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Abstract: Bilirubin (BR) is a tetrapyrrolic compound stemming from heme catabolism with diverse
physiological functions. It can be oxidized by H2O2 to form several degradation products, some
of which have been detected in vivo and may contribute to the pathogenesis of certain diseases.
However, the oxidative degradation of BR is complex and the conditions that BR degradation occurs
pathophysiologically remain obscure. Neutrophils are known to generate large amounts of reactive
oxygen species, including H2O2, upon activation and they are mobilized to inflammatory sites;
therefore, we hypothesized that activated neutrophils could cause BR degradation, which could
occur at inflammatory sites. In the present study, we investigated BR degradation by H2O2 and
identified hematinic acid (BHP1) and a new product BHP2, whose structure was characterized as
2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid. An LC-MS/MS method for the quantitation
of the two compounds was then established. Using the LC-MS/MS method, we observed the
concentration-dependent formation of BHP1 and BHP2 in mouse neutrophils incubated with 10 and
30 µM of BR with the yields being 16 ± 3.2 and 31 ± 5.9 pmol/106 cells for BHP1, and 25 ± 4.4
and 71 ± 26 pmol/106 cells for BHP2, respectively. After adding phorbol 12-myristate 13-acetate,
a neutrophil agonist, to 30 µM of BR-treated cells, the BHP1 yield increased to 43 ± 6.6 pmol/106 cells,
whereas the BHP2 one decreased to 47 ± 9.2 pmol/106 cells. The two products were also detected
in hemorrhagic skins of mice with dermal inflammation and hemorrhage at levels of 4.5 ± 1.9 and
0.18 ± 0.10 nmol/g tissue, respectively, which were significantly higher than those in the non-
hemorrhagic skins. BHP2 was neurotoxic starting at 0.10 µM but BHP1 was not, as assessed using
Caenorhabditis elegans as the animal model. Neutrophil-mediated BR degradation may be a universally
pathophysiological process in inflammation and can be particularly important under pathological
conditions concerning hemorrhage.

Keywords: bilirubin; hydrogen peroxide; degradation; neutrophil; inflammation; hemorrhage

1. Introduction

Bilirubin (BR) is the terminal product of mammalian heme catabolism [1,2]. It is a
tetrapyrrolic compound and has long been considered only to be a waste product associated
with liver diseases. However, mounting evidence suggests that BR is an important phys-
iological antioxidant and has diverse biological functions, and may even be a metabolic
hormone [2–7]. It may play an important role in human health and disease [2,3,5,7,8].

Biomolecules 2022, 12, 1237. https://doi.org/10.3390/biom12091237 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12091237
https://doi.org/10.3390/biom12091237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-6816-0786
https://orcid.org/0000-0002-2211-7803
https://orcid.org/0000-0003-3472-8393
https://doi.org/10.3390/biom12091237
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12091237?type=check_update&version=1


Biomolecules 2022, 12, 1237 2 of 18

As an antioxidant, BR can readily be oxidized by reactive oxygen species (ROS) to
degrade into smaller molecules, typically monopyrrolic and bipyrrolic products. It has been
reported that BR can be degraded by H2O2 into several products, including 2-(3-ethenyl-1,5-
dihydro-4-methyl-5-oxo-2H-pyrrol-2-ylidene)acetamide (bilirubin oxidation end product
(BOX) A), 2-(4-ethenyl-1,5-dihydro-3-methyl-5-oxo-2H-pyrrol-2-ylidene)acetamide (BOX B),
5-(2-amino-2-oxoethylidene)-2,5-dihydro-4-methyl-2-oxo-1H-pyrrole-3-propanoic acid (BOX C),
4-methyl-3-vinylmaleimide (MVM), and four isomeric bipyrrolic products called propent-
dyopent (PDP) A1, A2, B1, and B2 (which were totally referred to as PDPs) (Scheme 1) [9–11].
Another study showed that BR degradation by H2O2 in the presence of iron formed more
than 10 products with unknown structures [12].
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Scheme 1. The structures of BR and its degradation products by H2O2 as reported in the literature 
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product). 

Given the importance of BR as a physiological antioxidant with various biological 
functions [2–8], whether BR degradation occurs in vivo in significant amounts and what 
roles the degradation products may play in human health and diseases are apparently 
critical issues. A few laboratories have investigated the issues and confirmed the in vivo 
presence of several degradation products, including BOX A, B, and C, and PDPs [10,13–
18]. Further, BOX A and B (totally referred to as BOXes) and PDPs exhibit multiple ad-
verse effects on cells and tissues, and may be involved in the pathology of two diseases, 
subarachnoid hemorrhage (SAH) and cholestatic liver failure [13,14,17,19–23]. 

However, in all the studies, the degradation products were isolated from the reac-
tion mixtures of BR with H2O2 and were characterized, and then were directly detected 
in biological samples, including blood, bile, gallstones, and cerebrospinal fluid (CSF) [9–

Scheme 1. The structures of BR and its degradation products by H2O2 as reported in the litera-
ture [9–11] (PDPs, propentdyopents; MVM, 4-methyl-3-vinylmaleimide; BOX, bilirubin oxidation
end product).

Given the importance of BR as a physiological antioxidant with various biological func-
tions [2–8], whether BR degradation occurs in vivo in significant amounts and what roles
the degradation products may play in human health and diseases are apparently critical
issues. A few laboratories have investigated the issues and confirmed the in vivo presence
of several degradation products, including BOX A, B, and C, and PDPs [10,13–18]. Further,
BOX A and B (totally referred to as BOXes) and PDPs exhibit multiple adverse effects on
cells and tissues, and may be involved in the pathology of two diseases, subarachnoid
hemorrhage (SAH) and cholestatic liver failure [13,14,17,19–23].

