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Background: In investigations of nucleosome positioning preferences, a model that assigns an affinity to a given
sequence is necessary to make predictions. One important class of models, which treats a nucleosome sequence as a
Markov chain, has been applied with success when informed with experimentally measured nucleosomal sequence

preferences.

Results: We find that we can also use such models as a fast approximative scheme for computationally expensive
biophysical models, vastly increasing their reach. Employing these models in this way also allows us to benchmark
them for the first time. Doing so for the approximative in silico models indirectly tells us about the accuracy we can

expect of them when applied to real data.

Conclusion: We find that models presented in the literature should perform well, but this performance depends on
factors such as the order of the Markov model, the preprocessing of the probability distributions on which the model
is based, and the size and quality of the sequence ensemble from which those distributions are calculated.
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Background

It is well-established that nucleosomes have significant
preferences as to DNA sequences they bind, and that these
sequence preferences play an important role in a range
of dynamic nucleosomal processes [1]. In order to better
study correlations between sequence effects and biologi-
cal function, it is necessary to get a grasp on the energet-
ics of nucleosome-DNA interaction. Several approaches
have been put forward. Sequence-dependent models that
directly address the mechanics of DNA, such as the Rigid
Base Pair Model [2] can be combined with a suitable
model for the nucleosome to access the energetics of
nucleosome-bound DNA [3-9].

Another option is to use a bioinformatics model that
defines a probability distribution on the space of all pos-
sible nucleotide sequences. The logarithm of such a prob-
ability distribution relates linearly to the free energy of
a sequence when wrapped into a nucleosome. One such
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probability-based model has been put forward by Segal
et al. [10] and this particular model now proves to be of
interest beyond its original purpose, in that it can also
be used in silico to provide a computationally efficient
approximation to biophysical models that are themselves
computationally too intensive. By speeding up the calcu-
lation of the affinity of a sequence for the nucleosome by a
factor of around 10° (in an unoptimized implementation),
this approximative scheme makes it possible to use the
biophysical nucleosome model of Eslami-Mossallam et al.
[5] to perform genome-wide analyses of nucleosome posi-
tioning signals. With this method, we have performed
all-gene analyses of promoter regions for numerous
organisms [11], a feat that would have been computation-
ally intractable without it.

Here we perform an in-depth benchmarking analysis of
this approximation to the Eslami-Mossallam et al. nucle-
osome model. We will examine to what accuracy the
computationally efficient model approximates the predic-
tions of the underlying model for the first chromosome
of S. cerevisiae, and how this accuracy depends on several
factors, such as the stringency of the assumptions that go
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into the approximation, the size of the sequence ensem-
ble from which the model parameters are derived and the
application of smoothing filters on those parameters. In
doing so, we may also indirectly draw some conclusions
as to the accuracy that may be expected of models such as
that of Segal et al. [10], trained on experimental sequence
ensembles.

Methods

Model

Since a nucleosome wraps 147 base pairs worth of DNA,
the space of possible sequences contains 447 or about
10%8 possibilities. It is impossible to enumerate all of
these, so a simple function is needed for the probability
distribution.

Segal et al. do this by treating a DNA sequence as
a Markov chain of order 1, where the probability of a
nucleotide at a certain position depends only upon the
preceding nucleotide. The probability of the sequence
as a whole is the product of the probabilities of all the
nucleotides it is composed of. More precisely, defining S
as a sequence of length 147, consisting of nucleotides S;
with i from 1 to 147,

147 146 146
P@%zPOW&)=P<&MMW&>PQW&> 1)
i=1 i=1 i=1

147 n—1
=H%Mﬂﬁ, )
n=1 i=1

where we have applied the chain rule of probabilities. If we
now introduce the assumption we mentioned earlier, that
the probability of a nucleotide depends only on the pre-

ceding nucleotide, we find the expression given by Segal
etal,ie.

