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22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and

otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans

that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic

hypoplasia/aplasia is first suggested by absence or significantly reduced numbers

of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell

receptor excision circles (TRECs). Subsequent clinical assessments will often indicate

whether genetic mutations are causal to the low T cell output from the thymus. However,

the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human

syndromes are not fully understood, partly because the problems of the thymus originate

during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have

been used to better define the underlying basis of the clinical presentations. Results

from these animal models are uncovering contributions of different cell types in the

specification, differentiation, and expansion of the thymus. Cell populations such as

epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably

affected depending on the human syndrome responsible for the thymic hypoplasia. In

the current review, findings from the diverse animal models will be described in relation

to the clinical phenotypes. Importantly, these results are suggesting new strategies for

regenerating thymic tissue in patients with distinct congenital disorders.

Keywords: thymus development, thymic hypoplasia, TECs, mesenchymal cells, 22q11.2 deletion syndrome, PAX1,

FOXN1, CHD7

INTRODUCTION

Thymic hypoplasia is a common transient condition seen in newborns, particularly for premature
babies (1, 2). A short-lived hypoplasia of the thymus can occur at any age due to infections,
diverse forms of stress, pregnancy, alcoholism, malnutrition, and radiation exposure (3–5).
In the elderly, a severe and everlasting involution of the thymic tissue is a well-recognized
consequence of the aging process (6, 7). There are several genetic disorders in humans that
result in permanent hypoplasia or occasional aplasia of the thymus evident at birth. These
genetic disorders often lead to severe combined immunodeficiency (SCID) (8). The mutations
can be monogenic or multigenic, impacting either the patterning of the thymic anlage, the
thymic stromal cell populations, and/or the developing thymocytes. The stromal cell populations
include mesenchymal cells, TECs and endothelial cells. Clinical conditions known to impact these
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stromal cell populations are chromosome 22q11.2 deletion
syndrome (22q11.2del), also referred to as DiGeorge syndrome,
Coloboma-heart defects-atresia choanae-retardation of growth-
genital abnormalities-ear (CHARGE) syndrome arising from
mutations in Chromodomain Helicase DNA Binding Protein 7
(CHD7), Nude/SCID due to autosomal recessive mutations in
Forkhead Box N1 (FOXN1), otofaciocervical syndrome type 2
(OTFCS2) due to mutations in PAX1, as well as mutations in
TBX1 (located within the chromosome 22q11.2 locus) and TBX2
(Table 1) (9–17). Hypoplasia/aplasia of the thymus can also arise
in a developing fetus via teratogen exposures; diabetic- or retinoic
acid- induced embryopathies (18–21). In the current review, the
genetic mutations that affect the stromal cell populations needed
for the formation and/or function of the thymus are described.
Since these mutations often influence the specification of the
thymus during embryogenesis, detailedmechanistic insights have
come from mouse, rat and even zebrafish models.

REVIEW ARTICLE

Overview of Murine Thymus Development
During Embryogenesis
The thymus and parathyroid glands develop from the 3rd
pharyngeal pouch (PP), a temporary embryonic structure that
begins as an evagination of endothelial cells from the gut
tube between e9.5–10.5 (Figures 1A,B) (23). The formation
of the 3rd PP requires several transcription factors including
Paired box gene family members, Sin oculus homolog 1 (Six1),
and Eyes absent 1 (Eya1) (23–25). As the 3rd PP forms, an
endothelial layer within this region is surrounded by an area of
neural crest-derived mesenchymal cells. Ectodermal in origin,
these mesenchymal cells secrete bone morphogenic protein 4
(bmp4) and bone morphogenic protein 2 (bmp2) to support
the patterning of the 3rd PP (26). The targeted deletion of
bmp4 in neural crest cells leads to a reduced contraction of
the mesenchymal cells in the 3rd PP (26). This results in
morphogenesis defects of both the thymus and parathyroid
domains, which are delineated by the expression of Forkhead
box n1 (Foxn1) and Glia cells missing 2 (Gcm2), respectively.
The demarcation of the thymus domain by bmp4 is balanced by
Sonic hedgehog (Shh), which establishes the dorsal parathyroid
region (27). Interestingly, the initial specification of the thymus
and parathyroid regions can occur in the absence of neural crest
cells, which are lacking in splotch mutant mice, which have
mutations in the Paired box gene 3 (Pax3) transcription factor
(28). Paired box gene 1 (Pax1) is a related family member also
involved in the development of the thymic anlage (15, 29). A Pax1
deficiency inmice leads tomild hypoplasia of the thymus (29, 30).
Interestingly, PAX1 autosomal recessive mutations in humans
leads to a more severe hypoplasia of the thymus (13, 15, 17).

