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Oxidative stress is regarded as a mediator of nerve cell death in 
several neurodegenerative disorders, such as Parkinson’s disease. 
Sesamin, a lignan mainly found in sesame oil, is currently 
under study for its anti-oxidative and possible neuroprotective 
properties. We used 1-methyl-4-phenyl-pyridine (MPP+) ion, 
the active metabolite of the potent parkinsonism-causing toxin 
1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxida-
tive stress and neurodegeneration in neuronal PC12 cells, which 
express dopamine, as well as neurofilaments. Our results show 
that picomolar doses of sesamin protected neuronal PC12 cells 
from MPP+-induced cellular death, as revealed by colorimetric 
measurements and production of reactive oxygen species. We also 
demonstrated that sesamin acted by rescuing tyrosine hydroxylase 
levels from MPP+-induced depletion. Sesamin, however, did not 
modulate dopamine transporter levels, and estrogen receptor-alpha 
and -beta protein expression. By examining several parameters of 
cell distress, we found that sesamin also elicited a strong increase 
in superoxide dismutase activity as well as protein expression and 
decreased catalase activity and the MPP+ stimulated inducible 
nitric oxide synthase protein expression, in neuronal PC12 cells. 
Finally, sesamin possessed significant anti-inflammatory properties, 
as disclosed by its potential to reduce MPP+-induced interleukin-6 

mRNA levels in microglia. From these studies, we determined the 
importance of the lignan sesamin as a neuroprotective molecule 
and its possible role in complementary and/or preventive therapies 
of neurodegenerative diseases.

Introduction

A large body of experimental evidence supports a role for oxida-
tive stress as mediator of nerve cell death in several neurodegenerative 
disorders, such as Parkinson disease (PD). The degeneration of 
dopaminergic (DAergic) neurons located in the substantia nigra char-
acterizes PD and leads to a decline of dopamine (DA) as well as its 
biosynthetic enzyme, tyrosine hydroxylase (TH), and its high-affinity 
cellular transporter (DAT). As reported recently, apoptotic death of 
DA neurons may be initiated by oxidative stress and neuroinflam-
mation.1-3 Besides, elevated iron levels, decreased glutathione levels, 
impaired mitochondrial complex 1 activity and increased superoxide 
dismutase (SOD) activity have been observed in PD brains.4-6

1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is a 
neurotoxin that causes Parkinson-like symptoms in humans, monkeys 
and mice.7-9 This toxin is largely employed as an experimental model 
to study therapeutic strategies against PD. 1-Methyl-4-phenyl-
pyridine ion (MPP+), the active metabolite of MPTP, is selectively 
taken up in DAergic neurons by DAT and actively transported 
into the mitochondria where it interferes with the respiratory chain 
and inhibits complex 1, inducing energy depletion and producing 
reactive oxygen species (ROS), such as superoxide anions.10,11 
Superoxide anions can react with nitric oxide (NO) to produce the 
potent oxidant peroxynitrite, which has been implicated in the devel-
opment of many neurological diseases.1,12,13 To date, however, the 
precise mechanism of MPP+-induced ROS generation is still under 
discussion.13
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1 pM sesamin on MPP+-induced neuronal death. Figure 1 shows 
significant cell death after 24-h exposure to MPP+. Pretreatment 
with 10-12 M sesamin prior to the production of oxidative stress 
greatly attenuated MPP+ toxicity in neuronal PC12 cells. Specifically, 
sesamin protected neuronal PC12 cells against MPP+ by reducing 
MPP+-evoked cellular death by 60%. Figure 2 illustrates the 
rhodamine detection of ROS in neuronal PC12 cells. The non-
flourescent dye DHR was converted to rhodamine in the presence of 
ROS.31,34,35 Figure 2A shows low levels of rhodamine fluorescence 
in control neuronal PC12 cells as well as in cells treated with sesamin 
alone, after 24 h (Fig. 2A, CTRL and sesamin, respectively), whereas 

On the other side, sesamin, a phytonutrient of the class of lignans, 
is a lipophilic compound found in sesame seeds and sesame seed oil 
and is known for its antioxidant role.14-16 Sesamin as well as sesamol 
and sesaminol, the other 2 primary compounds in sesame, are likely 
responsible for the increased stability of sesame oil against auto-
oxidation and the development of rancidity caused by free radicals.17 
Indeed, sesamin is recognized to have several positive physiological 
effects, such as hypocholesterolemic,18 antihypertensive actions,19-21 
and regulates lipid and alcohol metabolism in the liver.22 It is also 
known to protect against rotenone-induced loss of DA cells in 
mice23 and to inhibit lipopolysaccharide (LPS)-mediated activation 
of microglial cells in vitro.24

