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In the field of autism, an enormous increase in available information makes it very difficult to connect fragments of knowledge into
a more coherent picture. We present a literature mining method, RaJoLink, to search for matched themes in unrelated literature
that may contribute to a better understanding of complex pathological conditions, such as autism. 214 full text articles on autism,
published in PubMed, served as a source of data. Using ontology construction, we identified the main concepts of what is already
known about autism. Then, the RaJoLink method, based on Swanson’s ABC model, was used to reveal potentially interesting,
but not yet investigated, connections between different concepts in research. Among the more interesting concepts identified with
RaJoLink in our study were calcineurin and NF-kappaB. Both terms can be linked to neuro-immune abnormalities in the brain of
patients with autism. Further research is needed to provide stronger evidence about calcineurin and NF-kappaB involvement in
autism. However, the analysis presented confirms that this method could support experts on their way towards discovering hidden
relationships and towards a better understanding of the disorder.

1. Introduction

Autism spectrum disorders (ASDs) are currently one of the
leading causes of developmental disability with approxi-
mately 1% children affected [1]. Etiologically, many different
factors are involved. Among known genetic conditions that
are associated with ASD in higher percentage compared
with general population are fragile X syndrome (FXS),
tuberous sclerosis, fragile premutation, phenylketonuria,
15q11-13 duplication, 16p11.2 duplication, and mutations
in NGLN3, 4, phosphatase and tensin homolog (PTEN),
and SHANK3, to name some of them. Better knowledge
about the neurobiological basis of these disorders has led to
many commonalities across them regarding underpinnings
mechanisms and, most importantly, to potential targeted
treatments [2–4].

One of recently most intensively studied area of gene-
environmental interaction possibly involved in development
of ASD is suspected immunological factors and processes.

These factors include prenatal, genetic, and postnatal find-
ings, as well as the discovery of a dysfunctional chronic
proinflammatory state in brain tissue and cerebrospinal fluid
in subsets of autistic patients [5]. Some genes, such as the
tyrosine kinase receptor 7q31 metastasis receptor site (MET)
gene, an immune-related gene affecting tyrosine kinase that
can be involved in innate immune dysfunction, can double
the risk of autism [6]. Other immune abnormalities pos-
sibly linked to autism are familial autoimmunity, maternal
transfer of autoantibodies from the mother to child during
pregnancy, production of antibodies against brain tissue in
autistic patients, lower levels of normal immunoglobulins,
and elevation of some cytokines [5]. Besides immune dys-
functions there are other epigenetic mechanisms potentially
linked to autism such as increased level of oxidative stress,
mitochondrial dysfunction, and excitotoxicity [2, 3].

Despite these very exciting new discoveries in the field
of ASD, there are still a number of unique challenges
including the heterogeneity of the disorder, the large number

mailto:mmacedoni@gmail.com


2 Autism Research and Treatment

Table 1: Potential hypotheses for the relationship between autism and calcineurin.

Autism literature Calcineurin literature

Fatemi [28] reported a reduction of Bcl-2 (a regulatory
protein for control of programmed brain cell death) levels in
the cerebellum of patients with autism.

Erin et al. [30] observed that calcineurin occurred as a complex
with Bcl-2 in various regions of rat and mouse brains.

Roesler et al. [47] reported on a translocation in the GRPR
gene, the mammalian bombesin-like gastrin-releasing
peptide, being associated with autism.

Corral et al. [48] showed that bombesin promotes the activation
of the nuclear factor of activated T cells (NFAT) through a
Ca(2+)/calcineurin-linked pathway.

Huber et al. [14] showed evidence of an important functional
role of fragile X protein, an identified cause of autism, in
regulating activity-dependent synaptic plasticity in the brain.

Winder and Sweatt [49] described the critical role of protein
phosphatase 1, protein phosphatase 2A, and calcineurin in the
activity-dependent alterations of synaptic plasticity.

Belmonte et al. [45] reviewed neuropathological studies of
the cerebral cortex in autism indicating abnormal synaptic
and columnar structure and neuronal migration defects.