With regards to the stromal cell populations, the neural crest-
derived mesenchymal cells have at least three distinct roles in
the development of the thymic tissue. First, these cells form
the thymic capsule and vasculature, establishing the overall
structure of the thymus. Noteworthy, the mechanical removal
of the mesenchymal capsule using e12.5 fetal thymic lobes
renders the tissue hypoplastic (31–33). Yet, the development

and proportions of thymocytes subsets are normal in these
mesenchymal-depleted hypoplastic tissues, revealing intact TEC
functions in the setting of their reduced numbers. Second,
the mesenchymal cells enable the expanding thymic lobes
to detach from the pharynx between e11.5–12.5, with each
lobe from the right and left 3rd PP pairing and descending
into the mediastinum. This process requires both Pax3 and
Homeobox a3 (Hoxa3) transcription factors, with the targeted
deletion of Hoxa3 in neural crest cells resulting in smaller sized
thymic lobes remaining attached to the pharynx (28, 34). Third,
the mesenchymal cells support thymic epithelial cell (TECs)
expansion and differentiation. This involves a combination of
ligands and growth factors produced by mesenchymal cells;
bmp4, bmp2, fibroblast and insulin growth factors, wnt proteins,
and retinoic acid (32, 33, 35–38). Cross-talk between the
mesenchymal cells and TECs facilitates thymic tissue expansion,
differentiation of TECs into cortical and medullary subsets
and recruitment of hematopoietic thymic seeding progenitors
(39, 40). The hematopoietic progenitors arrive in timed waves,
with the first cells appearing prior to the vascularization of
the thymic tissue (41, 42). Following tissue vascularization and
remodeling of the epithelia into a 3-dimensional meshwork, the
thymic seeding progenitors enter through the cortical-medullary
junction (41). These progenitor cells, through a process of cell-
cell interactions with TECs, develop into thymocytes. Consistent
with the theme of cross-communication among the various cell
types in the thymus, ligands expressed by the thymocytes further
support the differentiation and expansion of TECs. For example,
immature thymocytes are needed for the proper expansion of
cTECs during late stages of embryogenesis (43). The cortical
TECs positively select T cells expressing the correct T cell
receptor (Tcr) specificity for self-peptides embedded by major
histocompatibility molecules (44–46). In addition, the emergence
of mature SP thymocytes enhances mTEC differentiation and
proliferation by releasing epidermal growth factor (Egf) and
lymphotoxin and expressing CD40L and RANKL (47–49). The
mTECs ensure deletion of potentially autoreactive T cells and
enable T regulatory cell selection (44–46). Of note, there are
some distinctions between mouse and human thymic tissue
specification during embryogenesis (25). Differing contributions
of Pax1 and Pax9 is one such example, as detailed in the
section on otofaciocervical syndrome type 2 (17). In addition,
unlike mice, both humans and rats express MHC class II
on developing thymocytes and these cells can support the
selection and maturation of CD4 single positive cells (50–52).
Several articles in the current series “new insights into thymic
functions during stress, aging, and in disease settings” as well
as other reviews have provided detailed information about the
development and contribution of TECs in thymopoiesis (53, 54).
The current review will focus on the TECs and other stromal cell
types affected by selected clinical disorders.

22q11.2 Deletion Syndrome (DiGeorge
Syndrome)
Chromosome 22q11.2 deletion syndrome (22q11.2del; OMIM
#188400) is a common human disorder (frequency of 1/4000),
resulting in variable and complex congenital malformations
(8, 55–58). The congenital defects can include thymic hypoplasia,
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TABLE 1 | Stromal cell intrinsic causes of thymic hypoplasia (T−/loB+NK+) from specific human clinical disorders.

Disease name Frequency in the

population

Genes Affected

(# SNPs in ClinVar databasea)

Thymic hypoplasia

(% of patients)

Mouse models Stromal cell populations

affected

22q11.2 deletion syndrome 1 in 4000 >105 genes

[46 coding, 7 miRNAs, 12

lncRNAs, 2 snoRNAs, rest are

pseudogenes]

60–70%

<1% with aplasia of

the thymus

Chromosome 16

ortholog deletions,

Tbx1 targeted mice

Stromal cells

(mesenchymal, endothelial,

epithelial)

CHARGE syndrome 1 in 8500-10,000 CHD7

(SNPs = 973)

50% Chd7 knockout and

knock-in lines

Neural crest cells

(mesenchyme)-TECs

Nude/SCIDb and SCID Rare FOXN1

(SNPs = 126)

90% Foxn1 knockout and

knock-in lines

cTECs and mTECs

Otofaciocervical syndrome Rare PAX1

(SNPS = 29)

100% Undulated series and

Pax1 knockout lines

Endodermally-derived

epithelial cells

22q11.2-like

cardiovascular and skeletal

disorder

Rare TBX2

(SNPs = 25)

100% Tbx2 knockout mice Stromal cells

Maternal diabetes 3–9% of pregnancies Multiple genes

e.g., CybpA1

18% of those needing

thymic transplant

Gestational and

pre-gestational

diabetes

Stromal

(mesenchymal, epithelial,

endothelial)

Fetal retinoid syndrome 5–20% malformation

rates in live births

Multiple genes

e.g., Tbx1, Tbx2, Bmp4, Foxn1

Unknown Retinoic acid injections

Enzyme KO mice

Stromal

(mesenchymal, epithelial,

endothelial)

asingle nucleotide polymorphisms = SNPs, reported in ClinVar database.
bsevere combined immunodeficiency = SCID.

outflow track problems of the heart, hypoparathyroidism,
dysmorphic facial features, and/or other midline organ
involvement (Table 1). Additional complications for children
with 22q11.2del include developmental delay, and over time,
neurological problems such as schizophrenia and autism,
malignancy, and/or autoimmunity (57–61). Most individuals
with 22q11.2del have a 3Mb microdeletion on chromosome 22,
resulting in a hemizygosity of nearly 106 genes (8, 58, 60, 62, 63).
A smaller, nested deletion of 1.5Mb creates a haploinsufficiency
of 30 genes, which occurs in 5–8% of 22q11.2del patients
(8, 58, 60).

