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Simple Summary: Tumor heterogeneity influences tumor progression and response to therapy,
introducing a significant challenge in the treatment of breast cancer. We employed magnetic resonance
imaging (MRI) to characterize tumor heterogeneity over time in response to treatment in a mouse
model of HER2+ breast cancer. In a two-part approach, we first used quantitative MRI to identify
unique subregions of the tumor (i.e., “tumor habitats”, resolving intratumoral heterogeneity), then
used the habitats to stratify tumors prior to treatment into two distinct “tumor imaging phenotypes”
(resolving intertumoral heterogeneity). The tumor phenotypes exhibited differential response to
treatments, suggesting that baseline phenotypes can predict therapy response. Additionally, there
were significant correlations between the imaging habitats and histological measures of vascular
maturation, hypoxia, and macrophage infiltration, lending ex vivo biological validation to the in vivo
imaging habitats. Application of these techniques in the clinical setting could improve understanding
of an individual patient’s tumor pathology and potential therapeutic sensitivity.

Abstract: This study identifies physiological habitats using quantitative magnetic resonance imaging
(MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted
and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors
were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and
dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors
were stained for anti-CD31, anti-ASMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&E. MRI
data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-
treatment habitat composition was used stratify tumors into two “tumor imaging phenotypes” (Type
1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity
high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of
low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor
phenotypes showed significant differences in treatment response, in both changes in tumor volume
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and physiological composition. Significant positive correlations were found between histological
stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes
can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to
targeted or cytotoxic therapy compared to Type 2 tumors.

Keywords: diffusion-weighted MRI; dynamic contrast-enhanced MRI; habitat imaging; immunofluo-
rescence; immunohistochemistry; paclitaxel; trastuzumab; BT-474

1. Introduction

Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately
15% of breast cancers within the United States [1]. HER2+ breast cancer is associated with
more aggressive disease and poorer patient prognosis compared to HER2- breast cancer
subtypes [2]. Treatment with trastuzumab, a humanized monoclonal antibody targeting
the HER2 protein, has dramatically improved patient outcomes and reduced disease
recurrence compared to traditional chemotherapeutics [3,4]. Unfortunately, trastuzumab
elicits variable response within the HER2+ patient population, with overall response
rates (i.e., the proportion of patients who have complete or partial response [5]) between
12–26% [2,6]. This variation in patient response to trastuzumab has in part been attributed
to intratumoral heterogeneity, that is, the phenotypic and genotypic cellular diversity
within a tumor. Intratumoral heterogeneity is known to influence tumor progression and
introduces a significant challenge in the clinical treatment of HER2+ breast cancer, as
diagnostically similar patients may respond differently to the same treatment strategy [7–9].
Previous efforts have demonstrated that heterogeneous HER2 expression exists within
HER2+ tumors [10–12] and shown that HER2+ status alone does not necessarily correlate
with objective response to HER2-targeted treatment [6,8,9,11]. The ability to quantitatively
characterize intratumoral heterogeneity and its changes in response to therapy may provide
clinically valuable information that can be used to guide treatment strategies.

Currently, in both clinical and preclinical settings, the standard techniques used to eval-
uate the biological characteristics of the tumor involve invasive procedures such as biopsies
or tumor excision [7]. These techniques are susceptible to sampling error and may not
provide an accurate description of the biological characteristics of the whole tumor [7,13].
Additionally, these methods preclude evaluation of the dynamics of the tumor microenvi-
ronment, such as vascular perfusion or metabolic activity, and only allow for measurement
at a single time point. Conversely, quantitative medical imaging allows for noninvasive
three-dimensional (3D) measurement of biological characteristics of the microenvironment
throughout the entire volume of a tumor [14]. In particular, diffusion-weighted mag-
netic resonance imaging (DW-MRI) [15] and dynamic contrast-enhanced (DCE-) MRI [16]
can quantitatively assess tissue cellularity and vascularity, respectively. Cellularity and
vascularity are key tumor attributes which are altered by traditional chemotherapeutics
such as paclitaxel as well as by targeted therapies, including trastuzumab. Accordingly,
these MRI techniques have been shown to be predictive of breast cancer response in both
the preclinical [17,18] and clinical [19,20] settings. Specifically, in the preclinical setting,
DW-MRI has demonstrated utility as an early indicator of paclitaxel response based on
measured decreases in tumor cellularity [21], and DCE-MRI has been utilized to measure
trastuzumab-induced increases in vascular perfusion within HER2+ xenograft tumors [18].

The importance of the tumor microenvironment and its influence on cancer progres-
sion and therapeutic response is well-established [22,23]. Recent studies suggest new
treatment strategies that manipulate the tumor microenvironment to increase the sensitivity
of the tumor to subsequent therapy, thereby potentially minimizing drug resistance and
metastasis [24,25]. Recently, multiparametric MRI data have been employed to spatially
resolve intratumoral subregions, in an approach entitled habitat imaging [26]. Previously,
we employed habitat imaging with multiparametric quantitative MRI to characterize intra-
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tumoral heterogeneity within two xenograft models of breast cancer [27]. The identified
habitats were characterized by cellularity and vascularity metrics derived from imaging
and biologically validated through correlation with corresponding habitats derived from
histology data [27]. We demonstrated the utility of the habitat imaging approach for the
characterization of temporal alterations in the tumor microenvironment, and identified
changes in tumor composition (defined by habitats) associated with response to clinically-
relevant therapeutics.

In the present contribution, we employed multiparametric MRI data to identify tumor
microenvironment habitats in a murine xenograft model of HER2+ breast cancer, then
used the derived habitats observed at baseline (pre-treatment) to stratify tumors into two
distinct “tumor imaging phenotypes”. This approach was used to resolve intertumoral
differences during treatment with standard-of-care targeted and cytotoxic therapeutics.
For each phenotype, the changes in overall tumor volume and percent tumor volume
comprised of each habitat were measured in response to treatment of single-agent paclitaxel
or trastuzumab therapy. Finally, at the study endpoint, we determined the relationship
between tumor habitats and biological measures of cellularity and vascularity derived from
immunohistochemistry and immunofluorescence data.

2. Materials and Methods
2.1. Cell Culture and Animal Model

BT-474 is a HER2+ human breast cancer cell line that has an established positive
response to trastuzumab [28]. BT-474 cells (ATCC, Manassas, VA, USA) were cultured
in improved minimum essential medium (IMEM, Corning, Tewksbury, MA, USA) with
L-glutamine, 10% FBS, 20 ug/mL insulin, and 1% penicillin-streptomycin at 37 ◦C with
5% CO2.

All animal procedures were approved by our institution’s animal care and use com-
mittee. Female athymic nude mice (The Jackson Laboratory, Bar Harbor, ME, USA) were
implanted subcutaneously with a 0.72 mg 60-day release 17ß-estradiol pellet (Innovative
Research of America, Sarasota, FL, USA); 24 h later, 1 × 107 BT-474 breast cancer cells
in serum-free media and 30% growth factor reduced Matrigel (Corning, Tewksbury, MA,
USA) were injected subcutaneously into the flank of the mouse. Tumors (N = 86, Figure S1)
were grown for 8–10 weeks until they reached approximately 235 mm3 in volume and were
then randomly assigned to one of three treatment groups: control (saline), trastuzumab
(10 mg/kg), or paclitaxel (10 mg/kg). Mice were treated with an intraperitoneal injection
of drug or saline on days 0 (post-imaging) and 3 (Figure 1). Tumors that were larger than
350 mm3 at day 0 were excluded from the study (N = 2).

2.2. Longitudinal Tumor Growth Study

Longitudinal response to trastuzumab or paclitaxel was evaluated in a subset of mice
(N = 24, Figure S1). Tumor volumes were measured with calipers once per week for
8–10 weeks prior to treatment, then three times per week following initiation of treatment.
The percent change in tumor volumes was calculated on day 30 relative to the initiation
of therapy.
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Figure 1. Pipeline for habitat imaging analysis and identification of tumor imaging phenotypes. 
Longitudinal DW- and DCE-MRI data was acquired on days 0 (pre-treatment), 1, and 4 and pro-
cessed for each mouse to generate quantitative parameter maps (A, top row). Tumors were excised 
for immunohistochemistry (IHC) and immunofluorescence (IF) analysis at day 5. Multiparametric 
image data were clustered to identify tumor habitats (B, middle row). Baseline imaging data (day 
0) of tumors were used to cluster tumors into two phenotypes based on tumor habitat composition 
of cellularity and vascularity (C, bottom row left). Tumors were separated by treatment group alone 
(pooled) or in addition to tumor imaging phenotype (Type 1, Type 2), and longitudinal analysis of 
tumor composition was analyzed in terms of the percent tumor volume each habitat comprised (D, 
bottom row right). 

