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Abdominal aortic calcifications (AACs) correlate strongly with coronary artery calcifications and can be predictors of cardio-
vascular mortality. We investigated whether size, shape, and distribution of AACs are related to mortality and how such prognostic
markers perform compared to the state-of-the-art AC24 marker introduced by Kauppila. Methods. For 308 postmenopausal
women, we quantified the number of AAC and the percentage of the abdominal aorta that the lesions occupied in terms of their
area, simulated plaque area, thickness, wall coverage, and length. We analysed inter-/intraobserver reproducibility and predictive
ability of mortality after 8-9 years via Cox regression leading to hazard ratios (HRs). Results. The coefficient of variation was below
25% for all markers. The strongest individual predictors were the number of calcifications (HR = 2.4) and the simulated area
percentage (HR = 2.96) of a calcified plaque, and, unlike AC24 (HR = 1.66), they allowed mortality prediction also after adjusting
for traditional risk factors. In a combined Cox regression model, the strongest complementary predictors were the number of
calcifications (HR = 2.76) and the area percentage (HR = −3.84). Conclusion. Morphometric markers of AAC quantified from
radiographs may be a useful tool for screening and monitoring risk of CVD mortality.

1. Introduction

Cardiovascular diseases (CVDs) are the prevalent cause of
death in Europe [1] and the United States [2]. This is despite
general acceptance that a healthy lifestyle and risk factor
management can prevent the development of CVD [3].
Furthermore, two-thirds of women who die suddenly from
CVD have no previously recognized symptoms [3]. Thus, it
is essential to find effective and broadly applicable indicators
of cardiovascular risk that may prompt timely intervention.

Current noninvasive modalities for imaging atheroscle-
rosis are radiographs, ultrasound, computed tomography
(CT), and magnetic resonance imaging (MRI) [4]. Ultra-
sound is used to visualize the carotid intima-media thickness

(IMT) because carotid IMT has been shown to be associated
with atherosclerosis [5] and is thus a marker for CVD.
Multislice CT is able to quantify the degree of coronary
artery calcification (CAC) with good reproducibility [6, 7],
which provides a strong measure of cardiovascular risk [8]
independently from, and potentially more powerful than,
traditional risk factors such as smoking [9]. However, due
to the relatively large exposure to ionizing radiation, use of
clinical dose CT is not advisable in large-scale screening,
but only to aid interventional treatment of patients at
intermediate risk [10]. Low-dose CT, on the contrary, could
be used to evaluate coronary calcifications for screening
purposes [11], and only its cost is a limiting factor. MRI is
a noninvasive modality to assess atherosclerosis in different
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vascular beds. However, MRI measurements are challenged
by the size of the smaller arteries, and especially assessment
of the coronary arteries is difficult due to cardiac and
respiratory motion artefacts. Furthermore, also MRI still has
to prove its cost-effectiveness for screening purposes.

An alternative to examining coronary arteries for calcifi-
cation is to assess the abdominal aorta, since it is contrary
to the coronary arteries accessible through radiographs.
Abdominal aortic calcifications (AACs) are strong predictors
of cardiovascular morbidity and mortality [12], correlate
strongly with coronary artery calcifications, and may hence
predict the risk of coronary artery problems [13, 14].
The state of the art methodology to estimate CVD risk
from lumbar aortic radiographs is the abdominal aortic
calcification score (AC24) proposed by the Framingham
study group [15]. A big advantage is that such a AAC scoring
can, for example, in the case of postmenopausal women, be
performed without additional ionising radiation exposure or
cost as these images are readily available from osteoporosis
screening [16, 17].

We investigated if the morphometric aspects of the
information that can be made available from CT, MRI, or
ultrasound as described above could also be obtained from
novel markers of AAC quantified from plain radiographs.
Due to the semiquantitative grading of the AC24 score, such
markers could potentially be more sensitive—in particular
with respect to investigating the potential significance of
smaller calcifications. For this, we outlined the boundaries
of the calcified deposits in the lumbar aortic region and
quantified the number of calcified deposits as well as the
percentage of the abdominal aorta covered by calcifications
in terms of area, simulated-plaque area, thickness, wall
coverage, and length. These potential AAC markers were
evaluated for precision and their ability to predict CVD-
related mortality.

2. Materials and Methods

2.1. Study Population. 308 females were selected from those
who took part in the multicentre PERF study [18] who
were examined radiologically in 1992, and examined again
in 2001 in the followup EPI study [19]. We chose those
whose interval between their first and second clinic visit
was 8-9 years, with known alive/mortality status, who were
postmenopausal, and whose lumbar aorta was visible on a
single radiograph at baseline and at followup. Information
about the mortality status was obtained via the Central
Registry of the Danish Ministry of Health, and the death
causes were grouped into three groups: CVD, cancer, and
other causes. The studies were approved by the local ethics
committee, and the patients signed informed consent forms.