However, in all the studies, the degradation products were isolated from the reaction
mixtures of BR with H2O2 and were characterized, and then were directly detected in biolog-
ical samples, including blood, bile, gallstones, and cerebrospinal fluid (CSF) [9–11,13,16–18].
The in vivo formation of the products has been attributed to the strong oxidative envi-
ronment under pathological conditions [9,13,14,18]; however, the specifically pathological
conditions remain unclear. Moreover, as pointed out by Ritter et al., many oxidative
degradation products of BR have actually not been identified yet [10].

In the present study, we set out to address these issues. Because neutrophils are known
to be mobilized to inflammatory sites and rapidly generate large amounts of ROS (including
H2O2) upon activation via a process called respiratory burst [24,25], we hypothesized
that activated neutrophils could degrade BR, which would occur under inflammatory
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conditions. Thus, we first investigated BR degradation by H2O2 in an attempt to search
for new products, subsequently established an LC-MS/MS method for the quantitation
of the new products, and then examined BR degradation in mouse neutrophils using the
LC-MS/MS method. The mouse neutrophils were activated by stimulation with phorbol
12-myristate 13-acetate (PMA), a common neutrophil agonist. Further, we investigated
whether the BR degradation process occurred in vivo under inflammatory conditions by
using a mouse model with dermal hemorrhage and inflammation, which was established
through a dermal lipopolysaccharide (LPS) injection followed by a tumor necrosis factor-
α (TNF-α) injection 24 h later. Lastly, we assessed the neurotoxicity of the degradation
products using Caenorhabditis elegans as the animal model, considering that the toxicity of
the degradation products may have implications for the pathophysiological consequences
of BR degradation.

2. Materials and Methods
2.1. Materials

BR was purchased from TCI Shanghai (Shanghai, China). BOX A and B were ob-
tained through synthesis as described previously [23]. Formic acid (HPLC grade) was
obtained from Aladdin (Shanghai, China). Methanol (HPLC grade), acetonitrile (HPLC
grade), Hank’s balanced salt solution (HBSS), and phosphate-buffered saline (PBS) were
purchased from Fisher Scientific (Waltham, MA, USA). Deuterated dimethyl sulfoxide
(DMSO-d6), PMA, and Escherichia coli LPS (O555:B5) were purchased from Sigma-Aldrich
(Merck KGaA, Darmstadt, Germany). TNF-α was purchased from Sino Biological Com-
pany (Beijing, China). TRIzolTM reagent was obtained from Sangon Biotech Company
(Shanghai, China). Ethyl carbamate and common reagents were obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Water was prepared by a Milli-Q Ultrapure
water system (Merck KGaA, Darmstadt, Germany). NP1 was synthesized as described
in our previous article [26]. Monocrotophos (MCP) was obtained from Dr. Ehrenstorfer
GmbH (Augsburg, Germany). CBR00504 (2,3-dihydro-6-methyl-2-oxo-1H-indole-3-acetic
acid, CAS No. 959241-55-5, purity 95%) was purchased from ChemBridge Corporation
(San Diego, CA, USA).

A phosphate buffer (100 mM, pH 7.4) was prepared with KH2PO4 using KOH to
adjust the pH. H2O2 solutions were freshly prepared prior to the experiments with the
concentrations being determined spectrophotometrically at 240 nm (ε = 43.6 M−1cm−1) [27].
The stock solutions of BR (15 mM), PMA (1 mM), and NP1 (10 mM) were prepared in
dimethyl sulfoxide (DMSO). The ethyl carbamate solution (5%) was prepared with PBS.

C57BL/6 mice were purchased from Shanghai Lingchang Biotechnology Co., Ltd.
(Shanghai, China). The C. elegans strain CB7431 bus-17(br2) X was obtained from the
Caenorhabditis Genetics Center (Minneapolis, MN, USA).

2.2. HPLC Analyses

HPLC analyses were carried out on an Agilent 1260 Infinity II equipped with a G7115A
diode array detector (Agilent, Santa Clara, CA, USA). All HPLC analyses were performed
on an Agilent ZORBAX SB-C18 column (250 × 4.6 mm, 5 µm). A linear gradient program
was used, starting at 0 min from 10% to 100% pump B over 30 min (pump A, water
containing 0.1% (v/v) formic acid; pump B, methanol containing 0.1% (v/v) formic acid) at
a flow rate of 1.0 mL/min, maintaining 100% pump B over 2 min, at 32 min from 100% to
10% pump B over 1 min, and stopped at 34 min. The column temperature was 30 ◦C and
the injection volume was 10 µL.