Figure 1. Pipeline for habitat imaging analysis and identification of tumor imaging phenotypes.
Longitudinal DW- and DCE-MRI data was acquired on days 0 (pre-treatment), 1, and 4 and processed
for each mouse to generate quantitative parameter maps (A, top row). Tumors were excised for
immunohistochemistry (IHC) and immunofluorescence (IF) analysis at day 5. Multiparametric image
data were clustered to identify tumor habitats (B, middle row). Baseline imaging data (day 0) of
tumors were used to cluster tumors into two phenotypes based on tumor habitat composition of
cellularity and vascularity (C, bottom row left). Tumors were separated by treatment group alone
(pooled) or in addition to tumor imaging phenotype (Type 1, Type 2), and longitudinal analysis
of tumor composition was analyzed in terms of the percent tumor volume each habitat comprised
(D, bottom row right).
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2.3. Magnetic Resonance Imaging

Tumor-bearing mice (N = 60, Figure S1) were imaged at baseline (day 0), prior to
treatment, and then 24 h after each treatment dose (days 1 and 4, Figure 1); 24 h prior to
baseline imaging, a jugular vein catheter was surgically implanted into mice for exogenous
delivery of the contrast agent for DCE-MRI. Tumors were imaged using a 7 T preclinical
MRI scanner (Bruker, Billerica, MA, USA) equipped with a 40 mm transmit–receive volume
coil (Bruker, Billerica, MA, USA). The tumor region was located with a multi-slice localizer
scan to establish the field of view (FOV), with the largest cross-section of the tumor located
at the central slice. This FOV was used for the remainder of the imaging protocol. A volume
selected around the tumor region was used to shim to optimize the homogeneity of the
B0 field around the tumor. High-resolution T2-weighted images were acquired over the
entire tumor volume using a fast spin–echo pulse sequence with the following parameters:
TR = 2500 ms, effective TE = 30.6 ms, NEX = 2, number of slices = 15, slice thickness = 1 mm,
RARE factor = 8, no slice gap, and an acquisition matrix of 128 × 128 over a 34 × 34 mm2

FOV to yield a voxel size of 0.27 × 0.27 × 1 mm3. All other images were acquired over the
same FOV and number of slices, but with an acquisition matrix of 64 × 64 over yielding a
voxel size of 0.53 × 0.53 × 1 mm3.

Diffusion-weighted (DW) images were acquired using a standard pulsed gradient
spin–echo sequence with three b-values (150, 500, and 800 s/mm2) and gradients applied
simultaneously along three orthogonal directions (x, y, z). The image acquisition parameters
were TR/TE = 2000/29.9 ms, number of acquisitions = 2, gradient duration δ = 3 ms, and
gradient interval ∆ = 20 ms.

Pre-contrast T1 maps were acquired using a segmented FLASH (segFLASH; segmented
Fast Low Angle SHot) inversion recovery sequence. In the segFLASH sequence, after a
180◦ inversion pulse is applied, eighteen points of the T1 relaxation curve are sampled
with inversion times of 150 ms to 3550 ms with a 200 ms spacing. Additional segFLASH
parameters were as follows: α = 15◦, TE = 2.5 ms, number of acquisitions = 2, and number
of segments = 8. Dynamic T1-weighted images were acquired using an RF-spoiled FLASH
gradient–echo sequence with a temporal resolution of 10.8 s for 15 min with the imaging
parameters TR/TE = 100/2.13 ms and α = 20◦, NEX = 2. Pre-contrast images were acquired
for approximately 2 min before a bolus of 0.05 mmol/kg Gd-DO3A-butrol (Gadovist, Bayer,
Leverkusen, Germany) was delivered via a jugular catheter using an automated syringe
pump (Harvard Apparatus, Holliston, MA, USA) at a rate of 2.4 mL/min. Additional
details regarding animal setup, MRI acquisition, and MRI processing are provided in the
Supplemental Methods.

2.4. Immunohistochemistry and Immunofluorescence

On day 5 (Figure 1), animals were intravenously injected with 60 mg/kg pimonidazole
(Hypoxyprobe, Burlington, MA, USA) via the tail vein. One hour after pimonidazole
injection, each animal was sacrificed and tumors were excised for biological analysis
(N = 19, Figure S1). Tumors were cut in half at the longest cross-section corresponding to
the central in vivo imaging plane, placed in optimal cutting temperature (OCT) compound,
frozen, and stored at −80 ◦C. Frozen samples were sectioned, mounted onto glass slides,
and fixed in 10% formalin prior to immunohistochemistry (IHC) and immunofluorescence
(IF) staining. For IHC analysis, samples were stained with hematoxylin and eosin (H&E).
For IF analysis, samples were stained with anti-CD31 (R&D Systems, Minneapolis, MN),
anti-pimonidazole (Hypoxyprobe, Inc., Burlington, MA, USA), anti-ASMA, anti-CD45, or
anti-F4/80 (Abcam, Cambridge, UK). Additional details regarding IF staining and image
processing of IHC and IF data are provided in the Supplemental Methods.

2.5. Identification of MRI Tumor Habitats

Tumors with both DW- and DCE-MRI were used to spatially resolve intratumoral
heterogeneity through the identification of tumor habitats (N = 57, Figure S1). For each
tumor ROI, multiparametric voxel data were extracted to yield a four-dimensional vector
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(Ktrans, ve, kep, and ADC) for each voxel (Figure 1). All voxel data (i.e., all tumors at all
time points) were then pooled and each parameter distribution was scaled to have a mean
of zero and standard deviation of one, such that each parameter contributed equally to
the clustering process. To identify tumor habitats, scaled voxel data were then clustered
using an agglomerative clustering algorithm with the Ward linkage and Euclidean distance
measure, as done in previous work [27]. The clustering process used no spatial information.
Additional details on the process have been previously published [27]. The resultant
dendrogram was cut with a k = 3 to identify three tumor habitats, based on previous
findings [27] within the same tumor model.

For each automatically identified cluster, the mean value of each MRI parameter was
calculated to determine the physiology a cluster (habitat) represented in terms of high or
low “vascularity” and “cellularity”. Vascularity refers to the level of vascular perfusion and
permeability within a voxel, quantified by Ktrans and kep. Cellularity refers to the cell density
and cell membrane impermeability within a voxel, quantified by ADC and ve. Clusters with
a mean Ktrans < 0.2 min−1 or kep < 0.5 min−1 were labeled as low-vascularity (LV) habitats,
and otherwise were labeled as high-vascularity (HV) habitats. Clusters with a mean ve > 0.6
or ADC > 7.5 × 10−4 mm2/s were labeled as low-cellularity (LC) habitats, and otherwise
were labeled as high-cellularity (HC) habitats.

2.6. Discovery of Tumor Imaging Phenotypes

To discern intertumoral differences, we identified tumor imaging phenotypes as
defined by the tumor habitats extracted from the pre-treatment quantitative MRI data
(Figure 1). Each tumor was described by its baseline tumor composition using a 3D vector
where each element consisted of the percent tumor volume comprised by each of the three
identified tumor habitats at baseline. The tumor data were then pooled and each dimension
scaled to obtain a mean of zero and a standard deviation of one. Baseline tumor data
were then clustered using agglomerative clustering with the Ward linkage and Euclidean
distance measure to identify phenotypes. The average silhouette method was used to
determine the number of clusters (between two and ten) to cut the resultant dendrogram.

2.7. Quantifying Longitudinal Alterations in Tumor Composition

The percent tumor volume comprised by each habitat was used to quantify the response
of the tumor microenvironment to trastuzumab or paclitaxel therapy. The median percent
tumor volume of each habitat was calculated for each treatment group. In a secondary analysis,
tumors were subdivided by tumor imaging phenotype, then the median percent tumor volume
of each habitat was calculated for each treatment within the phenotype subgroup. Tumor
composition was evaluated in this manner for each imaging time point.