147
P(S) = P(S1) [ | P(SulSu-0). (3)

n=2
We should stress that the value of quantities like P(S,)
depends not just on the value of S, (i.e. which nucleotide
is represented) but also on the position along the nucle-
osome, n. These probability distributions for, in the case
of Segal et al., dinucleotides, can be obtained by analyzing
a suitable ensemble of sequences that have high affinities
for the nucleosome. Segal et al. generate such an ensemble
from the genome they are interested in making predic-
tions for, by mapping actual (in vitro) nucleosome posi-
tions along the DNA. Although the original model did not
perform very well [12], this model has been applied with
success — after a refinement of the model and employ-
ing a better training data set — to predicting nucleosome

positions, by Field et al. [13] and Kaplan et al. [14].

These experimental probability distributions do not
capture only the intrinsic mechanical preferences of the
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DNA. They also capture inherent biases in the sample (a
genomic sequence necessarily contains only a small subset
of all 10%8 possible sequences of length 147) and biases of
the experimental method. This makes it difficult to eval-
uate the accuracy of the model, since both the training of
the model and its testing generally rely on the same exper-
imental methods, and there is the risk that agreement
between the model and reality is overestimated because
the model correctly fits experimental artifacts. Therefore
it becomes of interest to study the model in a theoretical
framework, where we can isolate the purely mechanical
effects.

Ensembles to inform this type of bioinformatics model
can also be generated from a theoretical nucleosome
model using the Mutation Monte Carlo (MMC) method
[5]. This method adds mutation moves to a standard
Monte Carlo simulation of a nucleosome, thereby sam-
pling the Boltzmann probability distribution of pairs of
sequences and spatial configurations (S, 9),

P(S,0) = e PESO), (4)

By sampling the sequences during the MMC simula-
tion, the spatial degrees of freedom of the nucleosome
model are marginalized and one obtains the probability
distribution of the sequences

P(S) = / doe PESH) (5)

and their free energy
F(S) = —kT log(P(S)). (6)

Note that in Eqs. 4—6 we have neglected the overall nor-
malization of the probability distributions by the partition
function Z, and hence a constant offset —kT log(Z) to the
free energy. Because the probabilities we derive are simply
relative frequencies with respect to our sequence ensem-
ble, they are inherently normalized (i.e. summing them
over all possible sequences gives unity) and we have no
information on the partition function. This is not usu-
ally an impediment as we are mostly interested in relative
energy differences.

Sampling the entire sequence space is not feasible, but
making the same assumption about long-range correla-
tions in the sequence preferences as Segal et al., we can
assume that we may write our P(S) as in Eq. 3. It turns out
it is feasible to produce a sequence ensemble large enough
that the distributions P(S;|S;—1) may be determined.

Generalization of the Dinucleotide Model

We used an MMC simulation of the model put forward
by Eslami-Mossallam et al. at 1/6 of room temperature to
generate an ensemble of 107 sequences, from which the
oligonucleotide distributions were derived (see Additional
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files 1, 2, and 3). At each position, we counted the num-
ber of instances of every mono-, di- and tri-nucleotide and
divided these by the total number of sequences in order to
obtain probability distributions.

This gives us the joint probability distribution
P(S,NS,—1) and not the conditional probability
P(S,|S,—1) that we need for Eq. 3. This is easily remedied.
We can rewrite Eq. 3 as

147

PSS, NS, _ 147 P(S, NS,
P(S) = P(S1) 1_[ ( 1) _ Hn_z ( 1).
n=2

P(Sy-1) X%, P(S,)

(7)

We see that we can write this equation in terms of the
probability distributions of mono- and dinucleotides that
we can find from a sequence ensemble. Analogously, if we
want to expand the model to trinucleotides, we insert the
assumption that the probability of a nucleotide depends
only on the previous two (creating a Markov chain of order
two) and we find

1525 P(Sy N Su1 N Sy—2)
T2 P(Sy N Su—1)

This model can thus be applied using probability dis-
tributions for di- and trinucleotides, both to be obtained
from a suitable sequence ensemble. The result easily
generalizes to tetranucleotides and beyond. For mononu-
cleotides, the model simplifies to

P(S) = (8)

147

P(S) = ]_[ P(S)). )
i=1

Analysis

Segal et al. test their model by predicting nucleosome
positions along the genome they are studying and compar-
ing with reality and they find that their model has some
predictive power, even on genomes on which the method
was not trained. However, their study is inevitably ham-
pered by small statistics and their use of natural materials.
The latter makes it difficult to judge the quality of their
model.

