
Review Article
The Role and Function of Regulatory T Cells in Toxoplasma
gondii-Induced Adverse Pregnancy Outcomes

Xuyang Gao , Yue Zhong , Yifan Liu , Runmin Ding , and Jinling Chen

Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001 Jiangsu, China

Correspondence should be addressed to Jinling Chen; chenchennt@ntu.edu.cn

Received 30 April 2021; Revised 22 June 2021; Accepted 29 July 2021; Published 19 August 2021

Academic Editor: Zhipeng Xu

Copyright © 2021 Xuyang Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Infection with Toxoplasma gondii (T. gondii) during the pregnant period and its potentially miserable outcomes for the fetus,
newborn, and even adult offspring continuously occur worldwide. People acquire infection through the consumption of infected
and undercooked meat or contaminated food or water. T. gondii infection in pregnant women primarily during the gestation
causes microcephaly, mental and psychomotor retardation, or death. Abnormal pregnancy outcomes are mainly associated with
regulatory T cell (Treg) dysfunction. Tregs, a special subpopulation of T cells, function as a vital regulator in maintaining
immune homeostasis. Tregs exert a critical effect on forming and maintaining maternal-fetal tolerance and promoting fetal
development during the pregnancy period. Forkhead box P3 (Foxp3), a significant functional factor of Tregs, determines the
status of Tregs. In this review, we summarize the effects of T. gondii infection on host Tregs and its critical transcriptional
factor, Foxp3.

1. Introduction

T. gondii is an obligate intracellular parasite with a compli-
cated life cycle, belonging to apicomplexa. T. gondii requires
two hosts, mammals including human acting as intermediate
hosts and cats, which are definitive hosts [1]. People acquire
infection by eating undercooked meats or dairy products
which contain cysts or pseudocyst of T. gondii or by contact-
ing with water contaminated with feces of cats that involve T.
gondii oocysts [2]. T. gondii in an individual with normal
immunity is in a state of latent infection and produces no
obvious clinical effect. Nevertheless, an individual with com-
promised immunity possibly suffers from ocular toxoplas-
mosis and fatal diseases of the central nervous system like
encephalitis. Contracting T. gondii during the pregnancy,
which is a state of immunological tolerance, might be a lethal
factor for the fetus. The overall risk of congenital infection
from primary T. gondii infection varies from 20% to 50%
without treatment [3]. Based on the seroprevalence study in
Central and Southern Italy from 2013 to 2017, the prevalence
of pregnant women remains 13.8%, although pregnant
women are conscious of the importance of hygiene and diet

to prevent primary T. gondii infection [4]. T. gondii tachy-
zoites infect fetuses and cause potentially tragic outcomes
such as microcephaly, intrauterine growth restriction, or
death [5] (Figure 1). And the severity of T. gondii infection
is closely associated with gestational age [6]. Chorioallantoic
attachment did not occur until embryonic day (E) 8.5 during
the development of mouse placenta. At this stage, tropho-
blast cells of the chorionic plate and mesoderm cells of allan-
tois begin to interdigitate to generate villi [7]. Villous
explantation has high resistance to pathogen infection [8].
Therefore, Toxoplasma infection, which occurs in the early
pregnancy, enhances the possibility of miscarriage.

Normal pregnancy is a special immune phenomenon,
similar to allotransplantation. Many mechanisms protect
the fetus from the maternal immune system, including the
nonclassical MHC molecules expressed on trophoblast cells,
the complement system, tryptophan catabolism by the action
of enzyme indoleamine 2,3-dioxygenase (IDO), T cell apo-
ptosis, and suppressive function of CD4+ CD25+ Tregs [9].
Among them, Tregs are documented as important regula-
tors in maintaining normal pregnancy [10]. Tregs modu-
late the immune response mainly by secreting inhibitory
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factors such as transforming growth factor-β (TGF-β) and
interleukin-10 (IL-10) or inhibiting inflammatory cyto-
kines produced by Th1/Th17 cells, such as interferon-γ
(IFN-γ), IL-17, and IL-23, in order to protect against their
harmful effects [11, 12].