Chen et al. [50] reported about the decrease in protein ubiquitina-
tion in synaptosomes and in nonneuronal cells that may play a role
in the regulation of synaptic function by a calcineurin antagonist
FK506.

Vorstman et al. [51] stated that autism spectrum disorders
and subthreshold autistic symptoms are common in children
with 22q11.2 deletion syndrome.

Sivagnanasundaram et al. [52] examined the differential expression
of gene mapping to human chromosome 22q11.2 in 22q11.2 dele-
tion syndrome and found the decreased expression of calmodulin 1
encoding a calcium-dependent protein involved in the calmodulin-
calcineurin regulated pathway, which is implicated in learning and
memory.

Mouridsen et al. [53] observed two autoimmune conditions
associated with infantile autism: ulcerative colitis in mothers
and type 1 diabetes in fathers.

Winter and Schatz [54] listed immunosuppression by calcineurin
inhibitors as one of the promising strategies for intervention in
autoimmune type 1 diabetes mellitus.

Román [55] proposed that morphological brain changes in
autism may be produced by maternal hypothyroxinemia
resulting in low triiodothyronine in the foetal brain during
pregnancy.

Sinha et al. [56] found that calcineurin was compromised in young
progeny when they investigated the maternal hypothyroxinemia
effect during pregnancy on the brains of young progeny.

Omura [57] published the results of measurements of
asbestos accumulation where relatively high levels of asbestos
were found in autism.

Li et al. [58] investigated the role of reactive oxygen species,
by asbestos, in activation of nuclear factor of activated T cells
(NFAT). They found that pretreatment of cells with cyclosporin A, a
pharmacological inhibitor of calcineurin, blocked asbestos-induced
NFAT activation.

Thornton [59] argued that artificially generated
electromagnetic radiation may play an important role in the
mirror neuron dysfunction associated with autism.

Manikonda et al. [60] indicated that exposure to extremely
low-frequency electromagnetic fields caused increased activity of
calcineurin in the hippocampal region of rats.

Barnard et al. [61] revealed that adults with autism showed
impaired performance on the tests of working memory.

Runyan et al. [62] illustrated how the inhibition of calcium acti-
vated phosphatase calcineurin causes impaired working memory.

of symptoms that may be selected as targets for the therapy,
and varying degrees of associated symptoms. Besides, ASD
has to date been studied in several subfields and at several
different levels, all using different procedures for examina-
tion: behavioural psychology, genetics, biochemistry, brain
anatomy, physiology, and so forth. The question of how
to connect partial results of individual sciences into a
complete picture still remains very challenging. One method
to manage increasing amounts of specialised knowledge and
to support the process of its integration into a bigger and
more coherent picture has been presented from knowledge
technologies, and more specifically, from literature mining.
This has become possible with the availability of huge online
databases, such as PubMed, which covers over 20 million
citations. A powerful idea for investigating yet to be explored
relationships between biomedical concepts was proposed by
Swanson [7]. If there is a relationship between A and B
reported in the literature on A, and a relationship between
B and C in literature on C, then the concept B, might reveal

interesting connections across previously disjoint contexts A
and C. Swanson found many relationships, unknown at the
time, for example, connecting Raynaud’s syndrome with fish
oil, and migraine headaches with magnesium deficiency [7].

The task of finding the intermediate concepts of B,
when A and C are both already known, was defined as
closed discovery [8, 9], as opposed to open discovery, where
a search proceeds from C towards an unknown A. The
latter is a crucial part of the scientific discovery process
when generating new hypotheses. Therefore, our aim was to
upgrade the hypothesis generation approach through a more
systematic method in the open discovery stage. The basic idea
was to use rare terms from the literature on the investigated
phenomenon C as a guide toward new discoveries. This idea
was first presented in Petrič et al. [10], as the RaJoLink
method. This method has already been tested in the domain
of autism [11, 12]. The main novelty regarding Swanson’s
method is the choice of candidates for A, which is based on
rare terms identified in the literature on C. If the literature
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Table 2: Potential hypotheses for the relationship between autism and NF-kappaB.

