 4.3 years
compared to controls (126). However, this did not differ in
converters vs non-converters. These studies show how machine
learning can be used to generate new phenotypes that may aid in
both classification and prediction.

Only a few studies to date have used machine learning
algorithms to predict conversion to psychosis among CHR
subjects. In 2012, Koutsouleris et al. trained an SVM algorithm
on structural MRI datasets among 37 CHR subjects (16 of whom
converted) and 22 volunteers (127). A balanced accuracy of
84.2% was achieved in classifying converters vs non-converters
(sensitivity 81%, specificity 87.5%). A follow up study by the
same group validated their previous findings in 73 CHR subjects
from two different sites (128). This time, the accuracy of
prediction was 80% (sensitivity 76%, specificity 85%). They
also used their algorithm to stratify subjects at baseline into
high, intermediate, and low risk, and the high-risk group had a
transition rate of 88% and the low risk group had a transition rate
of 8%.

One complication in predicting conversion to psychosis is
that there are potentially multiple pathophysiological routes. As
a result, being able to predict functional outcome, regardless of
presence or absence of psychosis, may be just as valuable. Several
investigators have used machine learning to explore this avenue.
Kambietz-Ilankovic et al. used structural MRI at baseline and the
Global Assessment of Functioning (GAF) scale at clinical follow
up to predict functional outcome in 27 CHR subjects (129).
Classifying outcome as “good” or “poor” achieved an accuracy of
82%. In a similar vein, deWit et al. looked at predicting resilience
as a primary outcome in 64 CHR subjects (130). They, as well,
used sMRI at baseline and the GAF score at 6 year clinical follow
up as an indicator of resilience. However, they used support
vector regression analyses, allowing for predictions along a
continuous, instead of binary, scale. The highest correlation,
0.42, was found between long term functioning and subcortical
volumes. Finally, a report by the PRONIA consortium combined
clinical variables with structural MRI datasets to predict 1 year
social and role-functioning outcome in 116 CHR subjects (131).
The accuracy of prediction using clinical variables was 76.9%,
using structural MRI variables was 76.2%, and in combined
models was 82.7%. These results show definitively how
combining multi-model datasets increases accuracy of
prediction and will be necessary moving forward.

To summarize, the application of machine learning to
neuroimaging datasets has allowed for new paradigms to be
created in the classification and outcome prediction of CHR
subjects. However, it is clear that a single modality, whether
clinical, imaging, or other, will likely not provide enough
information to allow for more accurate predictions. A
combination of clinical variables and neuroimaging data
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improves prediction accuracy compared to either modality
alone. Continued application and testing of different modalities
in different combinations will be essential.
DISCUSSION AND CONCLUSION

The prodromal period in schizophrenia, during which time
clinically high-risk subjects experiencing attenuated symptoms
may present for care, represents a critical window for
identification, stratification of risk, and implementation of
appropriate therapies. Although the illness carries a strong
genetic risk, the leading theory surrounding development of
schizophrenia is the “two hit” phenomena, whereby
environmental stressors act upon genetic predisposition to
initiate progression to first episode psychosis. This implies that
development of illness may not be inevitable, and that prevention
of conversion is not an unreasonable goal. For this to occur,
however, progress needs to continue in several areas. There must
be continued identification of biomarkers in longitudinal studies
that follow CHR subjects through conversion. Only then will it
be possible to segregate abnormalities at baseline into genetic or
clinical risk. Biomarkers that identify clinical risk need to
continue to be combined and administered in prospective
studies that assess their predictive power. The underlying
mechanisms driving development of the biomarker will then
need to be elucidated in preclinical or in vitro models of disease.
Only once the predictive framework is established, and
mechanisms understood, will new therapeutic models and
targets emerge for testing in clinical trials.