2.8. Statistical Analysis

A one-way analysis of variance (ANOVA) followed by Tukey’s honest significant
difference test was used to test differences in mean parameter values between MRI-derived
habitats as well as differences in percent change in tumor volume between treatment
groups. A nonparametric Wilcoxon rank sum test was used to compare differences in
tumor volume from baseline as well as differences between tumor imaging phenotypes; the
Wilcoxon rank sum test was used to determine differences in percent tumor volume of each
habitat from baseline during the course of therapy as well. Correlations were tested using
Pearson’s product–moment correlation. In all statistical tests, a p-value less than 0.05 was
considered significant; 95% confidence intervals are listed next to reported mean statistics
and interquartile ranges are listed next to reported median statistics in parentheses. All
statistical analyses were performed in R (R version 3.6.2, RStudio).
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3. Results
3.1. Characterization of MRI Tumor Habitats

Figure 1 presents the study design for the discovery of tumor habitats from quan-
titative MRI data (resolving intratumoral heterogeneity) and the identification of tumor
imaging phenotypes using habitat information (resolving intertumoral heterogeneity).
Three habitats were identified from the clustering analysis of quantitative MRI data
(Figure 2). To determine the physiology each habitat represented, we considered the mean
values of ADC and ve to assess the cellularity and the mean values of Ktrans and kep to assess
the vascularity of each habitat. The clustering algorithm was able to identify physiologically
distinct tumor habitats, as statistically significant differences between habitats were found
for each parameter (Figure 2A). Figure 2B shows quantitative parameter maps for a rep-
resentative tumor at baseline along with corresponding habitat maps. The first identified
cluster had a mean ve of 0.83 ± 0.002 and mean ADC of 8.0 × 10−4 ± 3.5 × 10−6 mm2/s,
and was thus labeled a “low-cellularity” (LC) habitat. Conversely, the second and third
clusters had mean ve values of 0.48 ± 0.002 and 0.52 ± 0.002, respectively, and mean
ADC values of 5.6 × 10−4 ± 1.3 × 10−6 and 6.1 × 10−4 ± 1.6 × 10−6 mm2/s, respectively.
These habitats were labeled “high-cellularity” (HC) habitats. With respect to measures
of vascularity, the third cluster had a mean Ktrans of 0.42 ± 0.002 min−1 and mean kep
0.86 ± 0.006 min−1, and was thus labeled a “high-vascularity” (HV) habitat. The first and
second clusters presented mean Ktrans values of 0.07 ± 0.001 and 0.10 ± 0.001 min−1 and
mean kep values of 0.10 ± 0.002 and 0.21 ± 0.002 min−1, respectively. These habitats were
labeled as “low-vascularity” habitats (LV). Altogether, the three identified habitats were
as follows: high vascularity–high cellularity (HV-HC), low vascularity–high cellularity
(LV-HC), and low vascularity–low cellularity (LV-LC).
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Figure 2. Characterization of tumor habitats. The mean value of each quantitative imaging parameter
was used to determine the physiology represented by each habitat (A). Identified tumor habitats
were labeled in terms of high or low “vascularity” (Ktrans, kep) and “cellularity” (ADC, ve). Three
tumor habitats were identified: high vascularity–high cellularity (HV-HC), low vascularity–high
cellularity (LV-HC), and low vascularity–low cellularity (LV-LC). Error bars show standard deviation
and ** indicates a p < 0.01. Representative parameter maps and corresponding habitat maps are
shown in (B), with the HV-HC habitat shown in red, LV-HC in green, and LV-LC in blue. The units
for Ktrans are mL (blood)/mL (tissue)/min, and the units for the ADC are mm2/s.

3.2. Characterization of Tumor Imaging Phenotypes

To elucidate intertumoral differences, we identified tumor imaging phenotypes using
pre-treatment (day 0) habitat information for each tumor; that is, tumor imaging phenotypes
describe subgroups of tumors distinguished by their microenvironment composition as
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defined by the fraction of each habitat prior to treatment (Figure 1). Variable tumor
composition was observed at baseline across all tumors (Figure 3A), with a positive linear
correlation found between the percent tumor volume of LV-LC and LV-HC habitats (r = 0.33,
p < 0.01). Conversely, across all tumors a negative linear correlation was observed between
the percent tumor volume of LV-HC and HV-HC habitats (r = −0.75, p < 0.01) and LV-LC
and HV-HC habitats (r = −0.80, p < 0.01). Figure 3B shows the dendrogram resulting
from the clustering analysis of baseline tumor data along with a heatmap displaying the
percent tumor volume of each habitat for each tumor. The optimal number of clusters
(i.e., phenotypes) was statistically determined to be two (Figure S3). The tumor imaging
phenotypes were designated as Type 1 and Type 2, respectively.

Cancers 2022, 14, x  8 of 18 
 

 

notypes describe subgroups of tumors distinguished by their microenvironment compo-
sition as defined by the fraction of each habitat prior to treatment (Figure 1). Variable tu-
mor composition was observed at baseline across all tumors (Figure 3A), with a positive 
linear correlation found between the percent tumor volume of LV-LC and LV-HC habitats 
(r = 0.33, p < 0.01). Conversely, across all tumors a negative linear correlation was observed 
between the percent tumor volume of LV-HC and HV-HC habitats (r = −0.75, p < 0.01) and 
LV-LC and HV-HC habitats (r = −0.80, p < 0.01). Figure 3B shows the dendrogram resulting 
from the clustering analysis of baseline tumor data along with a heatmap displaying the 
percent tumor volume of each habitat for each tumor. The optimal number of clusters (i.e., 
phenotypes) was statistically determined to be two (Figure S3). The tumor imaging phe-
notypes were designated as Type 1 and Type 2, respectively. 

 
Figure 3. Discovery of tumor imaging phenotypes. (A) shows the linear relationship between tumor 
habitats at baseline. Each point represents a tumor at day 0 (pre-treatment), with tumor phenotypes 
represented by shape (Type 1: black circles, Type 2: white squares). A negative linear correlation 
was observed between the percent tumor volume of LV-HC and HV-HC habitats (r = −0.75, p < 0.01) 
and LV-LC and HV-HC habitats (r = −0.80, p < 0.01). A positive linear correlation was observed 
between the percent tumor volume of LV-LC and LV-HC habitats (r = 0.33, p < 0.01). (B) shows the 
resulting dendrogram and heatmap from agglomerative clustering of tumors (columns within the 
heatmap) using baseline tumor habitat information (rows), from which two phenotypes were iden-
tified. These tumor imaging phenotypes were designated as Type 1 (black) and Type 2 (white). (C) 
shows representative habitat maps of a Type 1 and Type 2 tumor at day 0 alongside a corresponding 
pie chart of whole tumor composition. Type 1 tumors showed significantly higher proportions of 

Figure 3. Discovery of tumor imaging phenotypes. (A) shows the linear relationship between tumor
habitats at baseline. Each point represents a tumor at day 0 (pre-treatment), with tumor phenotypes
represented by shape (Type 1: black circles, Type 2: white squares). A negative linear correlation was
observed between the percent tumor volume of LV-HC and HV-HC habitats (r = −0.75, p < 0.01) and
LV-LC and HV-HC habitats (r = −0.80, p < 0.01). A positive linear correlation was observed between
the percent tumor volume of LV-LC and LV-HC habitats (r = 0.33, p < 0.01). (B) shows the resulting
dendrogram and heatmap from agglomerative clustering of tumors (columns within the heatmap)
using baseline tumor habitat information (rows), from which two phenotypes were identified. These
tumor imaging phenotypes were designated as Type 1 (black) and Type 2 (white). (C) shows
representative habitat maps of a Type 1 and Type 2 tumor at day 0 alongside a corresponding pie
chart of whole tumor composition. Type 1 tumors showed significantly higher proportions of the
HV-HC habitat compared to Type 2 tumors as well as decreased LV-HC and LV-LC habitats (D). Error
bars show 95% confidence interval and ** indicates p < 0.01.
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Representative habitat maps of Type 1 and Type 2 tumors at day 0 are shown in
Figure 3C. No statistically significant differences in volume were observed between pheno-
types at baseline (p > 0.05). Type 1 tumors were comprised of a significantly higher fraction
of HV-HC habitat compared to Type 2 tumors, with a median of 38.5% (18.0%) and 11.1%
(10.2%) tumor volume, respectively (p < 0.01, Figure 3D). Type 2 tumors were comprised
of significantly higher fractions of LV-HC and LV-LC habitats, with 44.6 % (12.8%) and
34.4% (6.2%), respectively, compared to Type 1 tumors, which demonstrated a distribution
of 35.0% (24.8%) and 20.6% (9.8%), respectively (p < 0.01, Figure 3D).