Thymic hypoplasia is reported for 60–70% of individuals
with 22q11.2del (56, 58, 64). Due to their thymic hypoplasia,
22q11.2del patients have an average 5-fold reduction in the
number of T cell receptor excision circles (TRECs) compared
to matched controls, with TRECs measuring the circulating
naïve T cells emerging from the thymus (56, 65, 66). In rare
cases a patient with 22q11.2del may have complete thymic
aplasia, resulting in near-complete absence of autologous T cells,
defined by <50 naïve CD3+ T cells per microliter of peripheral
blood (14). An effective clinical treatment option for such a
patient is an allogeneic thymic tissue transplant, first depleted
of thymocytes prior to the placement of small fragments of this
tissue within the quadricep muscles (67–70). The thymic stromal
tissue consists of TECs, mesenchymal cells, and endothelial cells
(71). Upon transplant, the stromal tissue recruits host-derived
hematopoietic cells that mature into thymocytes (70, 72). A
remarkable feature of this thymus transplantation procedure is
the successful selection of TCR-expressing T cells recognizing
peptides presented by host (recipient) antigen-presenting cells
(12, 70, 72, 73). However, the processes of both positive

and negative selection and that of MHC restriction of the
developing T cells are not completely understood in these thymic
tissue transplants. The positive selection of host T cells in a
donor thymus MHC (HLA) background could be caused by
recipient-derived epithelial progenitor cells (74). Alternatively,
the developing human thymocytes could promote positive
selection as these cells express MHC class II molecules (50).
When MHC class II is forcibly expressed on murine thymocytes,
such cells can now positively select CD4T cells (51, 52). The
thymocyte-selected CD4 single positive cells formed in these
mouse models are different than conventional CD4T cells (75).
They express the promyelocytic leukemia zinc finger protein
(plzf) and produce both gamma-interferon and IL-4, reflecting
more innate-like responses (75). The thymic transplants for
22q11.2del patients can additionally enable T regulatory cell
development (69, 76). In normal thymopoiesis, these Tregs
develop through interactions with medullary TECs. Negative
selection is similarly not well-understood following thymus tissue
grafting, with the developing T cells tolerant to both the donor
and host MHC (76). It is likely that host dendritic cells along
with donor mTECs tolerizing/eliminating any developing T
cells targeting either host and donor peptide-MHC complexes
(53, 68, 76).

Not all 22q11.2del patients who have a severe hypoplasia
of the thymus are grafted with an allogeneic thymus (77,
78). Thus, matched sibling and sometimes unrelated bone
marrow transplants have been successfully used to treat
22q11.2del patients who have a severe thymic hypoplasia (limited
TRECs) (77–81). The recipient 22q11.2del patients have normal
T cell functions and humoral immunity, suggesting T cell
reconstitution. However, the majority of the donor T cells have a
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FIGURE 1 | The specification and expansion of the thymus during embryogenesis in normal and disease states. (A) Cartoon diagram illustrating the development

process of the thymus along with the various transcription factors and gene products required. The genes that have roles in the specification of the human pharyngeal

(Continued)

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 830

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bhalla et al. Animal Models of Human Thymus Hypoplasia

FIGURE 1 | apparatus that affects the 3rd pharyngeal pouch (thymus and parathyroid) are shown in brown, while those confirmed importance for these processes in

mice are in blue. (B) Transverse tissue sections or intact thymic lobes were isolated from normal embryos at the indicated ages of gestation. The transverse sections

or whole mounts of the tissue were prepared for immunohistochemistry and H&E staining. Antibodies against vascular smooth muscle, pdgfr-a (alpha) marking the

mesenchymal cells and thymic capsule, pdgfr-b (beta) delineating mesenchymal cells and the vasculature, cytokeratin (TECs) and laminin were used, with the colors

indicated below the image. (C) Thymocyte subset distributions present in e19–19.5 embryonic thymuses from control C57BL/6 mice, those modeling 22q11.2

deletion syndrome (Tbx1neo2/neo2) and those with compound heterozygous mutations in Foxn1 (Foxn1933/1089) are shown. The Foxn1 mutations genocopy that

identified in a human patient (22). Both control and 22q11.2del thymuses have similar distributions of CD4 and CD8 thymocyte subset percentages, suggesting

normal TEC functions. The Foxn1 mutant mice are blocked at the CD4−CD8− subset, indicating a severe TEC dysfunction.

memory phenotype and a limited TCR repertoire (77, 78). In the
short term, there is no difference reported in the mortality for the
patients receiving a thymic tissue vs. those with a bone marrow
transplant (80, 81). This conclusion will require a long-term
longitudinal study comparing infection and survival rates with
a larger cohort. However, the lack of naïve T cell development in
the bone marrow recipients is of clinical concern for 22q11.2del
patients and as described in subsequent sections, individuals with
FOXN1 and PAX1mutations (82).

An important take-home message from the clinical
approaches to treat 22q11.2del patients is that the deletion
primarily impacts the stromal cells of the thymus. Yet, which
stromal cell type(s) is affected by 22q11.2del remains unknown.
One group has analyzed thymuses isolated from 22q11.2del
patients, available since this tissue is often removed to allow
surgical access to the heart (83). The most distinguishing feature
of the thymuses from 22q11.2del patients is its smaller size
compared to age-matched control tissues (83). Thymopoiesis
appears normal, as the percentage of CD4−CD8− (DN),
CD4+CD8+ (DP), and CD4+CD8−, and CD4−CD8+ (SP)
thymocyte subsets in the hypoplastic tissues is similar to that
seen with control samples. The medullary region does appear
smaller in the 22q11.2del samples, although the levels of a
key gene expressed in medullary TECs, Autoimmune regulator
(AIRE), is not statistically different from controls (83). Yet, the
number of thymic CD4+Foxp3+ T regulatory cells (Tregs) is
diminished in the hypoplastic lobes and these cells have less
suppressive capabilities compared to controls (83). It remains
unknown why this difference exists but may explain the higher
prevalence of autoimmune cytopenias in the 22q11.2del cohort
(56, 84, 85). The number of these CD4+ Tregs is also decreased
in peripheral tissues, but this arises from the generalized T
cell lymphopenia affecting most T cell subsets in the setting of
22q11.2del (11, 85–89).