Autism literature NF-kappaB literature

Araghi-Niknam and Fatemi [63] showed a reduction of Bcl-2, an
important marker of apoptosis, in the frontal, parietal, and
cerebellar cortices of autistic individuals.

Mattson [29] reported that activation of NF-kappaB in neurons
can promote their survival by inducing the expression of genes
encoding antiapoptotic proteins such as Bcl-2 and the antioxidant
enzyme Mn-superoxide dismutase.

Vargas et al. [37] reported altered cytokine expression profiles in
brain tissue and cerebrospinal fluid of patients with autism.

Ahn and Aggarwal [40] reported that, on activation, NF-kappaB
regulates the expression of almost 400 different genes, which
include enzymes, cytokines (such as TNF, IL-1, IL-6, IL-8, and
chemokines), adhesion molecules, cell cycle regulatory molecules,
viral proteins, and angiogenic factors.

Vargas et al. [37] also indicated that macrophage chemoattractant
protein MCP-1 and tumor growth factor-beta1 were the most
prevalent cytokines in the brain tissue of patients with autism.

Thibeault et al. [41] showed that the MCP-1 gene is expressed
within particular populations of cells in response to inflammatory
molecules that employ NF-kappaB as an intracellular signaling
mechanism.

Ming et al. [46] reported on increased urinary excretion of an
oxidative stress biomarker—8-iso-PGF2alpha in autism.

Zou and Crews [64] reported an increase in NF-kappaB DNA
binding following oxidative stress neurotoxicity.

Yoo et al. [65] observed statistically significant associations
between polymorphisms of PTGS2, the gene encoding
cyclooxygenase-2, and autism spectrum disorders.

Lee et al. [66] elucidated the role of spinal NF-kappaB in the
cyclooxygenase-2 upregulation and pain hypersensitivity following
peripheral inflammation.

Ma et al. [67] performed a genome-wide linkage analysis on 26
extended autism families and found significant linkage to
chromosome 12q14.

Weersma et al. [68] mentioned chromosome 12q14 as a region of
IRAK-M gene, which is an NF-kappaB-mediated negative regulator
of the toll-like receptor/IL-1R pathways.

Steele et al. [69] demonstrated spatial memory deficits in
high-functioning individuals with autism, particularly as tasks
required heavier demands on working memory.

Denis-Donini et al. [70] highlighted the function of NF-kappaB in
hippocampal neurogenesis and in short-term spatial memory.

Jyonouchi et al. [71] revealed intrinsic defects of innate immune
responses in children with autism spectrum disorders and
gastrointestinal symptoms.

Thomas et al. [39] confirmed that NF-kappaB has a crucial and
multifaceted role in innate immune responses.

Grigorenko et al. [72] identified macrophage migration inhibitor
factor, which is an upstream regulator of innate immunity, as a
possible susceptibility gene for autism spectrum disorders.

Gore et al. [73] showed that macrophage migration inhibitor factor
regulates subsequent adaptive immune responses by initiating a
signalling cascade that activates NF-kappaB.

Johnson and Malow [74] highlighted frequent sleep problems
among children with autism, such as obstructive sleep apnoea.

Yamauchi et al. [75] identified significantly greater activation of
NF-kappaB, which occurred in obstructive sleep apnoea.

surrounding these rare terms has an interesting term in
common, this joint term is declared as a candidate for A
(see Figure 1). The underlying assumption is that while the
majority of the literature in any given field describes matters
related to common understanding of that field, particular
observations appearing rarely in the literature, may provide a
promising direction towards novel discoveries. The method
is called RaJoLink, which is derived from its three basic steps.

(1) Step Ra: Identification of interesting rare terms in the
literature about C.

(2) Step Jo: Search for a joint term, A, within the
literature on the rare terms.

(3) Step Link: Search for linking terms, B. For each B
there should be a pair of articles, one from the
literature on A and one from the literature about C,
both mentioning B.

All three steps are implemented in a user-friendly
computer program. In all steps, expert involvement is crucial
for the selection of terms obtained from the automatically
generated sets of candidate terms. This ensures that results
are in line with the expert’s interest and capture his or her

expertise in guiding the whole process. Further technical
details on each of the steps have been described previously
[12].