Neuroimaging has been successful in identifying multiple
indicators of pathology in CHR subjects; some that represent
generalized mental illness and are present in both converters and
non-converters, and some that represent risk for psychosis and
are present only in converters (see Figure 1). Structural MRI
studies have identified multiple phenotypes in CHR subjects that
convert to psychosis. Although enlarged lateral ventricles are well
replicated in both first episode psychosis and chronic disease,
only 3rd ventricular expansion has been reported and replicated
in CHR convertors vs non-convertors. As enlarged lateral
ventricles are thought to be secondary to decreased grey matter
volume, an enlarged 3rd ventricle may represent earlier deficits in
subcortical thalamic regions, or even the temporal lobes.
However, although decreased thalamic volume has been
reported in chronic disease, a recent study found no difference
in thalamic volume in CHR subjects compared with controls
(132). Furthermore, a longitudinal analysis of neuroimaging data
from CHR subjects who later developed psychosis concluded
that ventricular expansion was linked in time to progressive grey
matter loss and not to structural changes in subcortical regions
(133). Reductions in grey matter volume have been consistently
reported in the frontal (superior frontal, prefrontal, middle
frontal, medial orbitofrontal, inferior frontal gyri, and insular
cortex) and temporal lobes (lateral temporal, medial temporal,
and parahippocampal cortex) in CHR subjects that convert. Very
interestingly, the degree and timing of grey matter loss may
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depend on age of symptom onset. In a recent report, Chung et al.
evaluated baseline MRI parameters of converters and non-
converters and observed that younger CHR subjects (12–17
years old) that converted to psychosis exhibited decreased grey
matter volume at baseline and a less steep grey matter decline at
first episode psychosis (134). However, older CHR subjects
(> 18yrs old) that converted to psychosis did not have
decreased grey matter volume at baseline, but exhibited a
much steeper rate of volume loss as illness progressed. The
first type is more insidious and ultimately debilitating and
indicates that there is heterogeneity in the progression of grey
matter loss among CHR subjects that convert.

Two other structural phenotypes warrant further exploration
in CHR subjects, cerebral asymmetry and olfactory bulb volume
loss. Reduced cerebral asymmetry is a common observation in
established schizophrenia (135), and is more pronounced in the
language areas of the temporal lobes and the pars triangularis
and pars orbitalis in the inferior frontal gyrus. In healthy people,
this asymmetry is thought to be related to maturation of
language regions and the establishment of language dominance
in one side of the brain. For example, verbal fluency is correlated
with the degree of lateralization, and it’s been well established
that patients with schizophrenia have decreased verbal fluency
(136). CHR subjects appear to have reduced cerebral asymmetry,
similar to schizophrenia, compared with controls (137).
However, this warrants further exploration in subjects who
convert. Abnormalities in the olfactory system have been
reported in CHR subjects (138). Bilateral reductions in
olfactory bulb volume in males, as well as reduced left
olfactory grey matter volume, were observed in subjects at
baseline. Furthermore, left olfactory bulb volume correlated
with negative symptom severity. However, these phenotypes
have not been compared between converters and non-converters.

White matter abnormalities are also present in CHR subjects,
and they mostly overlap with implicated regions of grey matter
reduction, i.e. the frontal and temporal lobes. Deficits reported
are either reduced volume or reduced structural integrity as
measured by diffusion tensor imaging. Of particular interest is
that subjects who converted exhibited decreased thickness in the
anterior genu of the corpus callosum, implying that its inclusion
in prediction algorithms may improve accuracy.

Functional imaging has revealed several highly replicable
findings in CHR subjects who convert to psychosis.
Hippocampal hyperactivity and reduced recruitment during
relevant cognitive tasks have been reported multiple times
using different modalities including rCBF, CBV, and
measurement of glutamate. Elevated activity is thought to
result from an imbalance in excitation/inhibition secondary
to interneuron dysfunction and may be responsible for the
mesolimbic hyperdopaminergic state seen in patients, as
evidenced by preclinical models. Functional dysconnectivity
has been reported between multiple brain regions in CHR
subjects at baseline, including increased activation in the
amygdala and decreased activation in the ventrolateral
prefrontal cortex during emotion labeling tasks and
inappropriate activation of the superior temporal gyrus and
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lack of decoupling with middle frontal gyrus during verbal
working memory tasks. Increased activation of the default
mode network (DMN) at baseline, with decreased suppression
during cognitive tasks, has been observed in CHR subjects.
Subjects that convert exhibit abnormal thalamocortical
connectivity, specifically hypoconnectivity between the
thalamus and the prefrontal cortex and cerebellum, and
hyperconnectivity between the thalamus and the sensory
motor areas.