3.3. Quantifying Longitudinal Alterations in Tumor Volume

Figure 4A shows longitudinal changes in tumor volume for tumors treated with saline
(control), trastuzumab, or paclitaxel over 30 days. At 30 days after the initiation of therapy,
paclitaxel-treated tumors showed a significant decrease in median tumor volume of 19%
(26%) compared to control tumors, which showed a 25% (69%) increase (p < 0.01). Tumors
treated with trastuzumab showed a significant decrease in tumor volume compared to
control and paclitaxel treated tumors, with a 78% (31%) decrease from baseline (p < 0.01).
Similarly, tumors in the imaging cohort treated with trastuzumab showed a longitudinal
decrease in tumor volume at day 4, with a median 6.8% (17%) decrease from day 0 (p = 0.01),
significantly lower than control tumors, which showed a median 11% (22%) increase
(Figure 4B).
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Figure 4. Longitudinal tumor response to targeted and cytotoxic therapies. (A) shows the median
percent change in tumor volume over 30 days post-treatment for control, trastuzumab-treated, and
paclitaxel-treated tumors. At 30 days after the initiation of therapy, tumors treated with paclitaxel
showed a significant decrease in tumor growth compared to control tumors (p < 0.01). Treatment with
trastuzumab yielded a longitudinal decrease in tumor volume, significantly lower than both control
and paclitaxel-treated tumors (p < 0.01) at day 30. (B) shows the median percent change in tumor
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volume for control and trastuzumab- and paclitaxel-treated tumors over the course of the imaging
study. Trastuzumab-treated tumors showed a longitudinal decrease in tumor volume at day 4
(p < 0.05) compared to baseline and significant decreases in tumor volume compared to control
tumors at day 4 (p < 0.05). (C) shows the median percent change in tumor volume for each treatment
group, as in (B), separated by tumor imaging phenotype. Type 1 control tumors showed a significant
increase in tumor volume at day 1 (p < 0.05) compared to baseline. Type 1 tumors treated with
trastuzumab showed a significant decrease in tumor volume compared to control tumors at day 4
(p < 0.05). Type 2 tumors showed no significant changes in tumor volume over the course of the MRI
study. Error bars show standard error, ** indicates p < 0.01, * indicates p < 0.05.

Figure 4C separates the tumors within each treatment group by tumor imaging pheno-
type. Type 1 control tumors showed a significant increase in tumor volume at day 1, with a
median 8.4% (9.2%) increase compared to baseline (p < 0.05). Type 1 tumors treated with
paclitaxel showed a decrease in tumor volume at day 1 of 7.1% (12%), trending towards
significance (p = 0.06). Type 1 tumors treated with trastuzumab showed a significant de-
crease of 7.2% (15%) in tumor volume at day 4 compared to control, which had a 17% (15%)
increase from baseline (p < 0.05). Compared to control tumors, Type 2 tumors showed no
significant changes in tumor volume over the course of the MRI study.

3.4. Quantifying Longitudinal Alterations in Tumor Composition

To evaluate changes in the tumor microenvironment, the temporal alterations in tumor
composition as defined by the percent volume of each habitat were quantified. Figure 5
shows the longitudinal changes in tumor composition for Type 1 tumors in response to
therapy. Type 1 control tumors showed no significant changes in tumor habitat composition
over time (Figure 5A). Type 1 tumors treated with paclitaxel (Figure 5B) showed a significant
decrease in the percent tumor volume of the HV-HC habitat, with a median proportion of
13.4% (6.9%) at day 4 compared to 40.4% (16.3%) at baseline (p < 0.01). A significant increase
in the percent tumor volume of the LV-LC habitat was observed in Type 1 tumors treated
with paclitaxel as well, with a median proportion of 45.6% (15.7%) at day 4 compared
to 25.8% (7.4%) at day 0 (p < 0.01). Type 1 tumors treated with trastuzumab showed a
significant increase in the percent tumor volume of LV-LC habitat, with a median proportion
of 29.8% (10.4%) at day 4 compared to 21.1% (11.8%) at baseline (Figure 5C, p < 0.01).

Type 2 control tumors showed no significant changes in tumor habitat composition
over time (Figure 6A). Type 2 tumors treated with paclitaxel (Figure 6B) showed a decrease
in the percent tumor volume of the LV-HC habitat at day 1 (21.6% (8.6%)) compared to
day 0 (46.0% (7.7%)), trending towards significance (p = 0.05). A corresponding increase
(although not statistically significant) in the percent tumor volume of the HV-HC habitat
was observed at day 1, with a median proportion of 46.8% (40.8%) compared to 11.0%
(5.7%) at day 0. Type 2 tumors treated with trastuzumab (Figure 6C) showed a significant
decrease in the percent tumor volume of the LV-HC habitat from baseline (45.7% (15.6%)),
with a median of 22.5% (10.9%) at day 1 (p < 0.01) and 25.3% (12.2%) at day 4 (p < 0.05). A
corresponding increase in the percent tumor volume of the HV-HC habitat (although not
statistically significant) was observed at day 1, with a median proportion of 35.8% (43.5%)
compared to 14.1% (14.9%) at day 0. Additionally, at day 1 Type 2 tumors treated with
trastuzumab showed a significantly lower percent tumor volume in the LV-HC habitat
compared to Type 1 tumors treated with trastuzumab (p < 0.01, Figure S4).
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Figure 5. Longitudinal alterations in tumor composition of Type 1 tumors in response to cytotoxic and
targeted therapies. The left column of each row (A–C) shows the median percent tumor volume of
each habitat (HV-HC, LV-HC, LV-LC) for Type 1 tumors at days 0, 1, and 4. The right column of each
row (A–C) shows representative habitat maps on days 0, 1, and 4 for Type 1 tumors. Longitudinal
alterations in tumor composition are shown for control (row A), paclitaxel-treated (row B), and
trastuzumab-treated (row C) tumors. Type 1 tumors treated with paclitaxel showed a longitudinal
decrease in the percent tumor volume of the HV-HC habitat (p < 0.01) and a longitudinal increase in
the percent tumor volume of the LV-LC habitat (p < 0.01). Type 1 tumors treated with trastuzumab
showed a longitudinal increase in the percent tumor volume of the LV-LC habitat by day 4 (p < 0.05).
No significant longitudinal alterations in tumor habitat composition were observed Type 1 control
tumors. Error bars show standard deviation, ** indicates p < 0.01.
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each row (A–C) shows representative habitat maps at days 0, 1, and 4 for Type 2 tumors. Longitudinal
alterations in tumor composition are shown for control (row A), paclitaxel-treated (row B), and
trastuzumab-treated (row C) tumors. Type 2 tumors treated with trastuzumab showed a longitudinal
decrease in the percent tumor volume of the LV-HC habitat at day 1 (p < 0.01) and day 4 (p < 0.05)
compared to baseline. No significant longitudinal alterations in tumor habitat composition were
observed Type 2 control tumors. Error bars show standard deviation, ** indicates p < 0.01, * indicates
p < 0.05.

3.5. Correlation between MRI Habitats and Histology Data

Figure 7 shows the results of the immunofluorescence analysis of the excised tumors on
day 5. Figure S5 shows representative images of each immunofluorescence stain. Significant
positive correlations were observed between the percent tumor volume of the HV-HC habitat
and histological measures of vascularity, including the percent viable tissue area of CD31+
regions (r2 = 0.49, p = 0.03, Figure 7B) and the vascular maturation index (r2 = 0.57, p = 0.01,
Figure 7D). Additionally, a significant positive correlation was observed between the percent
tumor volume of the HV-HC habitat and the percent viable tissue area of the CD45+, F4/80+
region, staining for macrophage populations (r2 = 0.47, p = 0.04, Figure 7C). The LV-HC habitat
showed a significant positive correlation with the percent viable tissue area of pimonidazole+
regions, indicating regions of hypoxia (r2 = 0.60, p < 0.01, Figure 7E). Figure S6 shows the
results of the immunohistochemistry analysis of the excised tumors on day 5. A negative
correlation trending toward significance was observed between the percent tumor volume of
the HV-HC habitat and the percent tissue area of necrosis identified from H&E-stained slides
(r2 = −0.47, p = 0.05, Figure S6B). No other significant correlations were observed between
tumor habitats and the immunofluorescence or immunohistochemistry stains.
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calculated between the percent tumor volume of each habitat and the percent viable tissue area
of each IF stain. The percent tumor volume of the HV-HC habitat showed a significant positive
correlation with the percent viable tissue area of the CD31+ (r2 = 0.49, p = 0.03) and CD45+, F4/80+
(r2 = 0.47, p = 0.04) regions (B, from left to right) as well as the vascular maturation index (r2 = 0.57,
p = 0.01). The percent tumor volume of the LV-HC habitat showed a significant positive correlation
with the percent viable tissue area of pimonidazole+ regions (r2 = 0.60, p < 0.01) (panel B, far right).