The aim of this paper is to present and to analyse, in
detail, findings obtained when applying the RaJoLink me-
thod in the field of autism. Our hypothesis is that using
the RaJoLink method we can identify relationships between
biomedical concepts in disconnected sets of articles which
might lead to a better understanding of the possible causes
of autism.

2. Methods and Materials

Publications about autism in the PubMed database served
as a source of data. 10,821 publications were identified to
August 21, 2006 as containing autis∗, the expression root
for autism. There were 354 full text articles published in
the PubMed Central database. Due to a noticeable shift in
the research focus within these investigations, we further
restricted the inclusion to those published in the last ten
years. This resulted in a final set of 214 publications.
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Figure 1: Principle behind RaJoLink.

Our examination of autism phenomena began with
the identification of its main concepts and a review of
what is already known about autism. We identified such
information by ontology construction, which we found to
be a very fast and effective way of describing the contents
of large datasets. We used OntoGen [13], the interactive
tool for semiautomatic ontology construction. OntoGen is
based on machine learning and text mining techniques
that automatically extract topics covered within the input
documents. Thus, they support the user of the system to
organise those documents into a topic ontology. Given that
a biological basis to autism is nowadays broadly accepted,
we began our autism research by focusing on very basic
biochemical and neurological mechanisms.

Using the RaJoLink system, approximately 2000 terms
were automatically detected in the first step, Ra. Each of the
terms appeared in only one of the publications from our
set of 214. This long list of terms can be time consuming
and confusing for further analysis. The RaJoLink ability to
filter by MeSH (medical subject headings) classification (by

choosing one or more top- or second-level MeSH categories)
turned out to be very beneficial. In our experiments, we
considered only the D12 second-level category from the 2008
MeSH tree structure, that is, amino acids, peptides, and
proteins because, as mentioned, our research approach has
been driven by biochemical mechanisms. Thus, we choose
meaningful rare terms belonging to amino acids, peptides,
and proteins, which in our experimental case included
the terms lactoylglutathione, synaptophysin, and calcium
channels.

In the next step, Jo, we investigated whether the chosen
terms, though rare in autism literature, pointed towards any
interesting connections with autism in an indirect, yet logical
way. We collated the PubMed abstracts of articles about
lactoylglutathione, synaptophysin, and calcium channels
into three separate text files and searched for terms that
the three groups had in common. In this way, we singled
out joint terms in the literature on the three rare terms.
From several joint terms that were found automatically,
calcineurin, a protein phosphatase that is widely present in
mammalian brains, was chosen for further investigation.

3. Results

3.1. Autism and Calcineurin Relationship. We began the final
step of our method by retrieving the abstracts of articles on
autism as well as articles on calcineurin from the PubMed
database. In this step, we found several pairs of PubMed
articles that, when put together, could connect the two
categories, as shown in Table 1.

It should be mentioned that all of the identified pairs of
related publications, displayed in Table 1, proved to be very
useful in guiding the discussion towards new ideas for further
investigation.

Finally, we looked more closely at the significance of
the fragile X protein loss in autism [14], due to the fact
that fragile X syndrome has been found as one of the most
recognisable causes for the disorder [15]. This evaluation
helped us significantly in narrowing down our hypothesis.
It encouraged us to further select data on autism and its
relation to the fragile X.

We found 41 full text articles in PubMed Central, which
served as our input file of data on autism and fragile X.
As in the case of our literature mining on pure autism
articles, we used this new set of documents from PubMed
in the open discovery stage for identification of rare terms.
In a process similar to the one described previously, we
found three interesting rare terms: BDNF (brain-derived
neurotrophic factor), bicuculline, and c-Fos. In the next step,
we found several promising joint terms in the intersection of
the respective three sets of literature. One of these was the
term NF-kappaB.

3.2. The Relationship between Autism and NF-kappaB. To
test our hypothesis on the connection between autism and
NF-kappaB we analysed the combined set of abstracts of
9,365 publications on autism and 30,893 publications on NF-
kappaB. We found Bcl-2, cytokines, MCP-1, oxidative stress,
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and other meaningful terms linking the literature on autism
with the literature on NF-kappaB (see Table 2).