The congenital hypoplasia/aplasia of the thymus caused by
22q11.2del occurs during the patterning of the pharyngeal
apparatus in embryos (58, 90–92). This is best revealed in
mice, as comparative analyses between normal embryos and
those obtained from 22q11.2delmousemodels suggest patterning
defects of the pharyngeal pouches and arches (61, 90, 91, 93–
95). The 22q11.2del mouse lines were initially developed with
orthologous deletions on murine chromosome 16 to identify
genes causal to the congenital malformations (Table 2). This led
to the realization that the principal cause of the congenital defects
was linked to a haploinsufficiency of the T-box Transcription
Factor 1 (TBX1) (90, 91, 93, 94, 96). TBX1 interacts withmembers
of the Histone-lysine N-methyltransferase (KMT2)-family,

activating the low level transcription of over 2,000 genes (97).
Interestingly, the penetrance and severity of the congenital
malformations due to a haploinsufficiency of TBX1 varies
considerably in the mouse models, which recapitulates the
wide range of differences among individual 22q11.2del patients
(Table 2). Emerging evidence suggests this variability is due to
a combination of genetic and epigenetic regulators, both within
and outside chromosome 22q11.2, which influence all the clinical
phenotypes of 22q11.2del (8, 98, 99).

In the mouse models, haploinsufficiency of Tbx1 is generally
not very penetrant in eliciting hypoplasia/aplasia of the thymus
(90, 91, 94, 96, 100). By comparing embryos expressing varying
levels of Tbx1, expression of this transcription factor at or below
35% normal values results in a more frequent and damaging
thymic hypoplasia (101). Thymic hypoplasia resulting from
the reduced levels of Tbx1 are likely caused by developmental
abnormalities in the pharyngeal region. However, the studies
published to date have not concentrated on the 3rd PP. What is
noticeably different are the 4th pharyngeal arches (PA), adjacent
to the 3rd PPs, which are absent or developmentally delayed
between day e9.5-11.5 of embryogenesis (Figure 1B) (101,
102). This impacts the patterning of the structures originating
from the right and left 4th PA, causing a displaced right
subclavian artery and interrupted aortic arch type B, respectively.
Both cardiac presentations are common clinical phenotypes of
human 22q11.2del (102). Tbx1 is specifically expressed in the
regions comprising the pharyngeal arches as well as in the
endothelial layer that juxtaposes the developing parathyroid
(103). It is not expressed in the thymic anlage, suggesting
that Tbx1 haploinsufficiency does not directly impact TECs,
consistent with the observations that enforced expression of
Tbx1 within the 3rd PP actually represses TEC development
(103). A plausible explanation for the thymic hypoplasia in
22q11.2del is that reduced levels of Tbx1 in the pharyngeal
region impact the neural crest-derived mesenchymal cells that
surround the 3rd PP. The importance of these mesenchymal
cells and other cell types has been more clearly revealed in
Tbx1-null embryos. An immunohistochemical analysis of these
embryos reveals an abnormal distribution of proteins involved
in the formation of the extracellular matrix, cell adhesions,
and cell-cell contact (vinculin, paxillin and collagen) (104).
Changes in the expression patterns of these proteins affects
the NCC-derived mesenchyme along with the epithelial cells
in the second heart field (104). Such results strongly suggest
that the NCC-derived mesenchymal cells surrounding the 3rd

PP may also have abnormal mesenchymal and endothelial cell
distributions required for the proper patterning of the 3rd PP.
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TABLE 2 | Mouse models of human clinical disorders leading to hypoplasia or aplasia of the thymus.

Genetic mutation Impact on the thymus Alopecia/nail

cornification

Stage of developmental

block in thymopoiesis

Mechanistic insights

Mouse models of 22q11.2 deletion syndrome

LgDel Rare mild hypoplasia None None 30 genes, including Tbx1 are haploinsufficient causing partially

penetrant cardiac anomalies, minimal effect on thymus

Df (16)A Rare mild hypoplasia None None

Df1/+ Rare mild hypoplasia None None

Tbx1−/− Aplasia None DN1a Early embryonic lethal

Tbx1neo2/+ and Tbx1neo/+ Mild hypoplasia None None 50 and 70% normal Tbx1 levels, respectively, enabling a gene

dosage analysis and showing Tbx1 key to congenital abnormalities

Tbx1+/− Mild hypoplasia None None Tbx1 haploinsufficient (see above with Df and Lg series)

Tbx1neo2/neo2 Severe hypoplasia None None 35% normal Tbx1 levels leads to more penetrant and severe

congenital malformations

Mouse models of CHARGE syndrome: Chd7 mutations created

Chd7 point mutations Not reported None None Affects the cardiac tissue and malformations of the ear canal

Chd 7 ENUb mutations Not reported None None 12 distinct mutations matching human mutations. Phenotypes

mimic human disorder

Chd7 gene trap Not reported None None Three mutations (exons 1, 4, and 34) with effects as with ENU