4. Discussion

Quantitative MRI habitats were used to identify tumor imaging phenotypes and quan-
tify the longitudinal response to treatment for each individual phenotype in a xenograft
model of HER2+ breast cancer. Quantitative parameters extracted from DW- and DCE-MRI
allowed us to spatially resolve three tumor habitats, characterized in terms of cellularity
or vascularity as HV-HC, LV-HC, and LV-LC. Tumor habitats were observed to spatially
localize together, indicating that clustering of quantitative MRI parameters alone (i.e.,
without any spatial information) were capable of identifying physiologically-distinct tumor
habitats. To further characterize the underlying biology of each habitat, we employed
immunofluorescence and immunohistochemical staining of tumor tissues excised at the
study endpoint. We observed significant correlations between the percent tumor volume
of HV-HC habitats and histological measures of vascularity (CD31 and vascular matura-
tion index) and macrophage infiltration (CD45+, F4/80+). These findings provide further
evidence of the relationship between vasculature and macrophage infiltration observed
in previous studies [29–31]; future work should explore habitat imaging in syngeneic
mouse models with intact immune systems to further understand the relationship between
habitats and immune infiltrates. Additionally, the LV-HC habitat, a subregion of increased
cellular density and decreased vascular perfusion, was found to positively correlate with
the percent area of pimonidazole-stained regions. This finding indicates that LV-HC regions
may correspond to regions of hypoxia, providing a noninvasive MRI-derived measure
of hypoxia.

Diverse microenvironmental compositions were observed at baseline across tumors
(Figure 3A). Considering the correlation between vascular maturation and the HV-HC
habitat, the negative correlation observed between the percent tumor volume of HV-HC
and LV-LC habitats indicates that tumors with an increased percent tumor volume of
HV-HC may have improved nutrient delivery and develop a lower fraction of LV-LC
habitats. Conversely, the positive correlation between the percent tumor volume of LV-HC
and LV-LC habitats suggests that the reverse may occur; i.e., regions of hypoxia or poorer
nutrient delivery may lead to increased LV-LC subregions.

Using tumor composition data, we identified two tumor phenotypes at baseline,
designated as Type 1 and Type 2, and longitudinally evaluated each phenotype’s response
to targeted and cytotoxic treatment. These imaging-defined tumor phenotypes were able
to differentiate response to traditional targeted and chemotherapies, providing an early
metric for response characterization. Type 1 tumors showed significantly increased percent
tumor volume in the HV-HC habitat at baseline compared to Type 2 tumors, and without
treatment (control) these tumors continued to increase in volume over the course of the MRI
study. In previous work, both ourselves and others have found increased Ki-67 expression
in tumor subregions associated with increased vascular perfusion [27,32,33]. Taken together,
these findings suggest that an increased fraction of the HV-HC habitat may be associated
with increased cell proliferation, contributing to continued tumor growth. Type 2 tumors
were observed to have significantly higher fractions of the LV-HC and LV-LC habitats at
baseline. These tumors exhibited no significant changes in tumor volume upon treatment
with trastuzumab or paclitaxel, whereas longitudinal decreases in volume were observed in
Type 1 tumors treated with the same therapies. These observations suggest that the Type 1
phenotype may be more sensitive to therapy compared to the Type 2 phenotype, potentially
due to improved vascular delivery of therapeutics under normoxic conditions, which
have been shown to increase sensitivity to treatment [34,35]. Furthermore, we observed



Cancers 2022, 14, 1837 14 of 18

therapy-specific changes in the tumor microenvironment indicative of response and distinct
to each phenotype. Treated tumors of the Type 1 phenotype showed longitudinal increases
in the LV-LC habitat (paclitaxel or trastuzumab) and decreases in the percent tumor volume
of the HV-HC habitat (paclitaxel). Corresponding changes were not observed in treated
tumors of the Type 2 phenotype; however, significant decreases in the LV-HC habitat
were observed in trastuzumab-treated Type 2 tumors. These findings are consistent with
previous observations of trastuzumab improving vascular perfusion [18,36] and tumor
oxygenation [35,37] in preclinical models of HER2+ breast cancer, and demonstrate that
alterations in the percent tumor volume of the LV-HC habitat may be an early indicator of
trastuzumab response.

Current approaches for characterization of clinical breast cancer involve molecular
profiling of diagnostic biopsies, which are susceptible to sampling error due to intratumoral
heterogeneity [7,13]. Other groups have investigated the utility of noninvasive imaging
accompanied with radiomics techniques to quantify intertumoral differences and identify
tumor phenotypes [38–41]. These approaches involve extraction and clustering of large
feature sets (10 s to 100 s of features), and have been used to identify subgroups of patient
tumors that correlate with, for example, breast cancer subtype [38,40] and recurrence-free
survival [39,40]. While these approaches have demonstrated their prognostic value, the
use of many complex features can make it difficult to interpret the intra- and intertumoral
differences in tumor physiology. Although we used only three features to identify tumor
phenotypes, quantitative MRI allows for interpretation of the underlying tumor microenvi-
ronment characteristics of each phenotype and the generation of hypotheses concerning
the biological bases of therapeutic response. In the clinical setting, Wu et al. utilized
tumor habitats extracted from DCE-MRI data to stratify breast cancer patients into two
subgroups. They found that one subgroup was associated with increased risk of recurrence
after neoadjuvant therapy, enabling prediction of recurrence-free survival from tumor habi-
tat information. Their work, in addition to the clinical availability of quantitative DW- and
DCE-MRI [42,43], demonstrates the potential for clinical translation of our tumor imaging
phenotypes. The ability to resolve intertumoral differences and identify microenvironment
characteristics related to therapy sensitivity could help guide treatment strategies for an
individual patient.

There are four main areas for further investigation suggested by our study. First,
we were not able to spatially register the histology and imaging data. While we did
observe significant correlations between histological stains and habitats, lending biological
support for tumor habitat physiologies, spatial registration of ex vivo histology data with
in vivo MRI data would allow explicit linkage of spatial variations within a tumor to
the underlying cellular diversity and tumor microenvironment. Additionally, further
study is needed to understand the relationship between LV-LC habitats and necrosis.
In the present study, we observed no significant correlation between the percent tumor
volume of LV-LC and the percent tissue area of necrosis, potentially due to low variability
in necrosis measures observed within 2D histology specimens (Figure S6). Second, the
imaging parameter thresholds used to determine the habitat physiology (as high or low
cellularity or vascularity) were selected manually. Future efforts to standardize methods
of determining these thresholds are important for dissemination across a diverse setting
of tumor types. Third, the stability of phenotype clusters (i.e., the consistency of clusters
obtained from several data sets sampled from the same underlying distribution [44]) was
not evaluated. Future work will investigate techniques that evaluate cluster stability to
ensure repeatable identification of tumor imaging phenotypes. Finally, additional studies
in orthotopic or syngeneic models of breast cancer are required to test the generalizability
of the biological insights from this study. It is important to note, however, that the imaging
and analysis methods described to resolve tumor heterogeneity are applicable to any
tumor model.



Cancers 2022, 14, 1837 15 of 18

5. Conclusions

We developed a novel spatially-resolved method for identifying and quantifying in-
tratumoral heterogeneity using MRI habitats, then used this analysis to identify unique
tumor phenotypes with differing responses to treatment in a preclinical model of HER2+
breast cancer. The Type 1 phenotype was associated with improved response to paclitaxel
and trastuzumab. However, changes in tumor composition were observed in trastuzumab-
treated Type 2 tumors, highlighting microenvironmental alterations indicative of thera-
peutic response. We provided further biological validation of the imaged habitats through
correlation analysis using histological measures of vascular maturation and hypoxia. This
methodology is capable of elucidating changes in spatiotemporal heterogeneity within
tumors, and provides an approach to quantify intertumoral diversity. Application of these
techniques in the clinical setting could improve understanding of an individual patient’s
tumor pathology and potential therapeutic sensitivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14071837/s1, Supplemental Methods [27,45–54]. Table S1: Primary and secondary
antibodies for immunofluorescence staining. Figure S1: Sample sizes for imaging and tumor growth
study. Figure S2: Example T2-weighted and T1-weighted images of a BT-474 tumor. Figure S3:
Silhouette analysis. Figure S4: Differences in tumor composition between tumor imaging phenotypes.
Figure S5. Representative immunofluorescence images. Figure S6. Correlation between MRI tumor
habitats and necrosis percent tissue area.