For isolation of BHP1 and BHP2, BR was reacted with H2O2 at pH 7.4 and 37 ◦C at the
molar ratio of H2O2:BR of 30:1 for 15 h. The preparative HPLC separation was performed
on a Waters SunFire C18 column (150 × 10 mm, 5 µm) (Waters Corporation, Milford, MA,
USA) at a flow rate of 3.0 mL/min. The linear gradient program was the same as described
above. The column temperature was 30 ◦C and the injection volume was 100 µL.
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2.3. LC-MS/MS Analyses

LC-MS/MS analyses were carried out on an Agilent 1290 Infinity HPLC system
coupled with a SCIEX Triple QuadTM 4500 mass analyzer (SCIEX, Framingham, MA,
USA). The HPLC separation was performed on an Agilent Poroshell 120 EC-C18 column
(100 × 2.1 mm, 2.7 µm). A linear gradient program was used, starting at 0 min from 10%
to 100% pump B over 9 min (pump A, water containing 0.1% (v/v) formic acid; pump B,
methanol containing 0.1% (v/v) formic acid) at a flow rate of 0.3 mL/min, at 11 min from
100% to 10% pump B over 0.1 min, and stopped at 11.5 min. The column temperature
was 30 ◦C and the injection volume was 5 µL. Tandem mass spectrometric analyses were
performed under the negative electrospray ionization (ESI−) mode with the settings being
as follows: ion spray voltage (ISV), −4500 V; ion source heater temperature (TEM), 500 ◦C;
ion source gas 1 (GS1), 50 psi; ion source gas 2 (GS2), 50 psi; curtain gas (CUR), 35 psi; colli-
sion gas (CAD), 8 psi. The analytes were detected under the multiple reaction monitoring
(MRM) mode.

For quantitation, CBR00504 was added to the samples and equal amounts of CBR00504
were added to the water with volumes identical to the samples. The ion suppression ratios
were calculated by dividing the peak areas of CBR00504 in the samples by those in the
water. The amounts of BHP1 and BHP2 in the samples were determined on the basis of
their peak areas after compensation using the ion suppression ratios.

2.4. Mass and Nuclear Magnetic Resonance (NMR) Spectra

High-resolution ESI− mass spectra were obtained on an LC-Q-TOF-MS/MS system,
which was composed of an Agilent 1290 Infinity HPLC system coupled with a Sciex Triple
TOF 4600 mass spectrometer. The chromatographic separation was accomplished on an
Agilent Extent C18 (50 × 2.1 mm, 1.8 µm) column at 30 ◦C. A linear gradient program
was used, starting at 0 min from 10% pump B and maintaining 10% pump B over 1 min
(pump A, water containing 0.1% (v/v) formic acid; pump B, acetonitrile) at a flow rate
of 0.3 mL/min, at 1 min from 10% pump B to 95% pump B over 5 min, maintaining 95%
pump B over 3 min, at 9 min from 95% pump B to 10% pump B over 0.1 min, and stopped
at 12 min. The injection volume was 1 µL. The tandem mass spectrometric analysis was
performed under the ESI− mode with the settings as follows: ISV, −5000 V; TEM, 500 ◦C;
CUR, 35 psi; GS1, 50 psi; GS2, 50 psi; declustering potential (DP) 100 V; collision energy
(CE), 5 V.

NMR data were collected on a Bruker Instruments Avance AV500 spectrometer
(500 MHz) (Bruker Corporation, Billerica, MA, USA).

2.5. Reactions of BR with H2O2 under In Vitro Physiological Conditions

A BR stock solution was prepared by dissolving 3.0 mg (5.1 µmol) of BR in 80 µL
of 0.15 M NaOH. After being fully dissolved, 15 µL of the BR solution (1.0 µmol) was
added to 5 mL of the 100 mM phosphate buffer (pH 7.4), to which 50 µL of the 0.1 M
H2O2 solution was added. The concentration of BR and H2O2 in the reaction mixture was
0.20 and 1.0 mM, respectively. The reaction mixture was protected from light and was
incubated at 37 ◦C. Aliquots were withdrawn every hour for HPLC and/or LC-MS/MS
analyses. The reactions were also performed at the H2O2:BR molar ratio of 10:1 and 20:1 by
increasing the H2O2 amounts.

2.6. BR Incubation with Neutrophils

As a type of immune cells, neutrophils are sensitive to microorganisms. Therefore,
all experiments using neutrophils were carefully performed under sterile conditions until
the last steps for measurements (cell lysis or fluorescence detection).

Murine neutrophils were isolated as described in the literature [28,29]. BR solutions in
DMSO (5 or 15 mM, 2 µL) were added to 1 mL of freshly prepared neutrophil suspensions
(2 × 106 cells/mL), which were incubated for 1 h in a cell culture chamber at 37 ◦C under 5%
CO2. PMA solutions in DMSO (0.5 mM, 2 µL) were added and the neutrophil suspensions
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were incubated for another 2 h. For controls, equal volumes of DMSO were added. After
sonication, 9 mL of cold anhydrous ethanol was added and the mixtures were placed
at −20 ◦C for 30 min. Then, the mixtures were centrifuged at 4700× g for 20 min at
4 ◦C and the supernatants were concentrated to dryness in a Thermo Scientific Savant™
SPD131DDA Speedvac™ vacuum concentrator (ThermoFisher Scientific, Waltham, MA,
USA). The residues were resolubilized with 50 µL of water and then were subject to
LC-MS/MS analyses. The injection volumes were 8 µL.

2.7. Intracellular H2O2 Detection in Neutrophils by Fluorescence Probe NP1

Freshly prepared neutrophil suspensions were incubated with 5 µM NP1 in a cell
culture chamber at 37 ◦C under 5% CO2 for 30 min. The cells were washed twice with
HBSS and then suspended in HBSS at 1 × 106 cells/mL. The neutrophil suspensions were
added to plates and then BR or H2O2 solutions were added at a final concentration of
10 µM or 500 µM, respectively. After incubation at 37 ◦C under 5% CO2 for 1 h, the PMA
solution was added at a final concentration of 1 µM and incubation was continued for
30 min. The fluorescence intensities were recorded on a BioTek plate reader (Agilent, Santa
Clara, CA, USA) (λex = 405 nm, λem = 555 nm, 37 ◦C).