The in silico methods allow us to test the model, as
an approximation to the full underlying model, much
more rigorously. Because we can explicitly calculate the
energy of a given sequence, we can directly measure the
correlation between the energy given by the theoretical
nucleosome model and the probability calculated by the
bioinformatics model. Using a standard Monte Carlo sim-
ulation of the nucleosome with a given sequence, we can
measure the average energy

(E)g = / dOE(S,0)e PESH (10)
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of the sequence. Unfortunately, calculating the free energy
using the Eslami-Mossallam nucleosome model is not
straightforward, and we will be comparing (E)s as pre-
dicted by the biophysical model with F(S) as predicted
by the approximative model. At finite temperature, these
quantities are not the same, differing by an entropic
contribution. However, at low enough temperatures they
converge. We will compare the predictions at 1/6th of
room temperature, as some finite temperature is needed
for the statistical simulations to function. In perform-
ing this comparison, we thus provide an upper limit
for the discrepancy between the approximation and
the real (E)g.

In order to generate an energy landscape with which
to compare the results of the probability-based mod-
els, we take the first chromosome of S. cerevisiae (~
2 x 10° base pairs) and perform a Monte Carlo simula-
tion of the nucleosome wrapped with each 147-base-pair
subsequence of the chromosome, using the nucleosome
model put forth by Eslami-Mossallam et al. After let-
ting the simulation equilibrate, we sample the energy
of the system and take the average. In order to be
able to compare this energy landscape with a proba-
bility landscape, we calculate the (Boltzmann) proba-
bility distribution and normalize this over the set of
sequences for which we calculated the energy, and
then take the logarithm to regain our (shifted) energy
landscape.

Analogously, we use the probability-based model to gen-
erate a probability landscape of the same sequence. This
we normalize over the set of sequences analyzed and con-
vert to an energy using Eq. 6. We find that this procedure
is about five orders of magnitude faster than using the full
biophysical model.

We only know the free energy up to some constant off-
set, but by making sure both the real energy landscape
given by the energetic model and the approximate energy
landscape provided by our probability-based model have
the same normalization, we can readily compare the two.

In doing so, we may draw some conclusions about
this kind of Markov-chain model not only as it
relates to the nucleosome model we consider here,
but about the assumptions that go into it in gen-
eral, i.e. the explicit assumption of short-range corre-
lations and the implicit assumption that the sequence
ensemble on which the model is being trained is large
enough. To test the first assumption, we extend the
dinucleotide model used by Segal et al. to mononu-
cleotides (which assumes no correlations at all) and
trinucleotides (which relaxes the assumption of short-
range correlations) and compare their accuracy. For the
second, we examine the accuracy of these three mod-
els as a function of the ensemble size on which they
are trained.



Tompitak et al. BMC Bioinformatics (2017) 18:157

Results and discussion

We tested and compared three different probability-based
models, namely the Segal et al. dinucleotide model, its
simplification to mononucleotides and its extension to
trinucleotides. Following the methodology outlined in the
previous section, we arrive at correlation plots for the
energy as given by the energetic model and as predicted by
the probability-based models. The results are presented in
Fig. la—c.

As we might expect, the longer the oligonucleotides
we use, the better the agreement becomes. An impor-
tant cause of the deviation from perfect agreement, apart
from the spread, is a clearly visible deviation in the
slope. The mononucleotide model significantly under-
estimates the spread in energies. This means that the
mononucleotide model is not capturing effects that set
sequences apart from each other. This effect is expected
and should be remedied by going to longer oligonu-
cleotides. Indeed we see this deviation greatly decreased
for the dinucleotide model, and even more so for the
trinucleotide model.
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For a more detailed grasp on the quality of the
predictions, we separate out two components of the
energy landscape that are important on their own. The
first is the periodicity of the energy landscape. Due to
the helical nature of DNA, energy landscapes for the
nucleosome show a roughly 10-base-pair periodic sig-
nal. It is important that any model for nucleosome
affinity gets the frequency and phase of this periodic-
ity right. The second property, complementary to the
periodicity, is the overall energy level of the sequence.
This aspect will show us how well the model captures
long-range effects.