In this study, we investigated the neuroprotective, antioxidative 
and anti-inflammatory actions of sesamin in a model of DA neurons, 
neuronal PC12 cells.25,26 MPP+ was used to induce oxidative damage 
in these cells and stimulate pro-inflammatory cytokine production in 
the microglial cells line N9.27,28 Our results show that picomolar 
doses of sesamin protect neuronal PC12 cells from oxidative stress 
by reducing MPP+-evoked cellular death and by decreasing ROS 
production. Moreover, sesamin restores TH protein expression after 
MPP+-induced reduction without modulating DAT protein levels. 
Our data also reveal that sesamin increases SOD activity and SOD 
protein production as well as diminishes catalase (CAT) activity, 
indicating a rescue role for sesamin in the oxidative metabolism of 
DA neurons. Finally, our study demonstrates that sesamin decreases 
inducible NO synthase (iNOS) protein expression in neuronal cells 
and lowers mRNA levels of the potent pro-inflammatory cytokine 
interleukin-6 (IL-6) in microglial cells. In this comprehensive study, 
we outline the importance of the lignan sesamin as a neuroprotective 
molecule and its possible potential in complementary and/or preven-
tive therapies of neurodegenerative diseases.

 Results

Sesamin reduces MPP+-induced cytotoxicity and MPP+ produc-
tion of ROS. We measured the protective effect of pretreatment with 

Figure 1. Effect of sesamin on MPP+-induced toxicity, as revealed by measur-
ing LDH activity in supernatants after 24 h of treatment. Neuronal cells were 
pretreated with 10–12 M sesamin for 3 h, and then MPP+ was added for 24 
h. The control medium was subtracted from all absorbance measurements, as 
described in Materials and Methods. n = 6. **p < 0.01 and ***p < 0.001 
vs. sesamin alone; ooop < 0.001 vs MPP+.

Figure 2. Rhodamine detection of ROS within neuronal PC12 cells. DHR is 
oxidized to fluorescent rhodamine in the presence of ROS. (A) Fluorescence 
microphotographs, Ctrl: cells were treated with vehicle. Sesamin: cells 
were treated with 10–12 M sesamin. MPP+: cells were treated with 5 mM. 
Sesamin + MPP+: cells were pretreated with sesamin for 3 h and then 
MPP+ was administered. A marked signal is evident only in neuronal PC12 
cells treated with MPP+ but not in those treated with medium (CTRL) or 
sesamin alone. (B) Semi-quantitative image analysis. Fluorescent units (F.U.). 
Magnification x 400. n = 3. ***p < 0.001 vs CTRL or sesamin alone; ooop 
< 0.001 vs. MPP+.
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Sesamin rescues TH protein expression without modulating 
DAT protein level. TH is the rate-limiting enzyme for DA 
production. TH protein expression was decreased after treatment 
with MPP+, whereas sesamin alone did not modulate it (Fig. 5A). 
Interestingly, when the cells were co-treated with MPP+ and sesamin, 
a slight but constant increase in TH protein expression was mani-
fested, suggesting a neuroprotective role for sesamin in DA neurons. 
Figure 5B depicts that DAT protein levels were downregulated by 
MPP+, as already reported,25,26 and they were not impacted by 
sesamin alone. Pretreatment with sesamin before MPP+ caused 
a slight decline in DAT protein levels which was not statistically 
significant in comparison to MPP+ values. 

Sesamin does not modulate ERα or ERβ protein expression. 
MPP+ administration did not influence ERα or ERβ protein expres-
sion in neuronal PC12 cells, as already demonstrated.25,26 Sesamin, 
alone or in combination with MPP+, also did not alter ERα or ERβ 
protein expression (Fig. 6A and B, and Fig. 6C and D, respectively), 
indicating that the intracellular actions of sesamin do not involve 
the nuclear ERs. Interestingly, immunofluorescence also revealed 
the cytoplasmic and nuclear localization of ERα, whereas ERβ 
appeared to be localized exclusively in the cytoplasm (Fig. 6B and 
D, respectively).