2.8. Animal Experiments

All animal experiments were carried out in accordance with the Guide for the Care
and Use of Laboratory Animals as recommended by the U.S. National Institute of Health,
and were approved by the Scientific Investigation Board of Shanghai Jiao Tong University
School of Medicine, the Department of Lab Animal Science, and the Animal Care and
Welfare Committee of Shanghai Jiao Tong University School of Medicine. C57BL/6 mice
were maintained in specific pathogen-free rooms with controlled temperature (20–26 ◦C),
humidity (30–70%), and lighting (12 h light-dark cycle), and had access to food and water
ad libitum.

The animal experiment was carried out with 9 male mice (6–8 weeks, 18–22 g).
The mouse model with inflammation and hemorrhage was established following the
experimental procedure as described by Qian et al. with minor modifications [28]. Briefly,
mice were anaesthetized by an intraperitoneal injection of 100 µL of 5% ethyl carbamate.
The dorsal skins were shaved and LPS solutions (80 µg in 80 µL of PBS) were injected in
the right dorsa with a Hamilton syringe and a 22 G needle. For negative controls, 80 µL
of sterile PBS was injected in the left dorsa. After 24 h, TNF-α solutions (0.2 µg) or PBS in
the same volume were injected into the same sites that received LPS or PBS, respectively.
The mice were sacrificed 24 h later. For each mouse, the hemorrhagic skin was excised first
and then the skin at the control site with an identical area was excised. The excised skins
were weighed and then were lysed with TRIzolTM reagent (1 mL of TRIzolTM per 0.1 g of
tissue). After homogenization with an automatic tissue grinder (60 Hz, 10 min), 9 volumes
of anhydrous ethanol were added and the mixtures were centrifuged at 4700× g at 4 ◦C for
20 min. The supernatants were concentrated to dryness, then 1 mL of water and 9 mL of
anhydrous ethanol were added, and the suspensions were centrifuged again at 4700× g
at 4 ◦C for 10 min. The solvents were removed, and the residues were resolubilized with
100 µL of methanol and were then subjected to LC-MS/MS analyses. The injection volumes
were 5 µL.

2.9. C. elegans Strain Maintenance and Experiments

The C. elegans strain CB7431 bus-17(br2) X, a surface-altered and drug-sensitive strain [30],
was used in the present study. Worms were maintained on a nematode growth medium
(NGM, containing 17 g/L Agar B, 51 mM NaCl, 2.5 g/L peptone, 25 mM pH 6.0 phosphate
buffer, 1 mM MgSO4, 1 mM CaCl2, and 5 mg/L cholesterol), which were seeded with
Escherichia coli strain OP50 as the food source. A 1% NaClO solution in 0.5 mM NaOH
was used to obtain synchronized nematode populations. The gravid hermaphrodites were
lysed in the solution to release eggs. The eggs hatched overnight at 20 ◦C without food and
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the hatched L1 stage larvae were transferred to NGM plates seeded with E. coli OP50. After
48 h, the L4 age-synchronized worms were harvested for the experiments.

Nematodes were exposed to different concentrations of BHP1 and BHP2 in the pres-
ence of the food source for 24 h. Then, the nematodes were dispensed onto NGM plates
without bacteria. After adaptation for 30 s, the frequencies of head thrash, measured by the
numbers of head thrashes in 1 min, were determined. One head swing was defined as the
swinging of the nematode head from one side to the other and then back again. Fifteen or
thirty nematodes in each group were measured.

2.10. Statistical Analysis

Values with normal distribution are expressed as means ± standard deviations (SD).
For variables with normal distribution, the independent Student’s t test was utilized to
compare the difference between two groups, and differences among three or more groups
were analyzed by a one-way analysis of variance (ANOVA), followed by a Bonferroni
multiple comparison posttest. Statistical analyses were performed with SPSS version 22.0
(SPSS, Inc., Chicago, IL, USA). A p value < 0.05 was considered statistically significant.

3. Results
3.1. Degradation of BR by H2O2 Generated BOXes, PDPs, and a Few Additional Products

To search for new products, BR degradation by H2O2 was investigated at in vitro
physiological conditions (pH 7.4, 37 ◦C) with the BR and H2O2 concentrations being
200 and 1000 µM, respectively. Such concentrations are achievable in vivo under patholog-
ical conditions; BR concentrations in jaundiced infants can exceed 300 µM [2] and H2O2
concentrations in the phagosomes of activated neutrophils are estimated to be in the low mi-
cromolar range [31]. It needs to be noted that BR solubility is very low at pH 7.4 and 37 ◦C
(~7 nM) but increases steeply with increasing pH values [32]. Furthermore, it has been
shown that supersaturated BR does not precipitate readily from solutions [33]; therefore,
the reaction mixture was prepared by dissolving BR in 150 mM NaOH and then diluted by
>300-fold with a pH 7.4 phosphate buffer (see Section 2 for details).

The reaction of BR with H2O2 proceeded slowly. It took several hours for tiny peaks
to be observed on HPLC-UV. Figure 1A shows a typical chromatogram of the reaction
mixture at 48 h with the monitoring wavelength at 260 nm, in which six peaks at 10.6, 12.3,
15.6, 17.4, 17.7, and 18.4 min (peaks 1–6) can be observed. The chromatogram at different
wavelengths exhibited different peak profiles. At 280 nm, only peaks 4–6 and an additional
peak at 18.8 min (peak 7) were visible (Figure 1B); at 300 nm, peaks 3–7, together with a new
peak at 14.5 min (peak 8) were observed (Figure 1C). However, none of these peaks were
the signals of BOX A and B because their retention times determined with the standards,
which were 15.1 and 15.8 min, respectively, did not match those of any peaks.