For the purposes of benchmarking, we define the local
average as the 11-base-pair running average of the energy
landscape, i.e. over about one period. The pure periodic-
ity of the signal we analyze by subtracting from the signal
its local average as just defined, making the signal oscillate
around zero. Our benchmarking results then consist of
the root-mean-square deviation (RMSD) for the full signal
(already presented in Fig. 1a—c), for the locally averaged
signal and for the pure periodicity signal.
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Fig. 1 Accuracy analyses of the various models, benchmarked on the first chromosome of S. cerevisiae. a Histogram of the energy prediction pairs of
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dinucleotide and trinucleotide approximations, respectively. d Comparison of the root mean square deviations of the approximative predictions
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To get a sense of what the RMSD values we find actu-
ally mean, we compare them to the RMSD value we
find when we use a bad model. For the overall sig-
nal and the locally averaged signal, we define this bad
model to be one that contains no sequence information
at all, i.e. a perfectly uniform landscape. For the period-
icity, this is not such an interesting comparison because
for a periodic signal, a uniform landscape is still right
twice per period. Instead we utilize as a bad model the
same signal, but shifted by half a period, to push it out
of phase.

RMSD values gathered from such bad models tell us
about the typical size of the structures in the energy land-
scape that our models need to predict. We can then mea-
sure the RMSD from our benchmarked models relative to
this scale. Fig. 1d displays the results. We see a decrease
in RMSD when going to longer oligonucleotides in each
of the three cases. The dinucleotide model, as used by
Segal et al., already performs well, with an overall RMSD
of 7%. Noteworthy, it is much more accurate than the
mononucleotide model. However, we see that we could
improve our results still by going to trinucleotides. Espe-
cially the local average is predicted much more accurately
by the trinucleotide model, cutting the RMSD by about
a third.

The Importance of Sample Size

Because we can produce large ensembles of sequences
in silico with the Mutation Monte Carlo method, we are
now also in a position to get a measure of how large
an ensemble we need for our models to make accurate
predictions.

In their 2006 study, Segal et al. manage to build an
ensemble of ~10% sequences. Apart from the inherent
biases that may be present in their ensemble due to their
use of nonrandom yeast DNA, this is not a very large
ensemble, and we should check what the effects of such
limitations are.

In a later study, Kaplan et al. perform a similar
study, where they obtain 35,000,000 sequence reads. [14]
The ensemble is again trained on the yeast genome,
which is some 12,000,000 base pairs long. The num-
ber 35,000,000 should therefore not be mistaken for the
ensemble size. There must necessarily be many duplicate
and strongly overlapping sequences in their ensemble,
which arise artificially because only a small subset of
sequence space is available for sampling. Giving a mean-
ingful number for the effective sample size of such an
ensemble is difficult. However, a sequence of ~10” base
pairs can yield 10* — 10° completely non-overlapping
nucleosome sequences, which we may employ as a conser-
vative estimate.

Later similar work using the mouse [15] and human [16]
genomes has yielded larger ensembles. These genomes are
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two orders of magnitude larger than that of yeast, and so
also provide that many more non-overlapping sequences.

In our in silico simulations, we built an ensemble
of 107 independent sequences from which we derived
our probability distributions. We took subsets of these
sequences to see what the effects of smaller sample
sizes are. The problem when statistics are small is not
just that the probability distributions are less accurate.
We additionally run into the issue that some rare din-
ucleotides simply do not appear in the ensemble at all.
The estimate of their probability then becomes zero. The
problem is that if any of the factors in Eq. 2 is zero,
the entire product becomes zero, rendering the model
useless.

For Segal et al. and Kaplan et al. this problem does not
arise, because they do not need to work at low temper-
atures, but also because they apply a smoothing to their
probability distributions. They estimate the probability
P,(S, NS, —1) of a dinucleotide by averaging over not
just position #, but also » — 1 and # + 1. This is justi-
fied by the observation that their experimental method
does not provide them with a sharp resolution down to
the base-pair to begin with. The effect of such smooth-
ing is not a priori clear, however. In a landscape with
10-bp periodicity, taking a 3-bp running average could
have averse effects. Such smoothing may not be nec-
essary or beneficial when applied to higher-resolution
data.