Chd7 gene knockout None None Exon 2 targeted, clinical phenotypes as with humans

Chd7+/xk gene trap Hypoplasia None None 11% embryos affected, small and ectopic location of the thymus

Mouse models of SCID and Nude/SCID: Foxn1 mutant mice generated

Foxn1 nu/nu Aplastic thymus YES DN1a Required for TEC development, differentiation

Regulates epithelial cells in the skin and nail beds

Foxn11Exon3 Hypoplastic thymus NO DN1a Required for TECs

Normal hair and nail beds

iFoxn117,8 Hypoplastic thymus NO DN2-DN3a Inducible deletion of Foxn1 causes a loss of thymic structure,

reduced T cell output

Foxn1933/1089 Severe hypoplasia of the

thymus

NO DN1a Required for TEC development, differentiation. Normal hair and

nail beds

Foxn11089/1089 Hypoplastic thymus NO DPa 5 amino acid region required for DPa to SPa. Normal hair and nail

beds

Mouse models of Otofaciocervical syndrome: Pax1 mutations

Undulated Mild hypoplasia NO None Gly to Ser mutation causes reduced DNA binding activity. Affects

the patterning of the thymic anlage

Undulated short Mild hypoplasia NO None 125 kb region is deleted, including Pax1 coding region. Affects the

expression of a long non-coding RNA, which is lost while Nkx2.2

is increased

Undulated extensive Mild hypoplasia NO None Last exon of Pax1 deleted. Affects the patterning of the thymic

anlage

Pax1 Mild hypoplasia NO None Complete Pax1 knockout. Affects the patterning of the thymic

anlage

aDevelopmental stages of thymopoiesis: DN subset is CD4−CD8−; DN1, CD44+CD25−; DN2, CD44+CD25+; DN3, CD44−CD25+; DP, CD4+CD8+ thymocyte subset; SP, CD4+

CD8− and CD4−CD8+ single positive subsets.
bN-ethyl-N-nitrosourea = ENU.

This is likely what causes a size restriction on the developing
thymus. In one mouse model of 22q11.2del (Tbx1neo2/neo2), the
embryonic thymus is size restricted yet still supports normal
T cell development (Table 2, Figure 1C). This indicates that
the TECs are functional, matching the phenotype noted in
the hypoplastic thymic lobes from 22q11.2del patients (83). In
summary, mouse models of 22q11.2del strongly suggest that the
initial developmental problems leading to thymic hypoplasia are
coupled to mesenchymal cell defects. As the mesenchymal cells
provide critical support functions for TECs, the consequence
is reduced TEC expansion. Comparing 22q11.2del with other

human clinical syndromes further supports this notion, as
described next.

Charge Syndrome Due to Chromodomain

Helicase DNA Binding Protein 7 Mutation
Coloboma-heart defects-atresia choanae-retardation of growth-
genital abnormalities-ear abnormalities (CHARGE) is a multi-
syndromic congenital disease (11, 105, 106). Approximately
90% of CHARGE patients have mutations in Chromodomain
Helicase DNA Binding Protein 7 (CHD7) (OMIM# 0214800)
(107). CHD7 is an ATP-dependent nucleosome remodeling
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factor, regulating chromatin accessibility and consequently, gene
expression (108). CHD7 also positively regulates ribosomal RNA
biogenesis in the nucleolus (109). Affecting an estimated 1 in
every 10,000 humans, 953 mutations have so far been discovered
in CHD7 (ClinVar database). These include missense, non-sense,
deletion, splicing, and frame-shift mutations, resulting in a loss-
of-function of varying severity depending on the location and/or
effect of the mutation on the protein (105, 110). Patients with
the CHARGE syndrome have immune system problems that
contribute to their recurrent infections; otitis media, sinusitis,
upper airway infections, pneumonia, and/or sepsis (106, 111).
These infections are most often attributed to malformations
of the craniofacial region, the upper respiratory tract, and
the 7th cranial nerve (facial innervation). Of note, the first
descriptions of CHARGE suggested that the infectious issues
were of low incidence (105). More recent reports reveal that
immune system complications are far more prevalent, with
developmental problems of the thymus additionally reported
as causal to the increased susceptibility to infections (106,
112). An immunological assessment of 59 CHARGE patients
revealed that about 50% had a T−/loB+NK+ phenotype (106).
Immunoglobulin levels and subclasses were normal in most
of these CHARGE patients. The absolute numbers of B cells,
including memory cells, were very similar to that in controls. The
low T cell numbers were a consequence of a thymic dysfunction
as TREC levels for these patients were reduced relative to
normal controls. Chart reviews for 36 CHARGE patients who
had cardiac surgeries revealed 16 of 36 had a hypoplasia or
aplasia of the thymus (106). The prevalence of the thymic
hypoplasia may be higher in embryos, as a small/absent thymus
was noted in seven of 10 CHARGE fetuses described in one
study (113).