Sesamin modulates iNOS protein expression. Western blot-
ting quantified the protein expression of iNOS, the enzyme mainly 
responsible for NO synthesis. Molecules that can inhibit iNOS may 
have anti-inflammatory activity. Figure 7 shows that when neuronal 
PC12 cells were exposed to MPP+, iNOS production was augmented 
as expected and already demonstrated.37 In Figure 7, we also report 
that sesamin alone reduced iNOS production and that its adminis-
tration prior to MPP+ provoked a marked decrease of MPP+-induced 
iNOS production, sustaining a scavenging role of sesamin against 
reactive nitrogen species. 

a marked signal was detected in MPP+-treated neuronal cells (Fig. 2A, 
MPP+). On the other hand, cells treated with sesamin prior to MPP+ 
demonstrated a dampened signal in comparison to MPP+ alone (Fig. 
2A, sesamin + MPP+), suggesting a scavenging action of sesamin 
on MPP+-induced oxidative stress. Figure 2B reports on the semi-
quantitative analysis of rhodamine fluorescence presented in figure 
2A, revealing high-level fluorescence in the presence of MPP+ and a 
very significant reduction (p < 0.001) when the neuronal cells were 
pretreated with sesamin prior to MPP+.

Effect of sesamin on MPP+-induced increase in SOD and CAT 
activity. We used tetrazolium salt to detect superoxide radicals, as 
described in Materials and Methods. If SOD was present in the 
sample, the superoxide radicals would be dismutated by the enzyme. 
Figure 3 illustrates that sesamin alone increased SOD activity (Fig. 
3A). Interestingly, sesamin also heightened SOD protein expression 
(Fig. 3B) in the same experimental paradigm, as revealed by Western 
blot analysis, indicating a shielding role for sesamin in pretreatment 
experiments. Our results also show that MPP+ increased both SOD 
and CAT activities, confirming a cellular response to MPP+ produc-
tion of ROS (Fig. 2), as demonstrated in vivo.36 When sesamin was 
administered prior to MPP+, we still detected an increment of SOD 
activity compared to the control condition (Fig. 3A). However, 
we did not observe any statistically-significant difference in SOD 
activity compared to MPP+ levels. Figure 4A reveals that sesamin 
alone decreased CAT activity and Fig 4B shows no apparent modula-
tion of CAT protein expression. More importantly, sesamin reduced 
the MPP+-induced increase in CAT activity (Fig. 4A) when adminis-
tered prior to MPP+, supporting an anti-oxidant role for sesamin in 
MPP+-treated cellular systems.

Figure 3. SOD activity (A) and SOD protein expression (B). (A) Sesamin 
markedly increased SOD activity in our experimental conditions. MPP+ also 
upregulated SOD activity by generating superoxide ions. SOD activity levels 
were increased over control values when sesamin was administered prior to 
MPP+. (B) Western blots indicate increased SOD protein expression when 
sesamin was added to the medium in neuronal PC12 cells. ***p < 0.001 
and *p < 0.05 vs CTRL; oop<0.01 vs. MPP+; MPP+ vs. sesamin + MPP+ is 
nonsignificative (NS)

Figure 4. CAT activity (A) and CAT protein expression (B). (A) CAT activity was 
significantly reduced in the presence of sesamin whereas it was increased 
when MPP+ was administered. Treatment of neuronal PC12 cells with sesamin 
prior to MPP+ reduced MPP+-induced CAT activity levels. (B) Western blots. 
**p < 0.01 and vs CTRL; oop < 0.01 and ooop < 0.001 vs. MPP+.
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of oxidative stress and neuroprotection of DA neurons.25,42 After 
NGF administration, PC12 cells differentiate into the neuronal-like 
phenotype that secretes high DA levels and expresses TH, DAT, 
neurofilaments as well as ERα and ERβ.25,43-46 It has already been 
demonstrated that various natural molecules exert anti-oxidative 
actions on mammalian cells, but these effects often require micro-
molar concentrations which would likely be impossible to sustain 
in vivo in humans due, in part, to the rapid metabolism of these 
phytonutrients.47-49 In this study, we examined the neuroprotective, 
antioxidant and anti-inflammatory consequences of low doses of 
sesamin (10-12 M), the major component of sesame oil. The positive 
outcomes we reported in neuronal culture, using picomolar doses 
of sesamin on parameters of neuroprotection, oxidative metabolism 
and neuroinflammation, are supported by the fact that sesamin is 
likely to accumulate in serum and in the brain, being less suscep-
tible to conjugation in the liver.50 In particular, we demonstrated 
that picomolar doses of sesamin can protect DA neuronal cells from 
MPP+-induced cellular death by reducing intracellular ROS produc-
tion. Indeed, non-fluorescent DHR has the capacity to enter cells 
and, once in, it is oxidized by oxygen species (superoxide anion, 
peroxynitrite) in fluorescent rhodamine.35 Accordingly, our results 
show increased rhodamine fluorescence after MPP+ treatment and 
reduced fluorescence when sesamin is administered to neuronal 
PC12 cells prior to MPP+.