Inflammation has been strongly implicated in the
pathophysiology of schizophrenia, in both FEP and chronic
disease. Surprisingly, most studies have failed to find an
increase in TSPO signaling in CHR subjects, either using 1st or
2nd generation radioligands. This may be due to the inference of
TSPO as a marker for microglial activation, as it is known to be
expressed on both microglia and astrocytes. Furthermore, the
early evidence for an elevated signal used the 1st generation
radioligand, [11C]PK11195, which was later shown to have
significant non-specific binding. Given the preponderance of
evidence that inflammation is present during both the prodromal
period and first episode psychosis, the lack of TSPO
abnormalities may reflect more on the method than the
pathophysiology. Furthermore, to the best of our knowledge
there are no reports comparing TSPO signal between converters
and non-converters, and these studies may help determine
whether TSPO should be used moving forward or not.

Finally, CHR subjects that convert to psychosis have been
shown to exhibit neurotransmitter abnormalities, including
increased dopamine synthesis capacity in the dorsal and
associative striatum. Higher levels predicted transition to
psychosis, as did increased dopamine synthesis capacity in the
midbrain. Furthermore, when given a verbal encoding and
recognition task, CHR subjects showed a positive correlation
between medial temporal lobe activation and striatal dopamine
synthesis during encoding but not recognition.

One of the major challenges in using clinical or neuroimaging
phenotypes discovered in CHR subjects is applying that
knowledge at the individual level to predict conversion. The
latest front in the prediction of psychosis is to apply machine
learning methods to datasets of those phenotypes. Training
algorithms on datasets of known outcome has allowed
investigators to begin fine-tuning accuracies of prediction to
greater and greater degrees. Seemingly, the greatest progress has
come when combining modalities, such as clinical and
neuroimaging, implying that heterogeneity within each
modality may prevent anyone from being singularly adequate
for prediction. One can hypothesize, then, that further
combinations of modalities may finally allow for balanced
accuracies to cross the 90th percentile. Therefore, along with
the known clinical and neuroimaging predictors, adding in
peripheral blood phenotypes may aid as well. For example,
Perkins et al. looked at peripheral blood analytes, specifically
15 analytes reflecting markers of inflammation, oxidative stress,
hormones and metabolism, and were able to distinguish CHR
converters from non-converters, with an area under the ROC
curve of 0.88 (78). Furthermore, CHR subjects were found to
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have higher blood cortisol levels compared to controls, which
moderately correlated with symptom severity, with higher
baseline cortisol in those who converted (139).

Multiple challenges exist when using machine learning to create
prediction algorithms. Onemajor challenge is the small sample sizes
of CHR populations, especially considering the low conversion rate.
In order to attain large enough sample sizes, multi-site studies are
necessary. However, multi-site studies incur their own challenges,
most significant of which is inter-site variability in data collection
and processing. Multiple strategies have been implemented to try to
overcome this variability. One such strategy is the leave-one-out
strategy, whereby an algorithm is trained on datasets from all sites
but one, which is then used to validate the algorithm. Another is
strategy is the healthy traveler design, in which healthy volunteers
physically travel to each site in the study for scanner and software
calibration. Furthermore, data must be collected on the same model
equipment and must be processed using the same software.
Software updates must be implemented at the same time across
sites. Finally, overfitting of themodel, due to small sample sizes, may
explain some of the difficulties in validating external datasets and
may also explain why accuracies appear to decrease with increasing
sample size. It has been suggested that limiting the number of
predictors compared to the number of converters may assist in
solving this problem (119). One example of a large multi-site
consortium trying to overcome these issues is the PSYSCAN
Consortium (140). They have developed a protocol which aims to
Frontiers in Psychiatry | www.frontiersin.org 10
use multimodal methodologies (clinical, cognitive, genetics, blood,
and imaging) and machine learning to create algorithms that
predict conversion.

In conclusion, neuroimaging has significantly contributed to
our understanding of developing abnormalities in the clinically
high-risk population for psychosis. Further longitudinal
research, in order to identify differences between converters
and non-converters, large multi-site studies, the combination
of multi-modal predictors, and machine learning algorithms that
allow for prediction at the individual level will be necessary to
identify the pre-conversion changes that are most clinically
relevant and build more accurate prediction algorithms.
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