Nonetheless, BOX A and B were indeed formed in the reaction but could be detected
only by using LC-MS/MS under the highly sensitive MRM mode, indicating that their
yields were extremely low. BOX C was not examined due to a lack of the standard. On the
other hand, peaks 5, 6, and 7 were identified as the signals of PDPs based on a comparison
of their UV absorption and mass spectra with those reported in the literature [11].

Therefore, peaks 1, 2, 3, 4, and 8 represented unidentified products. The five products
were expected to have extremely low yields based on their peak areas. To minimize the
workload to isolate sufficient amounts of the products for structural characterization by
NMR, we used a strategy to first screen the products in biological specimens and then
isolate only those that were detected with significant concentrations in the specimens.
To do so, tiny amounts of the five products were isolated and loaded onto the instrument
to determine the parameters for each product with the aim to establish a sensitive LC-
MS/MS method under the MRM mode. However, the attempt for products 2 and 4 was
unsuccessful probably due to insufficient amounts and/or low purity. Finally, an LC-
MS/MS method was established for products 1, 3, and 8, and the ion transitions and
instrumental parameters were listed in Table 1. The method was then used to screen the
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lysates of the mouse neutrophils incubated with BR (see Section 3.5), and products 1 and
8 were detected with significant signal intensities. Therefore, the two products, which
were designated as BHP1 and BHP2, were isolated by preparative HPLC for structural
characterization by NMR.
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Table 1. The ion transitions and mass spectrometric parameters for LC-MS/MS analyses of product
1, 3, 8, and CBR00504 (the internal standard) under the MRM mode.

Compound Retention
Time (min)

Qualification or
Quantification

Ion
Transitions

DP a

(V)
CE a

(V)
EP a

(V)
CXP a

(V)

Product 1 (BHP1) 3.2
Qualification 182/138 −50 −14 −11 −11

Quantification 182/123 −50 −28 −11 −11

Product 3 5.2
Qualification 369/271 −65 −21 −12 −11

Quantification 369/289 −65 −17 −12 −11

Products 8 (BHP2) 4.4
Qualification 208/108 −51 −26 −10 −11

Quantification 208/146 −52 −22 −10 −11

CBR00504 * 5.1
Qualification 204/158 −40 −28 −10 −11

Quantification 204/160 −40 −18 −10 −11
a DP: declustering potential; CE: collision energy; EP: entrance potential; CXP: collision cell exit potential.
* internal standard.

3.2. Structural Characterization of BHP1 and BHP2

The ESI− mass spectrum of BHP1 exhibited the deprotonated molecular ion at m/z
182 and a major daughter ion at m/z 138, indicating that the product contains a carboxyl
group. Based on its 1H NMR and heteronuclear multiple-quantum correlation (HMQC)
spectra (Figures S1 and S2), and a comparison with the NMR data in the literature [34,35],
BHP1 was characterized as hematinic acid (Scheme 2), a known compound.
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Scheme 2. The structures of BHP1, BHP2, and CBR00504 (used as the internal standard for quantita-
tion by LC-MS/MS).

The high-resolution ESI− mass spectrum of BHP2 exhibited the deprotonated molec-
ular ion at m/z 208.0618 (Figure S3); thus, the molecular formula was determined as
C10H11NO4 (the calculated m/z for the deprotonated molecular ion was 208.0610). The 1H
NMR spectrum in DMSO-d6 (Figure S4) showed the signals of nine protons. Among
them, the signals of two protons appeared at 9.829 and 9.834 ppm (Figure S5), which
were on carbons with the chemical shifts at 182.7 ppm as determined by the HMQC spec-
trum (Figure S6). Apparently, they were the signals of two formyl groups. The spectra,
together with the correlation spectroscopy (COSY) spectrum (Figure S7), also indicated
the presence of a methyl group (2.27 ppm) and a -CH2CH2- moiety (2.43 and 2.92 ppm).
The heteronuclear shift correlations via the multiple bond connectivity (HMBC) spectrum
(Figure S8) showed that the protons on the formyl and methyl groups, and a methylene
group (at 2.92 ppm), were all coupled to two carbons at 127.5 and 132.5 ppm, providing
evidence that these groups were attached to a pyrrole ring. Collectively, the structure of
BHP2 was characterized as 2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid (Scheme 2).
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3.3. Establishment of the LC-MS/MS Method for Quantitation of BHP1 and BHP2

With purified BHP1 and BHP2 in hand, the LC-MS/MS method was established.
The parameters were listed in Table 1, and the limits of detection of BHP1 and BHP2 on
the column were determined to be 0.1 and 0.05 pmol, respectively. Their working curves
(Figure S9) were linear with the ranges of quantities and correlation coefficients as follows:
BHP1, 0.1–300 pmol, 0.9945 (y = 2423.8x); BHP2, 0.05–200 pmol, 0.9997 (y = 65218x).

Because no isotope-labeled BHP1 and BHP2 were available, we used a commercial
compound CBR00504, 2,3-dihydro-6-methyl-2-oxo-1H-indole-3-acetic acid (Scheme 2),
as the internal standard to estimate the ion suppression effects. The compound is absent in
biological samples and has structural moieties similar to BHP1 and BHP2 with a molecular
weight of 205, which is very close to that of BHP2 (M.W. 209). The mass spectrometric
parameters of the internal standard are listed in Table 1.