We therefore propose an alternative method, where
instead we consider a probability of zero, for any position,
a failure of the ensemble. In such a case we conclude that
we simply do not have any information, i.e. we artificially
insert a flat conditional probability of 0.25.

In Fig. 2 are presented the RMSDs of the full landscape,
as predicted by our probability-based models, with prob-
ability distributions derived from various ensemble sizes.
We find that smoothing the distributions gives results that
are strictly worse than simply assuming no information
when an issue arises.

We can conclude from this plot that the model of
Kaplan et al., even with a conservative estimate for their
effective ensemble size, should perform well. The din-
ucleotide model converges to its maximum accuracy at
only 10* sequences. Of course, caveats surrounding the
non-randomness of the DNA being sampled remain.

For larger experimental ensembles (e.g. [15] and [16]) it
is advisable to move to a trinucleotide description. Start-
ing from 5 x 10° sequences, this model becomes more
accurate than the dinucleotide model.

Conclusions

With the methods available for the first time to produce
sequence ensembles for nucleosome affinity based on an
energetic model of the nucleosome, we investigated the
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Fig. 2 Variation of the RMSDs of the various models with the size of the sequence ensemble from which their parameters are calculated. Solid lines:
zero-probability issues are dealt with by assuming zero information. Dashed lines: probability distributions are smoothed with a 3-bp running

capacity of a class of probability-based models to approx-
imate real energetics. As an approximative scheme to the
nucleosome model of Eslami-Mossallam et al. [5], we find
errors on the order of 1 kT. This is not an insignificant dis-
agreement, but depending on the application, this price
may well be worth paying for the vast reduction in com-
putational complexity by a factor of 10° unoptimized. Vast
increases in speed can also be expected for other complex
biophysical models.

Considering the assumption of short-range correlations,
we find that dinucleotide models such as those used by
e.g. Field et al. and Kaplan et al. already perform well,
with a root mean square deviation of about 2 kT (see
Fig. 2). However, we also find that improvement could
be achieved by going to a trinucleotide model (for large
enough ensemble size), and by avoiding the smoothing of
the probability distributions.

We also looked into the effects of small ensemble sizes,
and we find that an ensemble such as used by Field
et al,, although caveats must be acknowledged as to likely
inherent biases in their experiment, is sufficient for the
dinucleotide model to reach its fundamental accuracy.
For larger ensembles (10° or more sequences) such as
provided by the mouse or human genome, however, we
recommend that the trinucleotide approximation be used
for higher accuracy.

We hope, however, that our work will motivate the
experimental community to look into mapping nucleo-
somal sequence preferences experimentally using more
random DNA sequences than are provided by natural
genomes. A starting point could be a very similar study
done on DNA rings [17]. This would allow us to better
examine the intrinsic sequence preferences of nucleo-
somes without biasing them towards a genomic context.

Additional files

Additional file 1: Mononucleotide distributions. Table in tab-separated
format denoting the mononucleotide probability distributions generated
by our Mutation Monte Carlo simulation. (TSV 6 kb)

Additional file 2: Dinucleotide distributions. Table in tab-separated
format denoting the dinucleotide probability distributions generated by
our Mutation Monte Carlo simulation. (TSV 25 kb)

Additional file 3: Trinucleotide distributions Table in tab-separated
format denoting the trinucleotide probability distributions generated by
our Mutation Monte Carlo simulation. (TSV 106 kb)

Abbreviations
MMC: Mutation Monte Carlo RMSD: Root-Mean-Square Deviation

Acknowledgements
Not applicable.

Funding

This research is supported by the NanoFront consortium, a program of the
Netherlands Organisation for Scientific Research (NWO) that is funded by the
Dutch Ministry of Education, Culture and Science (OCW). The funding body
had no role in the design of the study, the collection, analysis and
interpretation of the data, or in writing the manuscript.

Availability of data and materials
Not applicable.