Pregnant women infected with T. gondii during the gesta-
tion period will lead to decidual Treg depletion in number
and downregulation in function on the maternal-fetal inter-
face [13]. In our laboratory, previous research has shown that
the decrease in the number and function of Tregs of pregnant
mice results from T. gondii excreted-secreted antigens [14],
which break immune tolerance of normal pregnancy and
finally cause abortion during early pregnancy [15]. In this
article, we review the role of Tregs and the underlying mech-
anism in T. gondii-induced adverse pregnancy outcomes.

2. Destructions of Placental Structure by T.
gondii Infection

Human placenta, a critical organ with multiple functions like
endocrine and immune reaction, consists of its umbilical
cord, amnion, parenchyma, and chorion. Chorion differenti-
ates into floating and anchoring villi. Floating villi are formed
by an inner layer of cytotrophoblasts (CTBs) where a layer of
syncytiotrophoblasts (SYN) covers, while anchoring villi
attach itself to maternal decidual tissue via extravillous tro-
phoblasts (EVTs). EVTs straightly invade the decidua basalis
and thus anchor the placenta into the uterine implantation
site, in which the EVTs directly contact with maternal
immune cells. The maternal-fetal interface is composed of
CTBs and SYN that are formed via the fusion of the underly-
ing CTBs. SYN on both floating and anchoring villi consti-

tutes the outermost cell layer and thereby forms the critical
interface between maternal and fetal blood [16]. The syncy-
tiotrophoblast layer has high resistance to T. gondii infection.
T. gondii rarely goes across the syncytiotrophoblast layer
in vivo [17]. When syncytium is damaged, it would allow
for pathogen to enter the villous core [18]. The influence
might be dependent on the gestation time as well, for the
layer of subsyncytial CTBs becomes thinner and discontinu-
ous in part after the first trimester. Although T. gondii repli-
cates well in underlying subsyncytial CTBs, it fails to colonize
SYN [18]. Those indicate that T. gondiimight invade subsyn-
cytial CTBs only if the syncytiotrophoblast layer ruptures
(Figure 2).

In the process of placentation, trophoblast cells from
implanted blastocyst invade the mother’s endometrium.
Endometrial stromal cells differentiate through a process
called decidualization, which contributes to trophoblast inva-
sion [19]. According to the contact pattern between the tro-
phoblast and endometrium, the placentae of eutherians are
classified in epitheliochorial, endotheliochorial, and hemo-
chorial placentae. In hematochorionic placentas of human
and mice, the fetal membrane is in direct contact with mater-
nal tissue and blood [20]. To maintain successful pregnancy,
the deep placentation implies proper recognition and toler-
ance of semiallogeneic fetuses, in which maternal immune
cells play a key role. Tregs infiltrate into the decidua of preg-
nancy and play a crucial role in fetal tolerance, trophoblast
invasion, and tissue and vascular remodeling, along with other
leukocytes (macrophages, NK cells, and dendritic cells) [21].

Brito et al. infected BALB/c mice with T. gondii type II
strain (ME49) [22]. Histopathological analysis showed that
T. gondii was generally detected in the muscularis at the early
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Figure 1: Life cycle and spread of T. gondii between people and animal. Feline is the definitive host. Intermediate hosts will infect by ingesting
the water source of T. gondii oocyst deposited in cat feces or animal meat andmilk products containing cysts or pseudocysts. Pregnant women
infected during the gestation period will bring about adverse outcomes because T. gondii can be transmitted to the fetus through the placenta.
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gestation period, and a small number of T. gondii were found
in the decidua on the 14th day of gestation. On the 18th day
of gestation, necrosis appeared at the maternal-fetal interface
and T. gondii could be observed in the placenta. 2000 freshly
sporulated oocysts of T. gondii M4 were administered orally
to Churra sheep during the pregnancy [23]. From 7 to 11
days after infection, abortion occurred in pregnant ewes.
The placenta with different degrees of autolytic edema could
be seen under the microscope. Histological examination
revealed infarction and thrombus formation of the villi of
the placental corpuscle wall, which caused fetal hypoxia dam-
age and was related to acute abortion. Fadaam et al. found
that T. gondii could be detected in the fetal brain, lung, and
placenta. And inflammatory pathological changes of tropho-
blastic cells in the placenta, trophoblast edema, hemorrhage,
and fibrinoid necrosis were observed, indicating that T. gon-
dii during the pregnancy was transmitted to the fetus
through the placenta, affecting pathological changes of pla-
cental structure and further damaging trophoblast cells of
the placenta [24]. In addition, pathologic examination
revealed necrotic granuloma in the villous stroma leading
to fetal autolysis in pregnant women infected with T. gondii
[25]. A normal mouse placenta consists of the maternal
decidua and the fetal embryo-derived compartments, con-
taining the junctional zone and labyrinth zone [26]. Nearly
all of the embryos and placentas in pregnant mice exhibited
a necrotic and hemorrhagic appearance at the early stage of
pregnancy following the administration of antigens from T.
gondii [14]. The function of the labyrinth zone in the mouse
placenta is to be equivalent to that of the chorionic villus of
the human placenta. The labyrinth zone of the mouse pla-
centa displayed the classical interhemal barrier, breaking fetal
blood vessels and maternal lacunae upon the administration
of antigens from T. gondii [14]. Hence, destructions of the