Author Contributions: Conceptualization, A.S.K., T.E.Y. and A.G.S.; methodology, A.S.K., D.A.H.II,
T.D., M.J.B., J.V., T.E.Y. and A.G.S.; software, A.S.K., G.R. and S.M.; validation, A.S.K., T.E.Y. and
A.G.S.; formal analysis, A.S.K.; investigation A.S.K.; data curation, A.S.K.; writing—original draft
preparation, A.S.K.; writing—review and editing, A.S.K., D.A.H.II, T.D., M.J.B., J.V., T.E.Y. and A.G.S.;
visualization, A.S.K.; supervision, T.E.Y. and A.G.S.; funding acquisition, T.E.Y. and A.G.S. All authors
have read and agreed to the published version of the manuscript.

Funding: We thank the Cancer Prevention and Research Institute of Texas for support through
RR160005 and the American Cancer Society for support through RSG-18-006-01-CCE. We thank
the National Institutes for Health for funding through R01CA138599, R01CA240589, U01CA17470,
U24CA226110, R01CA240589, and T32EB007507. Tissue staining and imaging was performed in
the Research Histology, Pathology, and Imaging Core and Flow Cytometry and Cellular Imaging
Core Facility, which is supported in part by NCI P30 CA016672. T.E.Y. is a CPRIT Scholar in
Cancer Research.

Institutional Review Board Statement: The study was approved by the Institutional Animal Care
and Use Committee of the University of Texas at Austin (AUP-2016-00031, 2016-2019).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank Ameen Kazerouni for several informative discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics,

2019. CA A Cancer J. Clin. 2019, 69, 438–451. [CrossRef] [PubMed]
2. Dean-Colomb, W.; Esteva, F.J. Her2-Positive Breast Cancer: Herceptin and Beyond. Eur. J. Cancer 2008, 44, 2806–2812. [CrossRef]
3. Buzdar, A.U.; Ibrahim, N.K.; Francis, D.; Booser, D.J.; Thomas, E.S.; Theriault, R.L.; Pusztai, L.; Green, M.C.; Arun, B.K.; Giordano,

S.H.; et al. Significantly Higher Pathologic Complete Remission Rate After Neoadjuvant Therapy with Trastuzumab, Paclitaxel,
and Epirubicin Chemotherapy: Results of a Randomized Trial in Human Epidermal Growth Factor Receptor 2–Positive Operable
Breast Cancer. J. Clin. Oncol. 2005, 23, 3676–3685. [CrossRef] [PubMed]

4. Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.-H.; Sledge, G.; Geyer, C.E.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; et al.
Trastuzumab Plus Adjuvant Chemotherapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Planned
Joint Analysis of Overall Survival From NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 2014, 32, 3744–3752. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cancers14071837/s1
https://www.mdpi.com/article/10.3390/cancers14071837/s1
http://doi.org/10.3322/caac.21583
http://www.ncbi.nlm.nih.gov/pubmed/31577379
http://doi.org/10.1016/j.ejca.2008.09.013
http://doi.org/10.1200/JCO.2005.07.032
http://www.ncbi.nlm.nih.gov/pubmed/15738535
http://doi.org/10.1200/JCO.2014.55.5730
http://www.ncbi.nlm.nih.gov/pubmed/25332249


Cancers 2022, 14, 1837 16 of 18

5. Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney,
M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45,
228–247. [CrossRef]

6. Martin-Castillo, B.; Oliveras-Ferraros, C.; Vazquez-Martin, A.; Cufí, S.; Moreno, J.M.; Corominas-Faja, B.; Urruticoechea, A.;
Martín, Á.G.; López-Bonet, E.; Menendez, J.A. Basal/HER2 Breast Carcinomas: Integrating Molecular Taxonomy with Cancer
Stem Cell Dynamics to Predict Primary Resistance to Trastuzumab (Herceptin). Cell Cycle 2013, 12, 225–245. [CrossRef] [PubMed]

7. Zardavas, D.; Irrthum, A.; Swanton, C.; Piccart, M. Clinical Management of Breast Cancer Heterogeneity. Nat. Rev. Clin. Oncol.
2015, 12, 381–394. [CrossRef] [PubMed]

8. Lee, H.J.; Seo, A.N.; Kim, E.J.; Jang, M.H.; Suh, K.J.; Ryu, H.S.; Kim, Y.J.; Kim, J.H.; Im, S.-A.; Gong, G.; et al. HER2 Heterogeneity
Affects Trastuzumab Responses and Survival in Patients With HER2-Positive Metastatic Breast Cancer. Am. J. Clin. Pathol. 2014,
142, 755–766. [CrossRef] [PubMed]

9. Jarrett, A.M.; Hormuth, D.A.; Adhikarla, V.; Sahoo, P.; Abler, D.; Tumyan, L.; Schmolze, D.; Mortimer, J.; Rockne, R.C.; Yankeelov,
T.E. Towards Integration of 64 Cu-DOTA-Trastuzumab PET-CT and MRI with Mathematical Modeling to Predict Response to
Neoadjuvant Therapy in HER2 + Breast Cancer. Sci. Rep. 2020, 10, 20518. [CrossRef] [PubMed]

10. Onsum, M.D.; Geretti, E.; Paragas, V.; Kudla, A.J.; Moulis, S.P.; Luus, L.; Wickham, T.J.; McDonagh, C.F.; MacBeath, G.; Hendriks,
B.S. Single-Cell Quantitative HER2 Measurement Identifies Heterogeneity and Distinct Subgroups within Traditionally Defined
HER2-Positive Patients. Am. J. Pathol. 2013, 183, 1446–1460. [CrossRef] [PubMed]

11. Rye, I.H.; Trinh, A.; Sætersdal, A.B.; Nebdal, D.; Lingjærde, O.C.; Almendro, V.; Polyak, K.; Børresen-Dale, A.-L.; Helland,
Å.; Markowetz, F.; et al. Intratumor Heterogeneity Defines Treatment-Resistant HER2+ Breast Tumors. Mol. Oncol. 2018, 12,
1838–1855. [CrossRef] [PubMed]

12. Lu, Y.; Li, M.; Massicano, A.V.F.; Song, P.N.; Mansur, A.; Heinzman, K.A.; Larimer, B.M.; Lapi, S.E.; Sorace, A.G. [89Zr]-
Pertuzumab PET Imaging Reveals Paclitaxel Treatment Efficacy Is Positively Correlated with HER2 Expression in Human Breast
Cancer Xenograft Mouse Models. Molecules 2021, 26, 1568. [CrossRef] [PubMed]

13. Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey,
P.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366,
883–892. [CrossRef] [PubMed]

14. Yankeelov, T.E.; Abramson, R.G.; Quarles, C.C. Quantitative Multimodality Imaging in Cancer Research and Therapy. Nat. Rev.
Clin. Oncol. 2014, 11, 670–680. [CrossRef] [PubMed]

15. Arlinghaus, L.R.; Yankeelov, T.E. Diffusion-Weighted MRI. In Quantitative MRI in Cancer; Imaging in Medical Diagnosis and
Therapy; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4398-2058-2.

16. Yankeelov, T.; Gore, J. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology:Theory, Data Acquisition, Analysis,
and Examples. Curr. Med. Imaging Rev. 2007, 3, 91–107. [CrossRef]

17. Barnes, S.L.; Sorace, A.G.; Whisenant, J.G.; McIntyre, J.O.; Kang, H.; Yankeelov, T.E. DCE- and DW-MRI as Early Imaging
Biomarkers of Treatment Response in a Preclinical Model of Triple Negative Breast Cancer. NMR Biomed. 2017, 30, e3799.
[CrossRef]

18. Sorace, A.G.; Quarles, C.C.; Whisenant, J.G.; Hanker, A.B.; McIntyre, J.O.; Sanchez, V.M.; Yankeelov, T.E. Trastuzumab Improves
Tumor Perfusion and Vascular Delivery of Cytotoxic Therapy in a Murine Model of HER2+ Breast Cancer: Preliminary Results.
Breast Cancer Res. Treat. 2016, 155, 273–284. [CrossRef]

19. Virostko, J.; Hainline, A.; Kang, H.; Arlinghaus, L.R.; Abramson, R.G.; Barnes, S.L.; Blume, J.D.; Avery, S.; Patt, D.; Goodgame,
B.; et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Diffusion-Weighted Magnetic Resonance Imaging for
Predicting the Response of Locally Advanced Breast Cancer to Neoadjuvant Therapy: A Meta-Analysis. J. Med. Imaging 2018, 5,
11011. [CrossRef]

20. Fangberget, A.; Nilsen, L.B.; Hole, K.H.; Holmen, M.M.; Engebraaten, O.; Naume, B.; Smith, H.-J.; Olsen, D.R.; Seierstad, T.
Neoadjuvant Chemotherapy in Breast Cancer-Response Evaluation and Prediction of Response to Treatment Using Dynamic
Contrast-Enhanced and Diffusion-Weighted MR Imaging. Eur. Radiol. 2011, 21, 1188–1199. [CrossRef]

21. Galons, J.-P.; Altbach, M.I.; Paine-Murrieta, G.D.; Taylor, C.W.; Gillies, R.J. Early Increases in Breast Tumor Xenograft Water
Mobility in Response to Paclitaxel Therapy Detected by Non-Invasive Diffusion Magnetic Resonance Imaging. Neoplasia 1999, 1,
113–117. [CrossRef]

22. Hanahan, D.; Coussens, L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell
2012, 21, 309–322. [CrossRef] [PubMed]

23. Nia, H.T.; Munn, L.L.; Jain, R.K. Physical Traits of Cancer. Science 2020, 370, eaaz0868. [CrossRef]
24. Martin, J.D.; Seano, G.; Jain, R.K. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu. Rev.