4. Discussion

Using the literature mining method, RaJoLink, we aimed
to uncover hidden connections that may provide additional
clues about autism. In the first part of the study, calcineurin
was identified as a possible important factor in the devel-
opment of the disorder. The Ca2+/calmodulin-dependent
phosphatase calcineurin has been shown to be involved
in numerous diverse functions, both at the cellular and
organism level. Its name is based on its calcium-binding
properties as well as its abundant expression in the nervous
system [16]. Several studies have supported the crucial role of
calcineurin in modifying animal behaviours, predominantly
by regulating cellular responses for timing and concentration
of calcium in cells [17]. For example, it was shown that
a reduction in function of calcineurin in mice resulted
in defects in working/episodic like memory, hyperactive
movement, social withdrawal, and defects in latent and
prepulse inhibition [18].

In Table 1, literature on autism and calcineurin converge
on the term synaptic plasticity (SP). This is a process that
refers specifically to the activity-dependent modification of
the efficacy in synaptic transmission at pre-existing synapses.
For over a century, SP has been proposed as playing a
central role in the capacity of the brain to incorporate
transient experiences into persistent memory traces. Synaptic
plasticity is also thought to play a key role in the early
development of neural circuitry. Evidence is accumulating
that impairment in SP mechanisms may contribute to
several prominent neurodevelopmental disorders and among
them is autism [19]. While so-called short-term plasticity is
thought to play an important role in short-term adaptations
to sensory imputes, transient changes in behavioural states,
and short-lasting forms of memory, the “long-term” synaptic
plasticity, in the form of long-term potentiation (LTP) and
long-term depression (LTD), is thought to be, at least in
part, the mechanism behind how an experience may modify
a behaviour. Fragile X syndrome (FXS), the most common
single gene cause of autism [4], linked to synaptic plasticity
on the autism side of Table 1. FXS is caused by loss of
function of fragile X mental retardation 1 gene (FMR1)
resulted in absence of associated protein—FMRP, which is a
RNA binding protein regulating translation of many target
mRNAs. Most of the targets mRNAs studied so far have
been linked to the regulation of synaptic function [20, 21],
therefore we focused more closely on the correlation between
calcineurin and FXS.

Calcineurin is thought to be involved in N-methyl-D-
aspartate receptors (NMDAR-) dependent LTD. This has
mostly been studied in hippocampal cells, but was also found
in neocortical synapses [22]. FXS, on the other hand has
been linked to metabotropic glutamate receptor-(mGluR-)
dependent LTD, particularly in the hippocampus and cere-
bellum [14, 23]. This potential link between an mGluR-
triggered form of SP and FXS has focused attention on

mGluR antagonists as possible therapeutic agents for this
and other developmental disorders [4, 24]. The fact that
two different mechanisms of LTD involved in FXS and
calcineurin action might be explained by an additive effect
that both mechanisms have in children with FXS and autism
compared to those with FXS without autism.

At present, there is no direct evidence reported on the
role calcineurin plays in autism. Recently, however, evidence
on the significant associations of a calcineurin isoform
located at the chromosome 8p21.3 region and the subgroup
of schizophrenia patients with deficits of sustained attention
and executive functioning [25].

The second most important term found in our study was
NF-kappaB. This transcription factor was first discovered
by Sen and Baltimore [26] through its interaction with
the immunoglobulin kappa light enhancer sequences. They
referred to the binding site for this nuclear factor as the B site
and therefore called the factor NF-κB (nuclear factor-kappa
B).

Our results showed two points of convergences in the
literature on both calcineurin and NF-κB with autism. The
first is Bcl-2, antiapoptotic protein, that works mainly at
the level of mitochondria [27]. Fatemi and colleagues [28]
reported a 34% to 51% reduction in Bcl-2 levels in the
cerebellum of autistic patients compared with controls. Their
experiments showed that deregulation of Bcl-2 may result in
some of the structural brain and behavioural abnormalities
in patients with autism. On one hand, it has been shown
that activation of NF-kappaB in neurons can promote their
survival by inducing the expression of genes encoding Bcl-2
[29] and on the other, that calcineurin occurred as a complex
with Bcl-2 in various regions of rat and mouse brains, in
particular during times of cellular stress and damage [30].