placental structure may partially account for the adverse
pregnancy triggered by T. gondii.

3. Effects of T. gondii Infection on Maternal-
Fetal Immune Regulation

3.1. Maternal-Fetal Immune Regulation. Normal pregnancy
is, to a great extent, dependent on maternal immune toler-
ance, as the fetus consists of the tissue-specific as well as
paternally inherited antigens. Balance between inactivation
of alloreactive effector cells and/or clone deletion and
immune suppression triggered by regulatory immune cells
constitute maternal immune tolerance. Innate regulatory
immune cells including alternatively activated/regenerative-
type macrophages (M2), tolerance-inducing DCs (tDCs),
and CD56bright CD16- decidual NK cells (dNK) interact with
adaptive cells comprising Tregs to constitute a key network
that maintain a successful pregnancy [27].

Macrophages have a capacity for immunosuppressive
activity and production of cytokine besides antigen presenta-
tion. According to the function and repertoire of cytokine
production, macrophages are generally classified into two
significant subpopulations: M1 and M2. M1 macrophages
are an inflammatory-type presenting antigen, producing
proinflammatory cytokine and nitric oxide (NO) as well as
reactive oxygen species (ROS). M2 macrophages, which are
induced by Th2 cytokines like IL-4 and IL-13, are alterna-
tively activated/regenerative type that exert an immunosup-
pressive function and promote immune tolerance and
tissue remodeling at the maternal-fetal interface [21]. M2
macrophages play immunosuppressive roles by abundant
production of IL-10 and IDO, accompanied with
prostaglandin-E2 (PGE2) which limits the activation of cyto-
toxic leukocytes [28]. IDO produced by M2 is mediated by
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Figure 2: Mechanism of maternal-fetal immune regulation. The maternal-fetal interface is composed of CTBs and SYN, formed by the fusion
of underlying CTBs. SYN, the key interface between the blood and fetal barrier, is highly resistant to T. gondii. T. gondii rarely goes across
SYN. T. gondii infection affects maternal-fetal immune regulation by affecting maternal regulatory immune cells, mainly by inhibiting
Tregs. CTBs: cytotrophoblasts; SYN, syncytiotrophoblasts; EVTs: extravillous trophoblasts; Teff cell: effector T; tDC: tolerance-inducing
DC; images were created with BioRender.
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Tregs via cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) expressed on Treg surface. The shift from M2 to
M1 phenotype during pregnancy is linked to adverse preg-
nant outcomes like miscarriages or preeclampsia [29].

The DCs orchestrate T cell activation and differentiation
via presenting antigen and providing costimulatory signal-
ing. Placental formation during the early pregnancy is corre-
lated with immature DCs with tolerogenic capacity. DCs
induce Treg differentiation along with abundant production
of IL-10 during the pregnancy [30]. Additionally, Tregs pro-
duce heme oxygenase-1 (HO-1) to maintain the immature
state of DCs, which further induces Treg formation via
higher level of IL-10 [31]. DCs produce IDO and TGF-β to
interact with CTLA-4 expressed on Tregs, which inhibit
allogen-specific T cell activity, improve Treg differentiation,
and further break Treg/Teff balance.