Chd7 is required for the formation of the multipotent
migratory neural crest cells that migrate throughout the body,
establishing the bone, cartilage, peripheral nervous system, and
cardiac structures (114). To understand the role of Chd7 in
CHARGE, especially given the varied congenital problems that
can arise, various mouse models have been developed (115–
118). The mouse models include those generated with gene-
trapped ES cell lines, N-ethyl-N-nitrosourea (ENU) mutagenesis,
targeted mutations in Chd7, and various floxed alleles of the
gene (Table 2). Embryological analyses indicate that Chd7 is
expressed in the pharyngeal region, including the 3rd PP, the
4th PA, and the 1st PP, the latter forming the auditory tube and
middle ear canal (119). As early as e10.5, the 4th PA is malformed
or absent in 50% of the Chd7 mutant embryos, resulting in an
interrupted aortic arch type B and displaced right subclavian
artery, just as with 22q11.2del (90). While most of the studies
did not focus on thymus abnormalities, one group did report on
this tissue. In this study, about 11% of e14.5 Chd7+/xk embryos
were found to have irregularly shaped thymic lobes, smaller and
more oblong in appearance along with some ectopic positioning
(119). Chd7 is expressed in the surrounding mesenchyme and at
higher levels in TECs, suggesting that the Chd7mutations impact
both neural crest-derived mesenchymal cells and TECs (115).
Interestingly, modulation of retinoic acid (RA) levels in utero
can limit the severity of the phenotypes resulting from the Chd7
mutations (120, 121). The clinical phenotypes due to retinoic acid

embryopathies, including hypoplasia of the thymus, are discussed
in a later section.

Complementing the murine models, Zebrafish studies have
provided additional insights into how Chd7 impacts thymic
tissue specification. One technology commonly used in Zebrafish
is a gene knockdown approach withmorpholino oligonucleotides
(MOs), creating morphants that have a block in transcript
expression. Chd7 morphants have a disrupted morphogenesis
of the 3rd PP, with the migration and function of neural crest
cells (NCCs) in this area impaired (122). Both bmp4 and bmp2
levels are significantly diminished in the chd7 morphants, again
revealing the importance of these soluble proteins in establishing
the thymus and parathyroid domains. At later developmental
time points, the Chd7 knockdown impairs the formation of the
thymic capsule and vasculature. This is coupled with a reduced
formation/expansion of the TECs that may involve impaired
differentiation of the endothelial layer. Finally, the TECs have
a substantial loss of Foxn1 expression, providing a mechanistic
basis for the hypoplasia due to TEC abnormalities (122). In
summary, the Chd7 knockdown impacts the NCC-derived
mesenchymal cells along with the TECs, which suggests that
CHARGE affects more stromal cell populations than 22q11.2del.

Nude/SCID and SCID Phenotypes Linked
to FOXN1 Mutations
Autosomal recessive mutations in the Forkhead Box N1 (FOXN1)
transcription factor cause a T−B+NK+ SCID phenotype due to
a thymic aplasia as well as alopecia universalis and nail plate
dystrophy (OMIM#601705) (123–127). Three distinct autosomal
recessive mutations in FOXN1 have been reported for 10 patients
to date, and these mutations result in a complete loss of protein
function, impacting TECs and skin epithelial cells. Patients
with compound heterozygous mutations in FOXN1 have also
been reported with an atypical phenotype, a thymic hypoplasia
without the co-presenting alopecia and nail dystrophy (22). With
the increasing number of infants noted to have low TRECs, the
subsequent use of exome sequencing for them has uncovered
many individuals with single allelic mutations in FOXN1 (22,
128). While such affected individuals will likely recover normal
T cell numbers as one allele remains functional, it is unclear
what impact such single allelic mutations will have on T cell
output later in life (129). To date, about 131 distinct mutations
in human FOXN1 have been reported, and while many are
benign, there are >20 that have either complete or partial loss
of function consequences (ClinVar database). The best clinical
treatment option for patients with autosomal recessive or specific
compound heterozygous mutations that contribute to a loss-of-
function for FOXN1 is a thymic tissue transplant (12). Yet, while
bone marrow transplants have also been undertaken for such
patients, the underlying defect lies with the TECs of the thymus
(22). Paralleling the clinical findings with 22q11.2del, a thymic
tissue transplant is the best option as this directly resolves the
TEC anomalies.

In the thymus, Foxn1 is the master transcriptional regulator
of TEC development, supporting the differentiation of both
cortical and medullary TEC subsets (45, 130–132). These TEC
subsets are critical for establishing the repertoire of TCR-
expressing T cells that are selected to recognize but not

Frontiers in Immunology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 830

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bhalla et al. Animal Models of Human Thymus Hypoplasia

respond to self-peptide/MHC complexes (44, 45, 131). Foxn1
is a 648 amino acid long transcription factor that contains
DNA binding and transactivation domains, both required for
protein function (133, 134). The DNA binding domain of
Foxn1 comprises three alpha helices, three beta sheets, and two
loops (wings) (130, 135). The 3rd helix and the 2nd winged
segment interact with the major and minor grooves of DNA,
respectively (130, 135). The DNA binding sequence bound by
Foxn1 is GAa/cGC, present in about 500 target genes (132). The
genes regulated by Foxn1 include keratins, keratin-associated
proteins, cytokeratins, thymo-proteasome components, and cell
surface proteins (132, 136). These proteins are important for
both cortical and medullary TEC functions along with the
extrusion of the hair shaft through the dermal layers of the
skin and for nail bed formation (132, 137, 138). In many of the
promoter/enhancer elements bound by Foxn1, there are CREB
and Tp63 binding sites, suggesting cooperative gene regulation
by multiple transcription factors (132).