Physiol. 2019, 81, 505–534. [CrossRef] [PubMed]
25. Zemek, R.M.; Chin, W.L.; Nowak, A.K.; Millward, M.J.; Lake, R.A.; Lesterhuis, W.J. Sensitizing the Tumor Microenvironment to

Immune Checkpoint Therapy. Front. Immunol. 2020, 11, 223. [CrossRef] [PubMed]
26. Jardim-Perassi, B.V.; Martinez, G.; Gillies, R. Habitat Imaging of Tumor Evolution by Magnetic Resonance Imaging (MRI). In

Radiomics and Radiogenomics; Li, R., Xing, L., Napel, S., Rubin, D.L., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019;
pp. 115–120, ISBN 978-1-351-20827-7.

http://doi.org/10.1016/j.ejca.2008.10.026
http://doi.org/10.4161/cc.23274
http://www.ncbi.nlm.nih.gov/pubmed/23255137
http://doi.org/10.1038/nrclinonc.2015.73
http://www.ncbi.nlm.nih.gov/pubmed/25895611
http://doi.org/10.1309/AJCPIRL4GUVGK3YX
http://www.ncbi.nlm.nih.gov/pubmed/25389328
http://doi.org/10.1038/s41598-020-77397-0
http://www.ncbi.nlm.nih.gov/pubmed/33239688
http://doi.org/10.1016/j.ajpath.2013.07.015
http://www.ncbi.nlm.nih.gov/pubmed/24035511
http://doi.org/10.1002/1878-0261.12375
http://www.ncbi.nlm.nih.gov/pubmed/30133130
http://doi.org/10.3390/molecules26061568
http://www.ncbi.nlm.nih.gov/pubmed/33809310
http://doi.org/10.1056/NEJMoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
http://doi.org/10.1038/nrclinonc.2014.134
http://www.ncbi.nlm.nih.gov/pubmed/25113842
http://doi.org/10.2174/157340507780619179
http://doi.org/10.1002/nbm.3799
http://doi.org/10.1007/s10549-016-3680-8
http://doi.org/10.1117/1.JMI.5.1.011011
http://doi.org/10.1007/s00330-010-2020-3
http://doi.org/10.1038/sj.neo.7900009
http://doi.org/10.1016/j.ccr.2012.02.022
http://www.ncbi.nlm.nih.gov/pubmed/22439926
http://doi.org/10.1126/science.aaz0868
http://doi.org/10.1146/annurev-physiol-020518-114700
http://www.ncbi.nlm.nih.gov/pubmed/30742782
http://doi.org/10.3389/fimmu.2020.00223
http://www.ncbi.nlm.nih.gov/pubmed/32133005


Cancers 2022, 14, 1837 17 of 18

27. Syed, A.K.; Whisenant, J.G.; Barnes, S.L.; Sorace, A.G.; Yankeelov, T.E. Multiparametric Analysis of Longitudinal Quantitative
MRI Data to Identify Distinct Tumor Habitats in Preclinical Models of Breast Cancer. Cancers 2020, 12, 1682. [CrossRef] [PubMed]

28. Baselga, J.; Norton, L.; Albanell, J.; Kim, Y.-M.; Mendelsohn, J. Recombinant Humanized Anti-HER2 Antibody (HerceptinTM)
Enhances the Antitumor Activity of Paclitaxel and Doxorubicin against HER2/Neu Overexpressing Human Breast Cancer
Xenografts. Cancer Res. 1998, 58, 2825–2831. [PubMed]

29. Bloom, M.J.; Song, P.; Virostko, J.; Yankeelov, T.E.; Sorace, A.G. Quantifying the Effects of Combination Trastuzumab and
Radiation Therapy in Human Epidermal Growth Factor Receptor 2 Positive Breast Cancer. Preprint. Available online: https:
//www.researchsquare.com/article/rs-30208/v1 (accessed on 1 June 2020).

30. Jarrett, A.M.; Bloom, M.J.; Godfrey, W.; Syed, A.K.; Ekrut, D.A.; Ehrlich, L.I.; Yankeelov, T.E.; Sorace, A.G. Mathematical Modelling
of Trastuzumab-Induced Immune Response in an in Vivo Murine Model of HER2+ Breast Cancer. Math. Med. Biol. J. IMA 2019,
36, 381–410. [CrossRef] [PubMed]

31. Kzhyshkowska, J.; Riabov, V.; Gudima, A.; Wang, N.; Orekhov, A.; Mickley, A. Role of Tumor Associated Macrophages in Tumor
Angiogenesis and Lymphangiogenesis. Front. Physiol. 2014, 5, 75.

32. Chaudhury, B.; Zhou, M.; Farhidzadeh, H.; Goldgof, D.B.; Hall, L.O.; Gatenby, R.A.; Gillies, R.J.; Weinfurtner, R.J.; Drukteinis, J.S.
Predicting Ki67% Expression from DCE-MR Images of Breast Tumors Using Textural Kinetic Features in Tumor Habitats. In
Proceedings of the Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, CA, USA, 27 February–3 March 2016; Volume
9785, p. 97850T.

33. Katiyar, P.; Divine, M.R.; Kohlhofer, U.; Quintanilla-Martinez, L.; Schölkopf, B.; Pichler, B.J.; Disselhorst, J.A. A Novel Unsuper-
vised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological
Validation. Mol. Imaging Biol. 2017, 19, 391–397. [CrossRef]

34. Martin, J.D.; Fukumura, D.; Duda, D.G.; Boucher, Y.; Jain, R.K. Reengineering the Tumor Microenvironment to Alleviate Hypoxia
and Overcome Cancer Heterogeneity. Cold Spring Harb. Perspect. Med. 2016, 6, a027094. [CrossRef] [PubMed]

35. Sorace, A.G.; Syed, A.K.; Barnes, S.L.; Quarles, C.C.; Sanchez, V.; Kang, H.; Yankeelov, T.E. Quantitative [18F]FMISO PET Imaging
Shows Reduction of Hypoxia Following Trastuzumab in a Murine Model of HER2+ Breast Cancer. Mol. Imaging Biol. 2017, 19,
130–137. [CrossRef]

36. McCormack, D.R.; Walsh, A.J.; Sit, W.; Arteaga, C.L.; Chen, J.; Cook, R.S.; Skala, M.C. In Vivo Hyperspectral Imaging of
Microvessel Response to Trastuzumab Treatment in Breast Cancer Xenografts. Biomed. Opt. Express 2014, 5, 2247–2261. [CrossRef]
[PubMed]

37. Hardee, M.E.; Eapen, R.J.; Rabbani, Z.N.; Dreher, M.R.; Marks, J.; Blackwell, K.L.; Dewhirst, M.W. Her2/Neu Signaling Blockade
Improves Tumor Oxygenation in a Multifactorial Fashion in Her2/Neu+ Tumors. Cancer Chemother. Pharmacol. 2009, 63, 219–228.
[CrossRef] [PubMed]

38. Huang, S.; Franc, B.L.; Harnish, R.J.; Liu, G.; Mitra, D.; Copeland, T.P.; Arasu, V.A.; Kornak, J.; Jones, E.F.; Behr, S.C.; et al.
Exploration of PET and MRI Radiomic Features for Decoding Breast Cancer Phenotypes and Prognosis. NPJ Breast Cancer 2018, 4,
1–13. [CrossRef] [PubMed]

39. Chitalia, R.D.; Rowland, J.; McDonald, E.S.; Pantalone, L.; Cohen, E.A.; Gastounioti, A.; Feldman, M.; Schnall, M.; Conant, E.;
Kontos, D. Imaging Phenotypes of Breast Cancer Heterogeneity in Preoperative Breast Dynamic Contrast Enhanced Magnetic
Resonance Imaging (DCE-MRI) Scans Predict 10-Year Recurrence. Clin. Cancer Res. 2020, 26, 862–869. [CrossRef]