Both uterine and decidual NK cells exert their immune-
regulatory functions in the process of placental vasculariza-
tion and formation during the early pregnancy. Imbalance
between regulatory CD56bright NK cells and cytotoxic
CD56dim may impair maternal immune tolerance. The
decreased CD56bright/CD56dim NK cell ratio is bound up with
adverse pregnancy outcomes like recurrent pregnancy loss
[32]. Tregs are implicated in the regulation of cell phenotype
and generation of dNK cells via inhibiting cytotoxicity of NK
cells in a TGF-β-dependent manner and suppressing the
release of IL-15 from DCs. Similarly, TGF-β produced by
Tregs shifts NK cell from the peripheral CD56dim to
decidual-like CD56bright phenotype. NK cells improve Treg
homeostasis via alleviating Th17 cell responses through
secreting IFN-γ and promoting Treg development.

Early studies have shown that Th1/Th2 intercellular
immune balance and Th2 cell predomination are involved
in the mechanisms of maintaining normal pregnancy [33,
34]. Cytokines, secreted by Th2 like IL-4 and IL-6, can induce
trophoblast cells to release hCG and stimulate the production
of progesterone [35], which in turn stimulates Th2 cells to
reduce the secretion of Th1 cytokines [36]. However, in
knockout mouse models that cannot secrete Th2 cytokines,
abortion is not always possible [37], indicating that Th2 cyto-
kines are not essential for the maintenance of normal preg-
nancy [38]. In recent years, studies have suggested that
Th17/Treg cell balance is closely related to the formation
and maintenance of maternal-fetal tolerance [39]. Th17
mainly mediates the immune response by secreting proin-
flammatory cytokines like IL-17 and IL-22 and specifically
expresses the transcription factors orphan nuclear receptor
(RORγt) and signal transducer and activator of transcription
3 (STAT3). IL-35, a newly discovered anti-inflammatory
cytokine secreted by Tregs, functions as a regulator by pro-
moting Treg amplification and inhibiting Th17 differentia-
tion [40]. IL-35 suppresses the production of IL-17, but the
levels of IL-35 and IL-35/IL-17 in patients with recurrent
abortion are significantly lower than normal [41]. It follows
that the deviation of Th17 will enhance the maternal immune
response to the fetus, which is not conducive to the mainte-
nance of normal pregnancy [10].

The pathogenic effects of T. gondii mainly contain the
direct action of T. gondii and the immunopathological

response triggered by T. gondii antigen. Abortion caused by
T. gondii infection is predominately related to the disruption
of the maternal-fetal interface immune balance induced by T.
gondii antigen in early pregnancy [42]. T. gondii ESA are dis-
soluble antigens that stick to and invade host cells in the early
stage of T. gondii infection, and are excreted or secreted dur-
ing intracellular proliferation [43]. It has strong immunoge-
nicity [44], which can induce the host to provoke humoral
and cellular immune responses and cause immune response
[45]. The influence of ESA on the host is similar to the host
directly infected with T. gondii. Pregnant mice injected with
ESA could result in abortion during the early stage of preg-
nancy, accompanied with decreased levels of CD4+CD25+

Tregs and Foxp3 in the spleen and placenta [13]. Therefore,
fetal resorption mediated by T. gondii is largely owing to
immunopathological reaction rather than the direct effect
of T. gondii proliferation in the uterus.

3.2. Characteristics and Mechanisms of Regulatory T Cells.
Tregs, accounting for 5-10% of the total CD4 + T cell pool
and expressing T cell receptors (TCR), are mostly distinct
from that of conventional CD4+CD25+ T cells. Tregs derive
from two different populations that exert synergy effect to
enhance peripheral immune tolerance [46, 47]: (1) CD4+

CD25+ Foxp3+ natural regulatory T (nTreg) cells, enriched
with an anti-self-biased TCR repertoire, differentiate from
immature precursors in the thymus and enhance immune
tolerance to self-antigens [48] and (2) induced regulatory T
(iTreg) cells, developed from naive conventional CD4+-

CD25+ T cells after antigen, encounter with specific factors
such as TGF-β and IL-2 and act as effective Tregs to suppress
the immune response [49].