More specifically the protective role of Bcl-2 in metabolic
oxidative stress-induced cell death was showed by Lee and
colleagues [31]. The problem of oxidative stress in autism
has been extensively studied [32]. Also, over the last decade
there has been increasing evidence about the association
between autism and mitochondrial dysfunction [33, 34]. As
Bcl-2 works as an antiapoptotic agent mainly at the level of
mitochondria, we may propose that its downregulation is
one of the mechanisms related to increase of oxidative stress
and mitochondrial dysfunction in autism. Additionally, it
has been shown that FMRP expression is, among other
functions, an essential part of cellular survival mechanisms,
at least partly through modulation of Bcl-2 signal pathways
[35].

The second point of convergence was a possible immun-
omodulatory role of both substances, calcineurin, and NF-
kappaB. Neuroimmune abnormalities in the brain of patients
with autism have recently become objects of growing scien-
tific interest [36–38]. It has been proposed that abnormalities
in innate as well as in adaptive immune responses play a
potentially important role in the development of autism
[36, 37]. NF-kappa B has been shown to have a crucial
and multifaceted role in innate immune responses [39].
Further, it has been specified that, on activation, NF-kappaB
regulates the expression of almost 400 different genes, which
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also include the inflammatory cytokines, such as TNF,
IL-1, IL-6, IL-8, and chemokines [40]. NF-kappaB is also
involved in macrophage chemoattractant protein (MCP-1)
gene expression as an intracellular signalling mechanism
[41]. Vargas and colleagues [37] indicated that MCP-1 is one
of the most prevalent cytokines in brain tissue from patients
with autism.

A better understanding of neuroinflammation in the
pathogenesis of autism may have important clinical and
therapeutic implications. So far, immune modulation and
therapy, which have been applied to individuals with autism,
are mainly limited to a number of case reports and no
consensus treatment guidelines for immune therapies have
been developed to physicians to use. Among the current
studies of immune-targeted therapies, the collective data
on steroid effects on autism is the largest, mainly in
the subgroup of patients with EEG abnormalities that go
together with autistic regression [5].

Currently, the US National Institute of Health Clinical
Center is recruiting participants to test the effectiveness
of minocycline in treating regressive autism through a
blockade of NF-kappaB nuclear translocation. The anti-
inflammatory antibiotic, minocycline, is a potent inhibitor
of microglial activation, which reduces inflammation by
blocking the nuclear translocation of the proinflammatory
transcription factor, NF-kappaB. Also, there’s an evidence
about minocycline beneficial effects in patients with FXS
[42].

Calcineurin is also a common target of the immuno-
suppressant drugs cyclophilin-cyclosporin A and FKBP-
FK506 complexes [43]. Its inhibition has also been tested
to achieve successful immunosuppression in patients after
organ transplantation and in treating several other medical
problems [44].

It is thought that autism results from an interaction
between genetic and environmental factors with immuno-
logical disorders as one of the potential mechanisms linking
the two [45, 46]. Our results, with an emphasis on cal-
cineurin and NF-kappaB, add further reasons for the need
of more research into possible neuroimmune factors in the
development of autism and as potential novel targets for
treatments.

5. Conclusions

In this study, it has been shown how the literature mining
method can support medical experts on their way to discov-
ering hidden relationships in data and a deeper understand-
ing of complex disorders such as autism. The method has
been proven as a very important tool, especially in the time of
a vast amount of information at differing levels of knowledge.
Also, through the interaction of different professionals the
entire process of knowledge discovery can benefit, by faster
speed and guidance towards more meaningful solutions. An
important feature of the two agents that emerged as potential
links to autism in our study, calcineurin and NF-kappa, need
to be further investigated to gain stronger evidence on their
involvement in the development of the disorder.
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