Currently, many clues point to the involvement of oxidative 
stress in the pathogenesis of PD (reviewed in refs. 51 and 52). On 
the one hand, it is now also recognized that estrogen replacement 
therapy in postmenopausal women reduces the risk of neurodegen-
erative diseases, particularly PD,53 possibly because the antioxidant 
properties of estrogens contribute to their neuroprotective actions. 
Nevertheless, clinical trials have raised growing concern about the 
secondary hormonal outcomes of hormone replacement therapy.54 

Yet, phytoestrogens are naturally-occurring molecules that may exert 
neuroprotective effects similar to those of estrogens25,55,56 and have 
lesser hormonal actions. In our study, sesamin did not modulate ERα 
or ERβ, making it unlikely that these nuclear receptors are involved 
in its neuroprotective outcomes.

MPTP has been widely used as a DA neurotoxin because it causes 
a severe Parkinson-like syndrome in humans, monkeys and mice.7-9 
MPTP can produce oxidative stress in neurons by various mecha-
nisms. ROS are generated during MPTP metabolism to MPDP and 
then to MPP+, by monoamino oxidase B in astrocytes. Moreover, 
massive DA release after MPP+/MPTP administration evokes exces-
sive amounts of H2O2, resulting in oxidative stress. MPP+ can also 
elicit ROS release through the inhibition of mitochondrial respira-
tion by impairing Na+/K+-ATPase function and leading to neuronal 
depolarization.11,57 Then, the levels of TH protein, the DA key chain 
metabolic enzyme, are reduced in vivo after MPTP administration.58 
Our present findings demonstrated prevention of the MPP+-induced 
decline in TH expression when sesamin was administered prior 
to MPP+, indicating a neuroprotective action of sesamin in DA 
neurons. Besides, we did not detect any modulation of DAT protein 
levels by sesamin, yet a specific effect of sesamin on TH expression 
was sustained. This is significant since DAT exerts its critical func-
tion by transporting DA into presynaptic cells; thus, molecules or 
pathologies that disrupt DAT could have a profound impact on the 
behaviors and physiological conditions it mediates.59,60 DAT is also 

Sesamin diminishes MPP+-induced IL-6 mRNA in microglial 
cells. By RT-qPCR, we measured the expression of the potent 
pro-inflammatory cytokine IL-6. Figure 8 shows that MPP+ induced 
the activation of N9 microglial cells by dramatically increasing IL-6 
mRNA levels. When sesamin was administered alone, no IL-6 was 
detectable, whereas the pretreatment of neuronal PC12 cells with 
sesamin 3 h before MPP+ elicited a reduced pattern of IL-6 gene 
expression, suggesting sesamin’s significant anti-inflammatory role.

 Discussion

A growing body of literature is reporting a positive association 
between the consumption of foods and beverages containing high 
levels of natural antioxidants and the prevention of several age-
dependent diseases, such as cancer, stroke, osteoporosis and coronary 
heart disorders38 as well as Alzheimer’s disease,39,40 opposite to the 
effects of high-calorie diets.41 In this study, we tested neuronal PC12 
cells, a known, reliable and efficient paradigm for the investigation 

Figure 5. TH protein expression (A) and DAT protein expression (B). 
(A) Sesamin did not modulate TH expression when used alone in neuronal 
PC12 cells. When it was administered prior to MPP+, a slight but constant 
increase of TH protein expression was apparent. (B) Western blots revealed 
that sesamin did not modulate DAT protein levels. MPP+ decreased DAT 
levels. We could not detect any statistically-significant variation when the 
cells were pretreated with sesamin before MPP+ administration. ***p < 
0.001 and *p < 0.05 vs CTRL; op < 0.05 vs. MPP+; MPP+ vs. sesamin + 
MPP+ is nonsignificative (NS).
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Figure 6. ERα (A and B) and ERβ (C and D) protein expression, as revealed by immunofluorescence in neuronal PC12 cells. No statistically-significant dif-
ference of ERα or ERβ protein expression was observed after each treatment. Microfluorescence panels (A and C): ERα and ERβ proteins as revealed by 
monoclonal antibodies (red staining with Cy3); nuclei were coloured blue with DAPI, as described in Materials and methods. Histograms (B and D): semi-
quantitative analysis of the fluorescent signal shown above. CTRL, sesamin alone, MPP+, MPP+ + sesamin in both panels. Magnification x 400. 