Tregs can be activated by self-antigens as well as non-self-
antigens [50]. Activated Tregs have the capacity of inhibiting
T cell proliferation in specific and nonspecific antigen man-
ners. Notably, the inhibitory function of Tregs is not limited
to the adaptive immune system but impacts the activation
and function of innate immune cells such as monocytes, neu-
trophils, macrophages, and dendritic cells [51]. Various
mechanisms by which Tregs maintain self-tolerance as well
as suppress autoimmune responses and chronic inflamma-
tion are involved: (1) Tregs kill target cells via a granzyme
B-dependent, perforin-independent pathway [52]; (2) Tregs
modulate target cells via binding to the corresponding recep-
tor of target cells such as CTLA-4 and PD-1 [53, 54]; (3)
Tregs play immunosuppressive roles via secreting immune
regulatory factors like TGF-β, IL-10, or IL-4 [55, 56]; and
(4) Tregs inhibit target cells by exosome-carried micro-
RNAs [57].

3.3. Regulatory T Cells during Normal Pregnancy. Tregs usu-
ally proliferate in the early stage of pregnancy with the
enhanced immunosuppressive ability, which will continue
until the end of pregnancy [58]. Aluvihare et al. firstly dem-
onstrated an increase in the number of Tregs during normal
pregnancy in an animal model, and the lack of Tregs eventu-
ally causes abortion [59]. The decreased number of Tregs was
observed in mice prone to abortion, which can be prevented
through adoptive transfer of Tregs from the spleen of normal
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pregnant mice [60]. The number of Tregs was reduced in
patients prone to recurrent spontaneous abortion as well
[61, 62], indicating that Tregs push forward an immense
influence on maintaining normal human pregnancy. In the
early pregnancy, the number of Tregs increases gradually
and reaches the highest level when trophoblast cells invade
the decidua, suggesting that Tregs are involved in regulating
the uterine immune response to the placenta [54, 63]. Studies
have shown that Tregs mainly rely on three mechanisms to
promote implantation and embryo development [64]. Firstly,
Tregs can prevent effector T (Teff) cells from damaging the
fetus in an antigen-dependent trophoblastic cytotoxic man-
ner by secreting IL-10, TGF-β, CTLA-4, and PD-1 [35, 64,
65]. Secondly, Tregs can regulate other cells like M2-type
macrophages and tDCs [66]. Tregs induce M2 macrophages
and tDCs to express IDO, which can decrease Th1 cells [67].
Thirdly, Tregs have vascular regulation function [68], which
is crucial for normal placental development and placental
pathway with sufficient maternal blood. When Tregs were
deficient, changes in uterine spiral arteries and placental
hemodynamics were not conducive to fetal development
[67, 69]. In addition, unexplained infertility and abortion
are linked to the deficiency of the number and function of
Tregs [54]. The expression of Foxp3 mRNA in the endome-
trium is very low in patients with unexplained infertility, sug-
gesting that the differentiation ability of uterine T cells into
Treg phenotypes is impaired, thereby affecting fertility [70].

Hence, the number and function of Tregs increase during
the normal pregnancy and impair in the pregnancy failure,
indicating that Tregs is extremely crucial during pregnancy
(Figure 2).

3.4. The Role of Tregs on T. gondii Infection-Induced
Abortion. Tregs are associated with adverse pregnancy
induced by T. gondii as well. T. gondii infection results
in a decreased number of decidua Tregs, accompanied
with decreased levels of immune-related functional mole-
cules like IL-10 and TGF-β [71]. In addition, study has
shown that acute T. gondii infection can directly inhibit
Treg proliferation [72].

3.4.1. T. gondii Induces a Decrease in the Number of Tregs. It
has been found that the number of Tregs in the spleen and
placenta was reduced in a T. gondii-infected pregnant mouse
model [10]. The decreased number of Tregs is associated
with apoptosis triggered by T. gondii infection [73]. IL-10 is
an important cytokine to maintain normal pregnancy, and
the hyposecretion of IL-10 in the decidua is correlated with
adverse pregnancy [74]. Some studies indicate that IL-10
can regulate the expression of various apoptotic factors to
prevent apoptosis [75, 76]. Lao et al. established an T. gondii
infection animal model using recombinant IL-10 (rIL-10)
and IL-10-deficient mice [77]. It was found that cleaved
caspase-3 and caspase-8 were upregulated in decidual Tregs
in the IL-10-/- group, while those were decreased in the rIL-
10 treatment group along with improved pregnant outcomes,
indicating that IL-10 has the capacity of inhibiting the apo-
ptosis of decidual Tregs and improving adverse pregnant
outcomes.