Authors’ contributions

MT, GB and HS contributed to the conception and design of the study. MT and
GB built the software required for this work. MT and HS contributed to the
interpretation of the data. MT, GB and HS contributed to the production of the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.



http://dx.doi.org/10.1186/s12859-017-1569-0
http://dx.doi.org/10.1186/s12859-017-1569-0
http://dx.doi.org/10.1186/s12859-017-1569-0

Tompitak et al. BMIC Bioinformatics (2017) 18:157

Author details

"Lorentz Institute, Leiden University, Niels Bohrweg 2, 2333CA, Leiden, The
Netherlands. ?Institute for Theoretical Physics, Utrecht University,
Princetonplein 5,3584CC, Utrecht, The Netherlands.

Received: 18 June 2016 Accepted: 24 February 2017
Published online: 07 March 2017

References

1. Eslami-Mossallam B, Schiessel H, van Noort J. Nucleosome dynamics:
Sequence matters. Adv Colloid Interface Sci. 2016;232:101-13.

2. Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB. DNA
sequence-dependent deformability deduced from protein-DNA crystal
complexes. Proc Natl Acad Sci USA. 1998,95(19):11163-11168.

3. Becker NB, Everaers R. DNA Nanomechanics in the Nucleosome.
Structure. 2009;17(4):579-89.

4. DeBruin L, Tompitak M, Eslami-Mossallam B, Schiessel H. Why Do
Nucleosomes Unwrap Asymmetrically? J Phys Chem B. 2016;120(26):
5855-863.

5. Eslami-Mossallam B, Schram RD, Tompitak M, van Noort J, Schiessel H.
Multiplexing Genetic and Nucleosome Positioning Codes: A
Computational Approach. PLoS One. 2016;11(6):0156905.

6. Fathizadeh A, Besya AB, Ejtehadi MR, Schiessel H. Rigid-body molecular
dynamics of DNA inside a nucleosome. Eur Phys J E. 2013;36(3):21.

7. Morozov AV, Fortney K, Gaykalova DA, Studitsky VM, Widom J, Siggia
ED. Using DNA mechanics to predict in vitro nucleosome positions and
formation energies. Nucleic Acids Res. 2009;37(14):4707-722.

8. Tolstorukov MY, Colasanti AV, McCandlish DM, Olson WK, Zhurkin VB.
J Mol Biol. 2007,371(3):725-38.

9. Vaillant C, Audit B, Arneodo A. Experiments confirm the influence of
genome long-range correlations on nucleosome positioning. Phys Rev
Lett. 2007,99(21):218103.

10. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK,
Wang J-PZ, Widom J. A genomic code for nucleosome positioning.
Nature. 2006;442:772-8.

11. Tompitak M, Vaillant C, Schiessel H. Genomes of Multicellular Organisms
Have Evolved to Attract Nucleosomes to Promoter Regions. Biophys J.
2017;112(3):505-11.

12. LiuH, Zhang R, Xiong W, Guan J, Zhuang Z, Zhou S. A comparative
evaluation on prediction methods of nucleosome positioning. Brief
Bioinform. 2013;15(6):1014-1027.

13. Field Y, Kaplan N, Fondufe-MittendorfY, Moore IK, Sharon E, Lubling Y,
Widom J, Segal E. Distinct modes of regulation by chromatin encoded
through nucleosome positioning signals. PLoS Comput Biol. 2008;4(11):
€1000216.

14. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y,
Leproust EM, Hughes TR, Lieb JD, Widom J, Segal E. The DNA-encoded
nucleosome organization of a eukaryotic genome. Nature. 2009;458:
362-6.

15. Barozzil, Simonatto M, Bonifacio S, Yang L, Rohs R, Ghisletti S, Natoli G.

Coregulation of Transcription Factor Binding and Nucleosome
Occupancy through DNA Features of Mammalian Enhancers. Mol Cell.
2014;54(5):844-57.

16. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A.
Determinants of nucleosome organization in primary human cells.
Nature. 2011;474(7352):516-20.

17. Rosanio G, Widom J, Uhlenbeck OC. In vitro selection of DNAs with an
increased propensity to form small circles. Biopolymers. 2015;103(6):
303-20.

Page 7 of 7

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

¢ Convenient online submission

® Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at - .
www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Model
	Generalization of the Dinucleotide Model
	Analysis

	Results and discussion
	The Importance of Sample Size

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