3.4. The Time-Dependent Formation of BHP1 and BHP2 in the Reaction of BR with H2O2

Through quantitation by LC-MS/MS, the time-dependent formation of BHP1 and
BHP2 was investigated. The results showed that both products were formed until 24 h,
and the amounts of the two products increased with the increase in the molar ratio of
H2O2:BR (Figure 2). At 24 h, the formation of BHP2 almost plateaued, whereas the amounts
of BHP1 kept increasing, albeit very slowly. The yields of BHP1 and BHP2 at 24 h and the
H2O2:BR molar ratio of 20:1 were 0.9% and 0.5%, respectively.
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Figure 2. Time-dependent formation of (A) BHP1 and (B) BHP2 at different H2O2:BR molar ratios
(5:1, 10:1, and 20:1). The reactions were carried in phosphate buffer (100 mM, pH 7.4) with an initial
BR concentration of 200 µM and initial H2O2 concentration at 1.0, 2.0, and 4.0 mM.

3.5. BR Degraded into BHP1 and BHP2 in Mouse Neutrophils

The physiological range of serum BR concentrations is between 5 and 17 µM [5]. Thus,
to investigate BR degradation by neutrophils, we set two incubation concentrations, 10 and
30 µM, which represent the physiological and pathological conditions, respectively. On the
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other hand, the respiratory burst of neutrophils, i.e., the rapid ROS release, is a very fast
process; when PMA is used as the stimulus, the ROS release in murine neutrophils reaches
the maximum at 40 min and comes to an end within 2 h [36]. Thus, we set the incubation
time after PMA stimulation as 2 h.

The experiment was performed through incubating mouse neutrophils with 10 and
30 µM of BR for 1 h, and then adding PMA to the cells incubated with 30 µM BR. After
incubation for 2 h, the cells were collected and lysed, and then they were subject to LC-
MS/MS analyses.

Unexpectedly, it was observed that BR incubation caused the concentration-dependent
formation of BHP1 and BHP2 without PMA stimulation (Figure 3). Specifically, upon incu-
bation with 10 and 30 µM of BR, BHP1 was produced at 16 ± 3.2 and 31 ± 5.9 pmol/106 cells,
and BHP2 at 25 ± 4.4 and 71 ± 26 pmol/106 cells, respectively, which were significantly
greater than those in the corresponding controls. Interestingly, PMA addition induced a
further increase in the amount of BHP1 but a decrease in that of BHP2 (Figure 3), and the
increase or decrease was statistically significant (p < 0.01 or 0.05, respectively). Apparently,
the results suggested that BR itself was able to activate neutrophils, which in turn caused
the degradation of BR. It has been reported that BR at 4.5 µM promoted the degranulation
of neutrophils but 45 µM BR had no effect [37]. The result reported in the paper suggests
that BR is capable of activating neutrophils, which supports our observation, although the
authors used a different endpoint (i.e., degranulation).
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Figure 3. BR degradation in murine neutrophils to form (A) BHP1 and (B) BHP2. Neutrophils were
incubated with BR (10 or 30 µM) for 1 h, and then PMA was added to 30 µM BR-treated cells at a final
concentration of 1 µM. After incubation for 2 h, cells were lysed and subject to LC-MS/MS analyses.
The data were presented as means ± standard deviation (SD) (n = 6 except for the negative control
(n = 4), * p < 0.05, ** p < 0.01, *** p < 0.001; BR, bilirubin; PMA, phorbol-12-myristate-13-acetate).
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3.6. BR Stimulated Murine Neutrophils to Produce H2O2

Because the experiment in Section 3.5 suggested that BR could activate neutrophils
(Figure 3), we used NP1, an H2O2-specific fluorescence probe developed in our labora-
tory [26], to detect the production of H2O2 in BR-incubated neutrophils. Cells incubated
with 500 µM of H2O2 were used as the positive control.

The result showed that the fluorescence intensity in the neutrophils incubated with
10 µM BR was significantly higher than that in the negative control (p < 0.001, Figure 4).
The PMA addition caused a further increase in the intensity (p < 0.01). Notably, both
fluorescence intensities in the BR-treated and BR/PMA-treated cells were greater compared
to that in the positive control, and the differences were statistically significant (p < 0.05 and
0.001, respectively), implying that the H2O2 concentrations in these cells may be higher
than 500 µM. Therefore, the experiment showed that BR was able to stimulate murine
neutrophils to generate H2O2, thus providing further evidence for the above observation
that BR could activate neutrophils.
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Indeed, significantly higher levels of BHP1 and BHP2 were observed in the skins 
with hemorrhage and inflammation as expected, compared to those in the skins at the 
control sites (p < 0.001, Figure 5B,C). Specifically, the levels of BHP1 and BHP2 in the le-
sional skins were 4.5 ± 1.9 and 0.18 ± 0.10 nmol/g tissue, respectively, and the values in 
the control skins were 0.80 ± 0.33 and 0.005 ± 0.002 nmol/g tissue, respectively (both p < 
0.001). 