Mouse and rat models have greatly aided in delineating the
functions of Foxn1. First and foremost was a spontaneously
arising mutant mouse line, discovered in 1966, with a
pronounced nude phenotype (nu/nu). Almost three decades
passed before the mapping of the nu/nu allele to autosomal
recessive mutations in Foxn1 (130, 134). The numutation results
in a single base pair deletion in exon 3, causing a frameshift
and almost no protein expression (130). The mice lack fur,
whiskers, and nails (130, 139, 140). The thymus in the nu/nu
mouse is a small cystic tissue that is unable to support TEC and
consequently, thymocyte development (23, 141). Such nude mice
are commonly referred to as Nude/SCID given their combined
lack of fur and T−B+NK+ immune profile. An analysis of
embryos from these mice show that Foxn1 is not required
for the initial specification of the thymic region within the
3rd PP, but rather for the vascularization of this tissue along
with TEC differentiation/expansion (142, 143). Nude rats (rnuN,
rnu) and cats (nu/nu) with autosomal recessive mutations in
Foxn1 have similarly been described, with the first nude rat
actually found in 1953, prior to the mouse reports (130, 144–
146). While the nu and rnuN mutations prevent translation
of the DNA binding and transactivation domains, much like
the autosomal recessive FOXN1 mutations in humans, rnu rats
carry a mutation within exon 8, which creates a stop codon.
This leads to the expression of a truncated protein (amino acids
1-473) lacking the transactivation domain. Characterizing this
region revealed several aspartic acid residues essential for protein
function (133). In an unrelated study, the introduction of a
truncated Foxn1 construct, wherein only exon 3 is deleted, blocks
TEC development/expansion while allowing for hair extrusion
and nail formation (147). It remains unclear how this occurs
as both DNA binding and transactivation domains remain
intact. In a separate cohort of mice developed to genocopy
the compound heterozygous FOXN1 mutations identified in
an infant, the mice (Foxn1933/1089) had T−B+NK+ immune
profile with normal hair growth and nail extensions (22). Unlike
22q11.2del and CHARGE, these FOXN1 mutations directly
impact TEC development, causing a loss of both DP and
SP thymocytes (Figure 1C). One of the mutations in FOXN1

(FOXN11089) causes a loss of 5 amino acids at the very end
of the DNA binding domain (p.W363C with a 5 amino acid
loss). Knock-in mice harboring this mutation on both alleles
(Foxn11089/1089) have a selective block in thymopoiesis at the DP
stage, with hair follicles and nails appearing normal (22). This 5-
amino acid sequence is highly conserved with Foxn4, an ancestral
ortholog of Foxn1 (148). Interestingly, the cephalochordate
species (lancelets) lack a thymus, and have a divergent sequence
within this 5-amino acid stretch (22, 148). This suggests this small
sequence is important for the expansion of DP thymocytes and
their positive selection into CD4+ and CD8+ subsets (22). There
is a 2nd patient described with distinct compound heterozygous
mutations in FOXN1 (FOXN11288/1465). In functional assays, one
of the mutations (Foxn11465) leads to a p.R489fsX61 truncation
of the protein, resulting in 18% normal transcriptional activity
(22). Thismutation prevents the translation of the transactivation
domain, revealing a requirement for this region to maintain
normal TEC functions. Of note, an increasing number of
single allelic FOXN1 mutations are being reported for patients
initially presenting with low TRECs (22, 128). The subsequent
characterization of these novel mutations will likely reveal the
basis for the differential functions of FOXN1 in TEC subsets vs.
skin epithelial cells. Of note, one research group has identified
a cis-regulatory element (RE) in the 1st intron of Foxn1, the
targeting of which reduces TEC numbers and functions without
any impact on skin epithelial cells (149). This RE is a target of the
Foxn1 DNA binding domain, revealing a positive autoregulatory
loop (150). The possibility exists that human patients may
contain such intronic FOXN1 mutations, but these have not
been reported to date as whole genome sequencing, which is not
commonly done, would be required to uncover them.

Post-natally, Foxn1 needs to be continuously expressed in
TECs to maintain normal T cell output from the thymus (132).
Thus, the inducible deletion of Foxn1 in adult mice reduces
thymic cellularity, and impacts the expansion of the DN1-DN4
subsets of thymocytes (132). In “old” mice, Foxn1 levels in
the thymus are reduced significantly, which partly explains the
tissue involution (151–153). Restoring Foxn1 in the aged thymus
significantly improves thymic cellularity and T cell output (152–
155). Taken together, the numerous human reports regarding
single allelic mutations in FOXN1 and the diverse mouse models
are beginning to reveal key regulatory features of this critical
transcription factor needed for T cell output throughout life.

Otofaciocervical Syndrome Type 2
(OTFCS2) and PAX1 Mutations
Loss-of-function mutations in PAX1 lead to skeletal defects along
with thymic hypoplasia in patients, the latter contributing to the
T−/loB+NK+ phenotype (13, 15, 17). Four such patients received
bone marrow transplants (prior to identification of the PAX1
homozygous mutations) in an attempt to correct their SCID
presentations. Notably, the bonemarrow transplants were unable
to restore T cell development [reviewed in (17)]. The T cells,
characterized in the patients after their bone marrow transplants,
were of donor origin and exhibited a memory phenotype.
Such findings are consistent with the current knowledge that
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PAX1 regulates the patterning of the pharyngeal region, thereby
impacting the stromal cell populations that would not be
corrected by a bone marrow transplant.