The severity of adverse pregnant outcomes upon primary
infection with T. gondii is bound up with the gestational time.
T. gondii infection in the early stage of pregnancy can more
possibly cause abortion than that in the late pregnancy in
the mouse model, and the main reason is the apoptosis rate
of Tregs induced by T. gondii infection in the early stage of
pregnancy [78]. T. gondii infection can result in a decrease
in the number of Tregs in the mouse placenta and spleen
[10]. A significant decrease in mortality was observed
through adoptive transfer of normal mouse CD4+ Tregs to
T. gondii-infected mice [79], indicating that maintaining a
certain number of Tregs is crucial to improve the adverse
results caused by T. gondii infection.

Estradiol is implicated in several aspects of pregnancy,
suggesting its indispensable role in pregnancy. Qiu et al.
demonstrated that the decreased number of Tregs induced
by T. gondii infection is attributed to Treg apoptosis medi-
ated by T. gondii [78]. Compared with late pregnancy, the
rate of Treg apoptosis was enhanced in the early pregnancy,
accompanied with reduced PD-1 expression. Estradiol (E2)
in vitro could provide protection against apoptosis and
enhance PD-1 expression on Tregs through estradiol recep-
tor (ER) in a dose-dependent manner. Simultaneously, E2
administration in nonpregnant mice could ameliorate the
apoptosis rate of Tregs induced by T. gondii infection,
accompanied with the potentiated expression of PD-1 on
Tregs. E2 might help support the immune tolerance and
improve the adverse pregnancy via targeting on Tregs. Those
findings verify the role of Tregs in T. gondii-induced adverse
pregnancy.

3.4.2. T. gondii Induces Dysfunction of Tregs. Tregs play an
immunosuppressive role through CTLA-4 and PD-1 binding
to the target cell surface [80, 81] as well as secreting cytokines
IL-10 and TGF-β [77, 82], which are important for protective
tolerance induced by Tregs during the pregnancy. CTLA-4
expression in a decidual membrane is positively correlated
with the secretion of anti-inflammatory cytokines, indicating
the significant immunosuppressive activity of CTLA-4 at the
maternal-fetal interface [83]. Additionally, the combination
of CTLA-4 and its ligand CD80/CD86 can induce IDO
expression, and IDO will further promote maternal-fetal
immune tolerance [84]. When CTLA-4 is deficient, the func-
tion of Tregs will decrease [80]. PD-1 is another important
factor for Tregs to induce fetal protection in a mouse model
[85]. PD-1 binds to PD-L1 expressed on trophoblastic cells
[86], which can transmit inhibitory signals down to exert
immunosuppressive effects. Though PD-1 blockade has no
significant effect on Treg number, it could induce the impair-
ment of Treg function in recurrent early abortion. Blocking
PD-1 by injection of monoclonal antibody can cause fetal loss
in pregnant mice, which is linked with insufficiency of Treg
function and amplification of Teff [87]. Research has shown
that the expression levels of CTLA-4, PD-1, TGF-β, and IL-
10 in Tregs from pregnant mice with abortion induced by
T. gondii infection are downregulated, while the levels of
the inflammatory cytokines are increased [73]. High level of
IFN-γ instead leads to maternal immune response of fetal
abortion [88], and the adoptive transfer of Tregs from
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healthy pregnancy mice can improve the adverse pregnant
outcomes caused by T. gondii infection.

3.5. Signaling Pathways of Suppressing Foxp3 Caused by
Excreted-Secreted Antigens. The continuous stability and
high expression of Foxp3 are the key to the development of
Tregs. Foxp3, an acknowledged character of Tregs, is impli-
cated in the establishment and maintenance of Tregs and
takes charge of maintaining immune homeostasis [89]. In
patients with recurrent spontaneous abortion, the expression
of Foxp3 protein in peripheral blood and decidual tissues is
significantly less than that in normal pregnant women [90].
In addition, the expression of Foxp3 in women with unex-
plained infertility was associated with a lower number or per-
centage of Tregs in endometrial tissue [70]. Previous studies
in our laboratory have shown that ESA could suppress Foxp3
expression both in vivo and in vitro and inhibit the function
of Tregs, thereby causing abortion [14]. We all know that the
regulation of Foxp3 is relatively complicated, including the
TGF-β/Smad pathway, the interleukin-2 receptor/signal
transducer and activator of transcription (IL-2R/STAT)
pathway, and the phosphatidylinositol 3-kinase/protein
kinase B/mammalian target of rapamycin (PI3K-AKT-
mTOR) pathway.