Figure 7. iNOS protein expression as revealed in neuronal PC12 cells after 
sesamin and MPP+ administration. 10–12 M sesamin slightly decreased 
iNOS protein expression and MPP+ markedly increased iNOS protein levels 
in our cellular paradigm. When sesamin was administered prior to MPP+ 
a significant decline of iNOS was detected. **p < 0.01 vs CTRL; ooop < 
0.001 v.s MPP+.

Figure 8. IL-6 mRNA levels shown by RT-qPCR. N9 microglia cells were first 
treated or not with sesamin for 3 h, then MPP+ was added or not. MPP+ 
clearly induced a significant increase of IL-6 mRNA levels, but when micro-
glial cells were treated with sesamin prior to MPP+, we detected a significant 
decline of IL-6 mRNA. n = 3. ***p < 0.001 vs CTRL, oop < 0.01 vs MPP+.
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apoptosis-inducer, and iNOS is a key enzyme in charge of producing 
large NO quantities. Sesamin and sesamin metabolites are known to 
induce endothelial NOS and thus playing an important anthyper-
tensive function.19,21 In this study, we demonstrated that sesamin 
markedly reduced the MPP+-induced upregulation of iNOS expres-
sion, corroborating other data on similar effects of curcumin in 
PC12 cells.70

Finally, microglia activation and neuroinflammation have been 
proposed as candidates that mediate the apoptotic cell death of 
DA neurons. Currently, various phytonutrients, such as resvera-
trol, quercetin, silymarin, epigallocatechin-3-gallate and sesamin, 
have been found to dampen microglial activation in vitro and in 
vivo.71-74 Others report that sesamin inhibits LPS-mediated activa-
tion of microglial cells in vitro24,75 as well as iNOS mRNA levels.76 
MPTP has recently been reported to activate microglia in vivo,27,77 
and to induce TNFα expression.78 Pro-inflammatory cytokines, 
identified in the post-mortem substantia nigra, striatum, and cere-
brospinal fluid of PD patients, include TNFα, IL-1β, -2 and -6 and 
interferon-gamma.79,80 We studied the N9 microglial cell line to 
quantitatively analyze mRNA levels of the potent pro-inflammatory 
cytokine IL-6. Our results are the first to quantitatively indicate that 
sesamin can indeed reduce mRNA IL-6, when the inflammation 
process is induced by MPP+, supporting a complex role of sesamin 
in the mechanisms of neuroprotection, both at the neuronal and 
glial levels.

In conclusion, our comprehensive findings point to a distinct role 
of the sesame lignan sesamin as a potent neuroprotective antioxidant 
and anti-inflammatory agent. Certainly, cellular studies on natural 
compounds that could restore damaged mitochondrial functions 
and interfere with the production of ROS and NOS could benefit 
complementary alternative medicine and preventive therapies of 
neurodegenerative diseases.

Materials and Methods

Materials. All reagents were purchased from Sigma (St. Louis, 
MO) unless noted otherwise.

Cell culture and treatments. PC12 cells (ATCC, Rockville, 
MD) were maintained in a controlled environment at 37˚C and in 
5% CO2 atmosphere. They were grown in RPMI-1640 medium, 
without phenol red, supplemented with 5% fetal bovine serum 
(FBS), 10% horse serum (HS, Invitrogen, Toronto, ON, Canada) 
and gentamicin (50 µg/ml). The culture medium was changed every 
3 days. For each experiment, cellular density was 30,000 cells/cm2. 
Neuronal differentiation was induced for 8 days by 50 ng/ml nerve 
growh factor (NGF) in RPMI-1640 medium supplemented with 
1% FBS, as already described.25 To examine the effect of sesamin on 
MPP+-evoked oxidative stress, the cells were pretreated with sesamin 
(1 pM) for 3 h and then exposed to MPP+ (5 mM) for 24 h.25 
This concentration of sesamin was chosen as the lowest dose able 
to rescue cells from MPP+-induced cellular death, after kinetic and 
dose-response studies (data not shown). The microglial cell line N9 
(a generous gift from Dr. L. Vallières, Centre de recherche, CHUL, 
Quebec, QC, Canada) was grown in 10% HS in Dulbecco’s modi-
fied Eagle’s medium-F12-ham (DMEM-F12). To assess the influence 
of sesamin on MPP+-induced N9 inflammation, the cells were 
pretreated with sesamin for 3 h and then exposed to MPP+ (500 µM) 
for 24 h. All experiments were performed in phenol red-free medium 