Figure 4. BR stimulated murine neutrophils to produce H2O2 as detected by a H2O2-specific fluores-
cence probe NP1 [26]. Neutrophils were incubated with NP1 (5 µM) for 0.5 h and then BR was added
at a final concentration of 10 µM. After incubation for 1 h, PMA was added at a final concentration
of 1 µM and incubation was continued for 0.5 h. H2O2 (500 µM) was used as the positive control.
The excitation and emission wavelengths were 405 and 555 nm, respectively. The data were presented
as means ± SD (n = 18, ** p < 0.01, *** p < 0.001; BR, bilirubin; PMA, phorbol 12-myristate 13-acetate).

3.7. BHP1 and BHP2 Were Formed in Murine Skin with Inflammation and Hemorrhage

The above experiment demonstrated that the neutrophils caused BR degradation.
In the meantime, it is well known that neutrophils are mobilized to inflammatory sites in
response to inflammation; consequently, one can expect that BR degradation will occur
at inflammatory sites. To provide evidence for this hypothesis, we used a mouse model
of a local Shwartzman reaction, as employed previously by Qian et al. [28]. In the model,
a dermal LPS injection followed by a TNF-α injection 24 h later induces skin lesions
resembling those of thrombo-hemorrhagic vasculitis. In effect, the skin injected with LPS
and TNF-α became hemorrhagic and inflammatory, which could be easily distinguished
from the surrounding skin by the naked eye (Figure 5A).
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Figure 5. The formation of BHP1 and BHP2 in murine skin with inflammation and hemorrhage.
(A) The mouse model was established by a dermal LPS injection followed by a TNF-α injection 24 h
later to induce skin lesions with inflammation and hemorrhage. Two consecutive PBS injections were
used as the control. For each mouse, the left dorsal skin was injected with PBS and the right one
with LPS/TNF-α. Twenty-four hours after the TNF-α injections, skins were excised and subject to
LC-MS/MS analyses after lysis by TRIzolTM reagent. (B,C) The BHP1 and BHP2 levels in the skins at
the control (PBS + PBS) and the lesion sites (LPS + TNF-α). The data were presented as means ± SD
(n = 9, *** p < 0.001; PBS, phosphate-buffered saline; LPS, lipopolysaccharide; TNF-α, tumor necrosis
factor-α).

As a catabolite of heme, BR has been demonstrated to be formed at elevated levels
at hemorrhagic sites [18]. Therefore, in the skin injected with LPS and TNF-α, elevated
BR levels and inflammation exist at the same site, and thus BR degradation is expected
to occur.
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Indeed, significantly higher levels of BHP1 and BHP2 were observed in the skins with
hemorrhage and inflammation as expected, compared to those in the skins at the control
sites (p < 0.001, Figure 5B,C). Specifically, the levels of BHP1 and BHP2 in the lesional skins
were 4.5 ± 1.9 and 0.18 ± 0.10 nmol/g tissue, respectively, and the values in the control
skins were 0.80 ± 0.33 and 0.005 ± 0.002 nmol/g tissue, respectively (both p < 0.001).

3.8. BHP2 Exhibited Neurotoxicity in C. elegans

As reported in the literature [13,14,17,19–23], BOXes and PDPs have various adverse ef-
fects on cells and tissues; therefore, we assessed the neurotoxicity of BHP1 and BHP2 using
C. elegans, a model system widely used for biomedical research and neurotoxicity assess-
ments of environmental pollutants [38]. The endpoint of neurotoxicity was selected because
BOXes and PDPs are probably involved in the pathogenesis of cerebral vasospasms after
SAH [13,14]. It is likely that BR degradation products may also contribute to the pathology
of intracerebral hemorrhage via neurotoxicity. In our experiment, the frequency of head
thrash was used as the endpoint for neurotoxicity.

The result showed that BHP1 did not exhibit any effect on the frequency of head
thrash of C. elegans up to 50 µM, whereas BHP2 caused a concentration-dependent de-
crease in the frequency and the effect became statistically significant starting from 0.10 µM
(Figure 6), suggesting that BHP2 was neurotoxic but BHP1 was not. It was noted that the
highest BHP2 concentration (1 µM) in the experiment was much lower than its LC50 (lethal
concentration, 50%) value (>75 µM).
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Figure 6. Assessment of neurotoxicity of (A) BHP1 and (B) BHP2 using C. elegans as the animal model
with the frequency of head thrash being used as the endpoint. Monocrotophos (MCP, 75 µM for
BHP1 and 100 µM for BHP2), a known neurotoxicant, was used as the positive control. The data were
normalized and presented as mean ± SD (n = 15 and 30 for BHP1 and BHP2, respectively; * p < 0.05,
*** p < 0.001).
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4. Discussion

In the present study, our investigation on BR degradation by H2O2 led to the dis-
covery of a new product BHP2 and hematinic acid (BHP1). We further demonstrated
the formation of the two products in BR-incubated neutrophils and in murine skin with
hemorrhage and inflammation, suggesting the occurrence of BR degradation ex vivo and
in vivo, in particular under pathological conditions with hemorrhage and inflammation.
Lastly, we found that BHP2 was neurotoxic, implicating that BR degradation may have
pathological consequences.

The formation of BHP2 as a BR degradation product has not been reported previously.
In fact, BHP2 is virtually a novel compound because it has not been structurally charac-
terized before. Currently, only two pieces of literature are present in the database of the
American Chemical Society. One is an article published in 2015 to screen the autoxidation
products of biliverdin with LC-MS/MS, but BHP2 is only an assumed product because it
was not detected at all [39]. The other is about a Japanese patent published in 2016 to claim
BHP2 formation in hemin degradation by H2O2 [40]. However, it has not been certain
whether the compound was actually formed because only the mass spectral data were
collected; the possibility that an isomer with the same molecular weight was formed could
not be excluded, particularly considering the great complexity of the degradation of BR or
related compounds (protoporphyrin, hemin, biliverdin, etc.).