TGF-β signaling plays an indispensable role in the early
development of Tregs [91] and is a necessity to maintain
the number of Tregs in peripheral lymphatic tissue [92].
TGF-β, binding with TGF-β type II receptor (TβRII),
induces phosphorylation of TβRII and activates its kinase
activity, which further activates Smad2 and Smad3 protein
by phosphorylation. And then, phosphorylated Smad2 and
Smad3 bind to Smad4, form the Smad complexes, and trans-
fer into the nucleus, thereby regulating Foxp3 expression
[93]. Our previous study revealed that Chinese 1 strain of
T. gondii ESA could suppress Foxp3 by inhibiting Smad2
and Smad3 phosphorylation in pregnant mice [14]. Mean-
while, the overexpression of Smad2/Smad3/Smad4 can par-
tially offset the inhibition of Foxp3 induced by ESA. It can
be seen that ESA directly inhibits the expression of TβRII,
suppresses the activation of Smad2/Smad3/Smad4 signaling
pathway, and negatively modulates Foxp3, causing abortion.
Treatment with TGF-β can prominently improve adverse
pregnant outcomes caused by T. gondii infection [94]. The
TGF-β/Smad signaling pathway can enhance the differentia-
tion, development and function of Tregs, regulate Foxp3, and
inhibit high levels of maternal-fetal inflammation triggered
by T. gondii infection.

Besides the TGF-β/Smad signaling pathway, IL-2R is also
essential for the development of Tregs and the transcription
of Foxp3 [95]. IL-2R/Janus kinase 3 (JAK3)/STAT signaling
pathway is associated with the development and functional
maintenance of Tregs [96]. Binding to the corresponding
receptor, heterodimerization of the cytoplasmic domain, IL-2
induces the activation of JAK3, which activates STATs by
phosphorylation, mainly STAT5. A previous study has shown
that ESA of T. gondii suppresses Foxp3 by directly inhibiting
IL-2R, JAK3, and the phosphorylation of STAT3 and STAT5,
while overexpression of STAT3/STAT5 can partially attenuate
the inhibitory effect of ESA on Foxp3 [97]. Therefore, ESA of

T. gondii inhibits Foxp3 via the IL-2R/JAK3/STAT signaling
pathway, thus suppressing Treg function.

The PI3K-AKT-mTOR signaling pathway mediates cell
proliferation, differentiation, and apoptosis [98]. Tregs are
sensitive to PI3K activation, and PI3K activation will down-
regulate the expression of Foxp3, thus negatively affecting
Treg function, while inducible T cell costimulator (ICOS)
can activate negative regulators of PI3K such as TANK bind-
ing kinase 1 (TBK1) [55] to maintain the normal function of
Tregs [99]. The activation of PI3K produces the second mes-
senger phosphoinositide 3 kinase (PIP3), which binds to the
intracellular signal protein AKT. Activated AKT induces the
phosphorylation of mTOR, affects the expression of cytokine
in T cells, and exerts a critical immunosuppression function.
The PI3K-AKT-mTOR pathway negatively regulates Foxp3
via inactivating the transcription factor Forkhead O3a
[100]. ESA can inhibit Foxp3 by upregulating PI3K, AKT,
and mTOR [101], leading to downregulation of the immune
function of Tregs.

Foxp3 functions as a key regulator in the development
and function of Tregs. ESA of T. gondii can inhibit Foxp3
via suppressing the expression of TβRII and IL-2R, cutting
the phosphorylation levels of Smads and STATs. Moreover,
ESA can suppress Foxp3 by upregulating PI3K, AKT, and
mTOR as well (Figure 3). The suppression of Foxp3 expres-
sion indicates the downregulation of Treg function, leading
to adverse pregnancy.