known to be sensitive to inhibition by ROS and possibly by NOS.13 
Our results showing reduced DAT protein levels after MPP+ admin-
istration confirm previous data.26 However, in our experiments, 
we could not demonstrate the recovery of DAT protein expression 
when sesamin was given prior to MPP+, indicating no acting defense 
of sesamin against MPP+-induced damage. Alternatively, the pico-
molar doses of sesamin we tested were not sufficient to specifically 
modulate DAT expression against the relatively high doses of MPP+ 
we used. These relatively high doses of MPP+ were required in our 
cellular paradigm as well as in others61,62 to reach significant cellular 
death over a short time period.

We also analyzed the effects of sesamin on parameters of cell 
distress as well as markers of neuroinflammation. Indeed, increased 
iron levels, decreased glutathione levels, impaired mitochondrial 
complex 1 activity and heightened SOD activity have been observed 
in PD brains.4-6 Moreover, the apoptotic death of DA neurons may 
be initiated by oxidative stress and neuroinflammation.2,3 In vivo 
studies suggest that sesamin protects the liver against Fe-induced 
oxidative damage by decreasing liver enzyme activities involved in 
lipogenesis and by increasing those implicated in fatty acid oxida-
tion.63,64 Other recent data report that dietary sesame seed increase 
the levels of vitamin C and E, two antioxidative vitamins, in various 
tissues.65

Augmented SOD activity demonstrates that sesame lignans may 
enhance the ability to eliminate superoxide radicals formed during 
Fe2+-induced oxidative stress.14 Accordingly, we found increased 
SOD activity as well as SOD protein expression when sesamin was 
administered alone in the medium, indicating a protective role in 
pretreatment experiments. In addition, several other natural and 
synthetic molecules are reported to heighten SOD activity in various 
cellular systems.66-68 MPP+ also augmented SOD activity in our 
experiments, as described in the recent literature where MPTP 
increased SOD activity by generating superoxide ions.36 In our 
experimental conditions, pretreatment with sesamin prior to MPP+ 
administration elevated SOD activity in comparison to control 
cells, but this was similar to SOD activity after MPP+ treatment. 
The apparent contrasting action of SOD should be analyzed by 
comparing it with the results obtained by fluorescent rhodamine. 
Indeed, low ROS levels, illustrated by low rhodamine fluorescence 
(sesamin alone and sesamin + MPP+), sustained the ability of sesamin 
to induce SOD activity and protein expression, as demonstrated by 
our data. When MPP+ was administered, rhodamine fluorescence 
indicated high ROS levels and, consequently, the cells responded 
by augmenting SOD activity, as already reported.36 Our findings 
clearly show that SOD activity may be induced by 2 different mecha-
nisms, a protective mechanism and a response-to-stress mechanism. 
Pretreatment with sesamin prior to MPP+ administration indicates 
low ROS levels, as revealed by rhodamine fluorescence, and suggests 
that the SOD activity induced by sesamin pretreatment may scavenge 
MPP+-generated ROS. However, other data are needed to determine 
the balance between sesamin- and MPP+-induced SOD activity. 

CAT activity is another parameter of oxidative stress. Our 
results showed that sesamin decreased CAT activity and sesamin 
pretreatment reduced the MPP+ -induced increase in CAT activity, 
confirming a scavenging role for sesamin in the pretreatment experi-
mental condition. 

To date, ROS can no longer be regarded as the sole damaging 
species in MPTP/MPP+-induced toxicity.13,69 Certainly, NO is an 
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(Santa Cruz Biotechnology, Santa Cruz, CA), anti-Cu/Zn SOD 
antibody (1:1000) (StressMarq,Victoria, BC, Canada), anti-CAT 
antibody (1: 50) (Santa Cruz Biotechnology), and anti-iNOS anti-
body (1:50) (StressGene, Biotech, Ann Arbor, MI). The following 
day, the membranes were washed, and anti-mouse POD-conjugated 
secondary antibody diluted 1:10,000 was added for 1 h at RT. 
Immunopositive signals were visualized by enhanced chemilumi-
nescence with the AlphaEase FC imaging system (Alpha Innotech, 
San Leandro, CA) and analyzed with AlphaEase FC software (Alpha 
Innotech).