On the other hand, although BHP1, i.e., hematinic acid, is a known compound,
its formation in BR degradation by H2O2 was not reported until 2018 [10]. It should
be noted that in the paper [10], the formation of BHP1 was indicated only by an arrow in
the chromatogram of the reaction mixture and there was no information about how the
product was identified. Needless to say, the formation of hematinic acid in neutrophils or
in vivo under inflammatory conditions has never been demonstrated before. Interestingly,
hematinic acid has been extensively demonstrated to be formed in the H2O2-mediated
degradation of hemoglobin, heme, ferriprotoporphyrin IX, and chlorophyll a [41–44], or in
BR photooxidation [45,46].

Despite the fact that the yields of BHP1 and BHP2 in BR degradation by H2O2 were
quite low (<1%), the yields in BR-incubated neutrophils appeared high. Based on the
reported diameter of the neutrophils of C57BL/6 mice (~12 µm) [47], the intracellular
concentrations of BHP1 and BHP2 are estimated to be 18 and 28 µM for 10 µM of BR-
incubated neutrophils, and 34 and 78 µM for 30 µM of BR-treated neutrophils, respectively.
It is worth noting that the estimated intracellular concentrations of BHP1 and BHP2 are
similar or higher than the corresponding extracellular BR ones, suggesting that BR is
degraded in neutrophils at quite high efficacy and that products are accumulated inside
cells. The great discrepancy between the yields of the products in the reaction and in
neutrophils, together with the observation that BR degradation by H2O2 is slow but the
formation of the products in neutrophils is rapid, implicates that that BHP1 and BHP2 may
have other sources, probably via the degradation of BR by ROS other than H2O2, given
that activated neutrophils can produce a wide spectrum of ROS [24]. BR degradation by
other ROS is being investigated in our laboratory.

The observation that BR is able to activate neutrophils to degrade itself is a profound
finding because neutrophils are critical players in inflammatory responses [24,25,48]. It is
well known that neutrophils are mobilized to inflammatory sites in response to inflamma-
tion and that, meanwhile, BR is a physiological antioxidant that is constantly present in
blood; consequently, neutrophil-mediated BR degradation should be a universal patho-
physiological process in inflammation. This also raises a possibility that the BR degradation
products can be used as biomarkers for inflammation. The result in the mouse experiment
supports the in vivo presence of BR degradation under inflammatory conditions.

Apparently, high concentrations of BR degradation products are expected to be gener-
ated when elevated BR levels exist at inflammatory sites. Because heme or hemin itself can
induce an inflammatory response and trigger the oxidative burst of neutrophils [49], and be-
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cause heme is the physiological source of BR [1,2], BR degradation may be particularly
important under pathological conditions with hemorrhage.

Adding to the issue is the finding that BHP2 exhibited neurotoxicity at a concentra-
tion as low as 0.10 µM. The concentration should be achievable in humans under some
pathological conditions, considering that the total serum concentration of BOXes can reach
0.5 µM in patients with cholestatic liver failure and the total mean concentration of PDPs is
0.76 µM in the CSF of patients with SAH [13,17]. The finding suggests that BR degradation
can have pathological consequences if sufficient amounts of degradation products are
generated. It is well known that high levels of BR are neurotoxic, and apparently whether
BR degradation products such as BHP2 play a role in BR neurotoxicity is an important
issue that is worth investigation.

In summary, we discovered BHP2, a new product, and hematinic acid in BR degra-
dation by H2O2. We demonstrated that neutrophils could be activated by BR to cause the
formation of the two products in significant amounts. The process occurred in a mouse
model with dermal hemorrhage and inflammation. Thus, the BR degradation process may
be a universal pathophysiological process underlying inflammatory diseases and can be
particularly important under pathological conditions with hemorrhage. BHP2 is neurotoxic,
implicating that BR degradation may have pathological consequences.

Supplementary Materials: The materials include an additional explanation about the NMR spectra
of BHP2 and the structural characterization, the 1H NMR and HMQC spectra of BHP1, the high-
resolution ESI− mass spectrum and the 1H NMR, HMQC, COSY, and HMBC spectra of BHP2,
and the standard curves of BHP1 and BHP2/. The supporting information can be downloaded at:
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Abbreviations

BHP1 hematinic acid
BHP2 2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid
BOX bilirubin oxidation end product
BR bilirubin
CAD collision gas
CE collision energy
COSY correlation spectroscopy
CSF cerebrospinal fluid
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CUR curtain gas
CXP collision cell exit potential
DMSO dimethyl sulfoxide
DMSO-d6 deuterated dimethyl sulfoxide
DP declustering potential
EP entrance potential
ESI electrospray ionization
GS1 ion source gas 1
GS2 ion source gas 2
HBSS Hank’s balanced salt solution
HMBC heteronuclear multiple bond correlation
HMQC heteronuclear multiple-quantum correlation
ISV ion spray voltage
LPS lipopolysaccharide
MCP monocrotophos
MRM multiple reaction mode
MVM 4-methyl-3-vinylmaleimide
NGM nematode growth medium
NMR nuclear magnetic resonance
PBS phosphate-buffered saline
PDP propentdyopent
PMA phorbol-12-myristate-13-acetate
ROS reactive oxygen species
SAH subarachnoid hemorrhage
SD standard deviation
TEM ion source heater temperature
TNF-α tumor necrosis factor-α
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