Using embryos isolated from pregnant mice, Pax1 transcripts
are evident in the four pharyngeal pouches as early as
e10.5, and become confined to mesenchymal condensations
as embryogenesis progresses (29). This transcription factor is
present in the 3rd PP endoderm and is subsequently detected
in a subset of TECs during embryogenesis (29). Its expression is
retained in the adult thymus. The deletion of Pax1 results in a
marginal hypoplasia of the thymus (29, 30). This was reported in
the undulated series of mouse lines that had varying mutations
within Pax1 or with surrounding regulatory elements. These
mice were initially described in the 1940’s due to their kinked
tails and vertebral deformities (Table 2) (29, 156). All undulated
mutants have a smaller thymus about 2/3rd normal size (29, 30).
Interestingly, only in the context of a Hoxa3 haploinsufficiency
does the thymus in the Pax1 mutant lines exhibit a more
severe hypoplasia, with the two lobes ectopically positioned (30).
The mild thymus phenotypes in the mouse models comprising
various Pax1mutations sharply contrast the severe hypoplasia in
humans with PAX1 autosomal recessive mutations. One possible
explanation is a compensatory contribution by murine Pax9
when Pax1 is lacking. Pax9 overlaps in expression with Pax1 in
the endodermal-derived epithelium of the pharyngeal pouches
(157). In mice, a complete deficiency of Pax9 causes a thymic
aplasia and a lack of teeth, while in humans, autosomal recessive
mutations in PAX9 cause selective tooth agenesis (158, 159).

Clinical Conditions During Pregnancy
Leading to a Thymic Hypoplasia/Aplasia
Maternal diabetes and systemic use of retinoic acid (RA)
derivatives during pregnancy can cause long-term thymic
hypoplasia in newborns (18–21). What’s more, gestational
diabetes leads to congenital malformations in the developing
fetus which overlap with those noted in individuals with
22q11.2del; hypoplasia/aplasia of the thymus, cardiac outflow
tract defects, and hypoparathyroidism (160–163). Estimates
suggest that 18% of infants who required a thymic tissue
transplant due to an aplasia of this tissue, and did not
have 22q11.2del, were born to mothers who had maternal
diabetes (72). In spite of the obvious overlap in clinical
presentations between 22q11.2del and diabetic embryopathy, it
remains unknown how blood sugar dysregulation affects the
pharyngeal apparatus.

In rodent studies, the induction of diabetes in pregnant mice
and rats causes thymic hypoplasia along with intrauterine growth
impairment (164). While intrauterine growth delay will certainly
contribute to thymic hypoplasia, there is some evidence that
the hypoplasia can result from patterning defects within the
pharyngeal apparatus. As gestational diabetes in rodent models
is difficult to regulate, the use of a pregestational diabetes mouse
model has revealed that retinoic acid production is dysregulated
in the developing embryos. Thus, pregestational diabetes reduces
the expression ofCytochrome P450 family 26 subfamily Amember
1 (Cyp26a1), an enzyme that catabolizes retinoic acid (RA) in
the caudal region (tailbud) of developing embryos (165). RA is a
derivative of Vitamin A, which functions as a natural morphogen

regulating the patterning of the 3rd PP along with the 4th
PA (166–170). Both reductions and elevations in RA can lead
to hypoplasia of the thymus along with the other congenital
malformations that overlap remarkably with 22q11.2del and
CHARGE phenotypes (8). While the levels of Cyb26a1 or related
family members within the pharyngeal region were not assessed
in the pregestational diabetes model, their loses would increase
RA, which could cause the problems of the thymus. Consistent
with this, injecting high levels of RA in pregnant mice at
e9.5 results in the formation of a hypoplastic/aplastic thymus,
examined at e11.5–e12.5 (21). It is known that high levels of RA
can impair the migration of the NCCs in the region surrounding
the 3rd PP (21). Moreover, high levels of RA can reduce the
expression of Pax1 within the 3rd PP and Tbx1 throughout the
pharyngeal apparatus (171–173). RA likewise represses Bmp4
activity, impacting thymic tissue specification and development
by ultimately reducing the levels of Foxn1 (174). These changes
have some similarity to that described for embryos developing in
the setting of Chd7 mutations.

The second medical condition that can lead to permanent
hypo- or aplasia of the thymus in newborns is exposure
to elevated levels of RA during pregnancy. Drugs such as
tretinoin or isotretinoin are retinoids prescribed to patients
to both reduce the severity of their acne and smoothen the
skin. However, if taken during pregnancy, the higher levels of
RA can trigger 22q11.2-like congenital malformations in the
developing embryos (18, 72, 160–162, 175, 176). The mechanism
for this hypoplasia is a combination of Tbx1, Pax1, and Foxn1
suppression, as described in the preceding sections of this review
(Figure 1A). The profound damage caused by RA has led to
a generalized warning from the FDA for women to avoid
treatments with RA derivatives during pregnancy.

CONCLUSION

A number of clinical conditions impact the specification of the
thymus during embryogenesis. Interestingly, those that affect the
stromal cell populations have overlapping phenotypes, revealing
that many of the affected genes function in related developmental
pathways. 22q11.2del appears to impact one of the earlier
stromal cell types involved in this process, the NCC-derived
mesenchymal cells. These cells regulate the patterning and
formation of the thymic anlage. CHARGE affects mesenchymal
cells, endothelial cells and the TECs, while FOXN1 mutations
selectively affect the TECs. It is becoming obvious that the three
stromal cell types have considerable cross-talk to coordinate the
formation and expansion of the thymus. A balanced interplay
among all three is essential for the normal specification and
expansion of the thymic tissue. Variations in the functions of any
one of these stromal cell populations will impact the other, which
likely explains the overlapping clinical phenotypes noted among
affected individuals.
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