Immunofluorescence. Neuronal PC12 cells were plated on 
collagen-coated coverslips in 24-well plates and neuronal differen-
tiation was induced for 8 days with NGF, as described above. After 
treatment, the cells were fixed in 4% paraformaldehyde for 1 h at 4°C, 
then permeabilized with fish skin gelatin buffer + Triton (TBS, 1% 
BSA, 0.18% fish skin gelatin, 0.1% Triton-X, 0.02% sodium azide) 
for 30 min at RT. The fixed cells were incubated with monoclonal 
anti-estrogen receptor-alpha (ERα) antibody (StressGene) diluted 
1:500, for 2 h at RT or with polyclonal anti-ERβ antibody (Santa 
Cruz Biotechnology) diluted 1:50, for 2 h at RT. Then, the slides 
were washed with PBS and stained with Cy3-conjugated secondary 
antibody (Medicorp, Montreal, QC, Canada) diluted 1:500, for 2 h 
at RT. Finally, 4’,6-diamidino-2-phenylindole (DAPI, 5 µg/ml) was 
added for 10 min at 37˚C to counterstain all nuclei. Coverslips were 
mounted with a Molecular Probes Prolong Antifade Kit (Invitrogen). 
Images were acquired with an Orthoplan fluorescence microscope 
(Leica) with a high-pressure mercury burner and necessary filter 
cubes, then analyzed with NIS-Element 2.2 software (Nikon).

Real time-quantitative polymerase chain reaction (RT-qPCR). 
Total RNA was extracted with Sigma’s GenElute Mammalian Total 
RNA extraction kit. RNA was spectrophotometrically measured 
for each condition, and 1 µg of total RNA was reverse-transcribed 
with 25 U of M-MULV reverse transcriptase, 1.5 µM dNTP, and 
10 µM of random hexamers. RT-qPCR was then performed in a 
MiniOpticon Real-time PCR system (BioRad) in 20 µl-sized reac-
tions containing 4 µl of the cDNA mixture, 0.3 µM of each forward 
and reverse primer and 10 µl of iQ SYBR Green Supermix (BioRad). 
Incubation at 95°C for 3 min was followed by 40 cycles of 15 s 
at 95°C and 30 s at 61°C. Primers for tumor necrosis factor-beta 
(TNFβ) (5’-CAC GAG GTC CAG CTC TTT TC-3’ and 5’-AGT 
GCA AAG GCT CCA AAG AA-3’), IL-6 (5’-TTC CAT CCA 
GTT GCC TTC TT-3’ and 5’-ATT TCC ACG ATT TCC CAG 
AG-3’), Ubiquitin C (5’-AGC CCA GTG TTA CCA CCA AG-3’ 
and 5’-TCA CAC CCA AGA ACA AGC AC-3’), β-microglobulin 
(5’-ATG GGA AGC CGA ACA TAC TG-3’ and (5’-CAG TCT 
CAG TGG GGG TGA AT-3’) were synthesized at Sigma Genosys 
(Oakville, ON, Canada). Reactions were performed in duplicate, 
and 3 independent preparations of cDNA were studied. A 10-fold 
dilution series was obtained from a random pool of cDNA ranging 
from x10 to x100,000 dilution. Mean cycle threshold values (Ct) for 
each dilution were plotted against log10 of cDNA input to generate 
efficiency plots. The reaction efficiency for each gene assay was calcu-
lated according to the following equation:

E = 10(-1/slope)

and charcoal-stripped serum to remove steroids from the medium.
Cytotoxicity measurements. Cytotoxicity was evaluated by colo-

rimetric assay (Roche Diagnostics, Laval, QC, Canada) based on the 
measurement of lactate dehydrogenase (LDH) activity released from 
damaged cells into the supernatant, as already described in refer-
ence 25. LDH is a stable cytoplasmic enzyme present in all cells. It 
is rapidly released into the cell culture supernatant upon damage of 
the plasma membrane. The amount of enzyme activity detected in 
the culture supernatant correlates with the portion of lysed cells.29,30 
Briefly, 100 μl of cell-free supernatant were taken to quantify LDH 
activity by measuring absorbance at a wavelength of 490 nm on a 
microplate reader (Thermolab System, Franklin, MA). Total cellular 
LDH was determined by lysing the cells with 1% Triton X-100 
(high control); the assay medium served as a low control and was 
subtracted from all absorbance measurements:

Cytotoxicity (%) = (Experimental value – Low control) x 100%  
   

 (High control – Low control)

Dihydrorhodamine 123 (DHR) detection. The scavenging effect 
of sesamin against MPP+-induced oxidative stress was evaluated by 
DHR assay, as described previously.31,32 In brief, a stock solution 
of DHR (Molecular Probes, Eugene, OR) was prepared in dimeth-
ylsulfoxide (DMSO) to a concentration of 10 mM, deoxygenated 
with nitrogen and stored at -80˚C. Neuronal PC12 cells were treated 
with DMSO (Ctrl), sesamin and/or MPP+. Then, they were quickly 
washed with PBS 0.1 M and exposed to 250 µl of DHR at 37˚C for 
20 min. The slides were immediately examined under an Orthoplan 
fluorescence microscope (Leica, Wetzlar, Germany), photographed 
with a Qimaging camera (Nikon, Mississauga, ON, Canada) and 
analyzed by NIS-Element 2.2 software (Nikon).

Detection of SOD and CAT activity. Neuronal cells were 
mechanically harvested and then collected by centrifugation at 
2,000g for 10 min at 4˚C. The pellets were homogenized in 1 ml 
of cold 20 mM HEPES buffer, pH 7.2 (1 mM EGTA, 210 mM 
mannitol and 70 mM sucrose) and sonicated (3 times, 5 s). The 
samples were then centrifuged at 1,500g for 5 min at 4˚C, and the 
supernatant was assayed according to the manufacturer’s protocol 
(Superoxide Dismutase Assay Kit or Catalase Assay Kit, Cayman 
Chemical, Ann Arbor, MI). One unit of SOD activity is defined 
as the amount of enzyme needed to exhibit 50% dismutation of 
superoxide radicals. The reaction was monitored at 450 nm with a 
microplate reader (Thermolab System). 

Electrophoresis and immunoblot analysis. NGF-differentiated 
PC12 cells were grown and treated in collagen-coated 6-well plates. 
Total cellular proteins were extracted with Nuclear Extraction Kit 
(Active Motif, Carlsbad, CA), diluted in 50 μl of lysis solution, 
and their concentration determined with a BCA Protein Assay 
Kit (Pierce, Rockford, IL). Equal amounts of protein (1 μg) were 
loaded onto 10% polyacrylamide gel-sodium dodecyl sulfate. After 
electrophoretic separation (180 volts, 45 min), the polyacrylamide 
gels were transferred onto nylon PVDF membranes (0.22-μm pore 
size, BioRad, Hercules, CA) at 60 V for 2 h. The membranes were 
blocked with 5% non-fat powder milk for 1 h at room tempera-
ture (RT). Immunoblotting was performed overnight at 4˚C with 
anti-TH antibody (1:2,000) (Sigma), anti-DAT antibody (1:50) 
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where E was the reaction efficiency, and ‘slope’ was the slope of the 
line generated in efficiency plots. All PCR efficiencies were above 
90%. In all PCR experiments, post-PCR DNA-melting curve anal-
ysis was undertaken to assess amplification specificity. DNA-melting 
was carried out at a temperature ramping rate of 1°C per step with 
1-s rest at each step. Relative gene transcription was calculated by the 
comparative Ct method, using the real-time efficiency values of each 
gene. cDNA levels among the samples were normalized by the expres-
sion level of 2 internal control genes: ubiquitin and β-microglobulin. 
These housekeeping genes were chosen with the GeNORM algo-
rithm.33 A normalization factor was calculated with the geometric 
mean of the 2 reference genes. The normalized expression of each 
gene of interest was calculated by dividing the raw quantities for each 
sample by the appropriate normalization factor.33

Statistical analysis. Significant differences between treatment 
effects were determined by 1-way ANOVA, followed by Tukey’s post-
hoc test and Student-Newman-Keuls analysis with the GraphPad 
Instat program, version 3.06, for Windows© (San Diego, CA, www.
graphpad.com). Data are expressed as the means ± S.E.M. from 3–15 
independent experiments. Asterisks (*) indicate statistical differences 
between the treatment and respective control conditions, and circles 
(o) show statistical differences between the treatment and MPP+ 
conditions. 
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