40. Wu, J.; Cui, Y.; Sun, X.; Cao, G.; Li, B.; Ikeda, D.M.; Kurian, A.W.; Li, R. Unsupervised Clustering of Quantitative Image
Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways. Clin. Cancer Res. 2017, 23,
3334–3342. [CrossRef] [PubMed]

41. Bitencourt, A.G.V.; Gibbs, P.; Saccarelli, C.R.; Daimiel, I.; Gullo, R.L.; Fox, M.J.; Thakur, S.; Pinker, K.; Morris, E.A.; Morrow, M.;
et al. MRI-Based Machine Learning Radiomics Can Predict HER2 Expression Level and Pathologic Response after Neoadjuvant
Therapy in HER2 Overexpressing Breast Cancer. eBioMedicine 2020, 61, 103042. [CrossRef] [PubMed]

42. Sorace, A.G.; Wu, C.; Barnes, S.L.; Jarrett, A.M.; Avery, S.; Patt, D.; Goodgame, B.; Luci, J.J.; Kang, H.; Abramson, R.G.; et al.
Repeatability, Reproducibility, and Accuracy of Quantitative Mri of the Breast in the Community Radiology Setting. J. Magn.
Reson. Imaging 2018, 48, 695–707. [CrossRef] [PubMed]

43. Yankeelov, T.E.; Mankoff, D.A.; Schwartz, L.H.; Lieberman, F.S.; Buatti, J.M.; Mountz, J.M.; Erickson, B.J.; Fennessy, F.M.M.;
Huang, W.; Kalpathy-Cramer, J.; et al. Quantitative Imaging in Cancer Clinical Trials. Clin. Cancer Res. 2016, 22, 284–290.
[CrossRef]

44. Luxburg, U.V. Clustering Stability: An Overview; Now Publishers Inc.: Hanover, MA, USA, 2010; ISBN 978-1-60198-344-2.
45. Wehrli, F.W. Magnetic Resonance of Calcified Tissues. J. Magn. Reson. 2013, 229, 35–48. [CrossRef]
46. Yankeelov, T.E.; Rooney, W.D.; Li, X.; Springer, C.S. Variation of the Relaxographic “Shutter-Speed” for Transcytolemmal Water

Exchange Affects the CR Bolus-Tracking Curve Shape. Magn. Reson. Med. 2003, 50, 1151–1169. [CrossRef]
47. Yankeelov, T.E.; Rooney, W.D.; Huang, W.; Dyke, J.P.; Li, X.; Tudorica, A.; Lee, J.-H.; Koutcher, J.A.; Springer, C.S. Evidence for

Shutter-Speed Variation in CR Bolus-Tracking Studies of Human Pathology. NMR Biomed. 2005, 18, 173–185. [CrossRef] [PubMed]
48. Kety, S.S. The Theory and Applications of the Exchange of Inert Gas at the Lungs and Tissues. Pharmacol. Rev. 1951, 3, 1–41.

[PubMed]
49. Tofts, P.S. Modeling Tracer Kinetics in Dynamic Gd-DTPA MR Imaging. J. Magn. Reson. Imaging 1997, 7, 91–101. [CrossRef]

[PubMed]

http://doi.org/10.3390/cancers12061682
http://www.ncbi.nlm.nih.gov/pubmed/32599906
http://www.ncbi.nlm.nih.gov/pubmed/9661897
https://www.researchsquare.com/article/rs-30208/v1
https://www.researchsquare.com/article/rs-30208/v1
http://doi.org/10.1093/imammb/dqy014
http://www.ncbi.nlm.nih.gov/pubmed/30239754
http://doi.org/10.1007/s11307-016-1009-y
http://doi.org/10.1101/cshperspect.a027094
http://www.ncbi.nlm.nih.gov/pubmed/27663981
http://doi.org/10.1007/s11307-016-0994-1
http://doi.org/10.1364/BOE.5.002247
http://www.ncbi.nlm.nih.gov/pubmed/25071962
http://doi.org/10.1007/s00280-008-0729-3
http://www.ncbi.nlm.nih.gov/pubmed/18365198
http://doi.org/10.1038/s41523-018-0078-2
http://www.ncbi.nlm.nih.gov/pubmed/30131973
http://doi.org/10.1158/1078-0432.CCR-18-4067
http://doi.org/10.1158/1078-0432.CCR-16-2415
http://www.ncbi.nlm.nih.gov/pubmed/28073839
http://doi.org/10.1016/j.ebiom.2020.103042
http://www.ncbi.nlm.nih.gov/pubmed/33039708
http://doi.org/10.1002/jmri.26011
http://www.ncbi.nlm.nih.gov/pubmed/29570895
http://doi.org/10.1158/1078-0432.CCR-14-3336
http://doi.org/10.1016/j.jmr.2012.12.011
http://doi.org/10.1002/mrm.10624
http://doi.org/10.1002/nbm.938
http://www.ncbi.nlm.nih.gov/pubmed/15578708
http://www.ncbi.nlm.nih.gov/pubmed/14833874
http://doi.org/10.1002/jmri.1880070113
http://www.ncbi.nlm.nih.gov/pubmed/9039598


Cancers 2022, 14, 1837 18 of 18

50. Loveless, M.E.; Halliday, J.; Liess, C.; Xu, L.; Dortch, R.D.; Whisenant, J.; Waterton, J.C.; Gore, J.C.; Yankeelov, T.E. A Quantitative
Comparison of the Influence of Individual versus Population-Derived Vascular Input Functions on Dynamic Contrast Enhanced-
MRI in Small Animals. Magn. Reson. Med. 2012, 67, 226–236. [CrossRef] [PubMed]

51. Li, X.; Rooney, W.D.; Várallyay, C.G.; Gahramanov, S.; Muldoon, L.L.; Goodman, J.A.; Tagge, I.J.; Selzer, A.H.; Pike, M.M.;
Neuwelt, E.A.; et al. Dynamic Contrast Enhanced-MRI with Extravasating Contrast Reagent: Rat Cerebral Glioma Blood Volume
Determination. J. Magn. Reson. San Diego Calif 1997 2010, 206, 190–199. [CrossRef]

52. Wu, C.; Pineda, F.; Hormuth, D.A.; Karczmar, G.S.; Yankeelov, T.E. Quantitative Analysis of Vascular Properties Derived from
Ultrafast DCE-MRI to Discriminate Malignant and Benign Breast Tumors. Magn. Reson. Med. 2019, 81, 2147–2160. [CrossRef]

53. Syed, A.K.; Woodall, R.; Whisenant, J.G.; Yankeelov, T.E.; Sorace, A.G. Characterizing Trastuzumab-Induced Alterations in
Intratumoral Heterogeneity with Quantitative Imaging and Immunohistochemistry in HER2+ Breast Cancer. Neoplasia 2019, 21,
17–29. [CrossRef]

54. Vangestel, C.; de Wiele, C.V.; Damme, N.V.; Staelens, S.; Pauwels, P.; Reutelingsperger, C.P.M.; Peeters, M. 99mTc-(CO)3 His-
Annexin A5 Micro-SPECT Demonstrates Increased Cell Death by Irinotecan During the Vascular Normalization Window Caused
by Bevacizumab. J. Nucl. Med. 2011, 52, 1786–1794. [CrossRef] [PubMed]

http://doi.org/10.1002/mrm.22988
http://www.ncbi.nlm.nih.gov/pubmed/21688316
http://doi.org/10.1016/j.jmr.2010.07.004
http://doi.org/10.1002/mrm.27529
http://doi.org/10.1016/j.neo.2018.10.008
http://doi.org/10.2967/jnumed.111.092650
http://www.ncbi.nlm.nih.gov/pubmed/22045708

	Introduction 
	Materials and Methods 
	Cell Culture and Animal Model 
	Longitudinal Tumor Growth Study 
	Magnetic Resonance Imaging 
	Immunohistochemistry and Immunofluorescence 
	Identification of MRI Tumor Habitats 
	Discovery of Tumor Imaging Phenotypes 
	Quantifying Longitudinal Alterations in Tumor Composition 
	Statistical Analysis 

	Results 
	Characterization of MRI Tumor Habitats 
	Characterization of Tumor Imaging Phenotypes 
	Quantifying Longitudinal Alterations in Tumor Volume 
	Quantifying Longitudinal Alterations in Tumor Composition 
	Correlation between MRI Habitats and Histology Data 

	Discussion 
	Conclusions 
	References