4. Role of Tregs in Long-Term Effects of T.
gondii Infection on the Fetus

T. gondii infection largely causes abortion in the early preg-
nancy, whereas its infection that occurred in the late preg-
nancy mainly induces neuropsychiatric diseases and
behavior alterations in humans and rodents [102]. T. gondii
infection increases vulnerability to schizophrenia, which is
evidenced by the fact that the risk of schizophrenia among
individuals prenatally exposed to T. gondii was more than
twice that of healthy subjects. Consistent with these results,
immunoglobulin G levels of T. gondii were closely linked to
schizophrenia risk [72]. Several underlying mechanisms are
involved, including enhanced testosterone [103], increased
dopamine and decreased serotonin [104], and different
immune alterations [105]. Hellmer and Nystrom reported
that dysregulation of infant acetylcholine, dopamine, and
melatonin may be responsible for autism spectrum disorders
(ASD) [106]. Immune imbalance is a causal factor of schizo-
phrenia as well. Alterations of circulating CD4+ T lympho-
cytes were observed in individuals with schizophrenia
[105]. A similar finding was demonstrated in an independent
sample in which the neuroinflammation triggered by CD4+ T
cells could impact the central nervous system [107].
Neurotransmitters like dopamine are postulated to critical
regulators of T cell functions [108]. In parallel, gene variants
of dopamine receptor were largely linked to the amount of
CD4+ T cells rather than CD8+ T cells [109].

Tregs are susceptible to dopamine and cyclic AMP levels
in lymph cells [79]. Dopamine receptor D5 (DRD5) signaling
strengthens suppressive capacity of Tregs, thereby mitigating
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the manifestation of experimental autoimmune encephalo-
myelitis (EAE). Additionally, the anti-inflammatory effect
of DRD5 signaling in Tregs is bound up with increased
glucocorticoid-induced tumor necrosis factor receptor-
related protein (GITR) expression, which can contribute to
Treg expansion [110]. Simultaneously, Tregs have a neuro-
protective capacity via promoting neurotrophic factor
expression and repressing the synthesis of proinflammatory
cytokines as well as ROS, which could impair the higher-
order brain functions and thereby contribute to the progres-
sive brain alterations [111]. Xu et al. established an animal
model of maternal immune activation by the injection of T.
gondii soluble tachyzoite antigen (STAg) on E 14.5 [112].
Consistent with our previous study, T. gondii antigen failed
to induce abortion in the late pregnancy period [14]. At 3
days after injection, the decreased Tregs but increased Th1
and Th17 cells in the spleen of pregnant mice were observed,
indicating that STAg could exert a proinflammatory T cell
immune profile [112]. Offspring exposure to STAg-
triggered MIA exhibited impaired-communicative capacity
and anxiety-like behaviors as well as deficits in social behav-
iors. Isolated CD4+CD25+ Tregs from PBS-treated (CTregs)
and STAg-triggered MIA (MIATregs) of mother mice were
intravenously transferred into adult progeny at the age of 8
weeks, respectively. Treg transfer could effectively reverse
autism-related manifestations. Noteworthily, MIATregs
appeared to have greater efficacy on immune suppression
than CTregs in the brain of offspring. T. gondii-activated

maternal Tregs could rescue behavior abnormalities in the
offspring of adult mice induced by maternal immune activa-
tion. Therefore, sufficient Tregs not only prevent against the
miscarriage but improve behavior abnormalities in the off-
spring of adult mice induced by T. gondii.

5. Conclusions and Future Directions

T. gondii infection can invade the placental tissue in different
ways and destroy maternal-fetal immune tolerance during
the pregnancy, which can lead to maternal immune rejection,
affect fetal growth, and cause abortion or other pregnancy
complications. Tregs play a vital role in the immune regula-
tion of pregnancy [113], and the decline in the number or
function of Tregs is associated with adverse pregnancy. As a
critical functional molecule of Tregs, Foxp3 expression
directly determines the state of Tregs. Extensive studies have
been done to unravel the role of Tregs in different types of
adverse pregnancy through mouse models. Treg transfer
might be a potential therapeutic to treat adverse pregnancy,
especially behavior abnormalities in the offspring of adult
mice induced by maternal immune activation. The signaling
pathways regulating Foxp3 expression can be targeted to
recovery from adverse pregnancy as well.
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