2.2. Metabolic and Physical Measurements. At baseline, dem-
ographic information and CVD risk parameters such as
age, weight, height, body mass index (BMI), waist and hip
circumferences, systolic and diastolic blood pressure (BP),
treated hypertension, treated diabetes, smoking, regular
alcohol and daily coffee consumption, and weekly fitness

Figure 1: A manual annotation of an X-ray: in blue we see distinct
vertebra points, in green the aorta wall, and in red the calcifications.

activity were collected. Using a blood analyzer (Cobas Mira
Plus, Roche Diagnostics Systems, Hoffman-La Roche, Basel,
Switzerland), measurements of fasting glucose and lipid pro-
file (total cholesterol, triglycerides, LDL-cholesterol (LDL-
C), HDL-cholesterol (HDL-C), and apolipoprotein (ApoA
and ApoB)) were obtained.

On the basis of these measurements, the composite
risk markers, systemic coronary risk evaluation (SCORE)
[20] and Framingham score [21], were calculated. The
SCORE is a combination of the age, smoking status, levels
of total cholesterol, and systolic blood pressure, while the
Framingham score is comprised of the same variables plus
the HDL-C and the hypertension treatment status.

2.3. Radiographic Analysis. The lateral X-ray images of the
lumbar aorta (L1-L4) were acquired on film in 1992 and
2001 [18, 19], respectively, and digitized in 2007/2008 using
a DosimetryProAdvantage scanner (Vidar, Herndon, USA),
providing an image resolution of 9651× 4008 pixels on a 12-
bit gray scale with a pixel size of 44.6μm × 44.6μm. Three
trained radiologists without prior knowledge of the patients’
conditions annotated the corner and mid points of the
vertebrae (L1-L4), the corresponding abdominal aorta walls,
and their calcifications in the digitized images manually. The
three radiologists had ten, eight, and five years of experience.
They used radiological reading units (Sectra, Linköping,
Sweden) and annotation software specifically implemented
for that task in Matlab (The MathWorks, Natick, USA),
which allowed them to change brightness and contrast, zoom
in and out, and to edit outlines, as seen in Figure 1.

The AC24 [15] was constructed by projecting the AACs
to the corresponding aorta wall. Then, the aortic sections
adjacent to each vertebra L1-L4 were graded by the degree
of lesion occupation: 0 for no AAC, 1 for AACs occupying
less than 1/3 of the wall they were projected onto, 2 for AACs
occupying more than 1/3, but less than 2/3 in the projection,



International Journal of Biomedical Imaging 3

2

2

1

1

1

1

1

1

= 6 = 4

L1

L2

L3

L4

⇒ AC24 = 10

Figure 2: A schematic view of AC24. The AC24 is constructed by
projecting the AAC to the corresponding aorta wall.

and 3 for a 2/3 or more occupation of the wall. An example
of an AC24 scoring can be seen in Figure 2. In addition to
the AC24 scores provided by the radiologists, the outlines of
the calcifications were used in an alternative computer-based
computation of the AC24.

For all the images with calcifications, annotations were
performed by one of the three different radiologists. For a
subset of 8 images, annotations by two radiologists were
made twice in order to evaluate inter- and intraobserver
precision. Reoutlining was performed blinded to earlier
outlines and separated by approximately six to eight weeks.

2.4. AAC Markers. The proposed AAC markers were auto-
matically computed from the radiologist’s computer-assisted
outlines of calcified deposits in the radiographs.

(i) Area percentage: the percentage of the area of the
lumbar aorta adjacent to L1-L4 occupied by AACs.

(ii) Simulated area percentage: we tried to estimate the
size of the underlying atherosclerotic inflammation
from the area and shape of the observed AACs
since X-ray analysis can only visualize the calcified
core of the AACs. The extent of the atherosclerotic
inflammation was simulated by a morphological
dilation [22] with a circular structuring element of
radius 200 pixels (approximately 8.9 mm). The size of
the structuring element was derived by a parameter
study on a subset of the data, and it was confirmed to
be biologically sensible by comparing with histology
and image analysis observations which estimated the
size of the atherosclerotic inflammation surrounding
the calcified plaque to be between 3 mm [23] and 5–
10 mm [24]. An illustration of this computer-based

Calcified plaque

Simulated necrotic area

Necrotic area

Figure 3: Left: a schematic visualization of a plaque similar to
what can be seen in histology. The calcified plaque (light blue) is
surrounded by an area of necrotic tissue (gray). Right: the simulated
area tries to imitate the area of necrotic tissue (green) as seen in
histology by a morphological dilation (visualized by circles) of the
calcified plaque (light blue).

simulation of the full plaque area is given in Figure 3.
The simulated area percentage is the percentage of
the lumbar aorta covered by the simulated plaques
including both calcified core and simulated inflamed
area.

(iii) Thickness percentage: the average thickness of the
AACs along the aorta wall relative to the aorta width.

(iv) Wall percentage: the percentage of the anterior and
posterior lumbar aorta wall covered by AACs.

(v) Length percentage: the fraction of the length of the
aorta where AACs were present at any position (ante-
rior, posterior, or internal).

(vi) Number of calcified deposits: the number of distinct
AACs visible between L1 and L4 in each radiograph.

We examined the degree to which these markers could be
reliably established on the basis of manual annotations of X-
ray images and evaluated their association to mortality, also
when adjusted for metabolic or physical markers.
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Table 1: The mean and standard deviation of the measured metabolic and physical markers.

Physical/metabolic markers Population (n = 308) Survivors (n = 256) Deceased (all-cause) (n = 52)

Age (years) 60.3± 7.5 59.3± 7.1 65.6± 7.0

Waist (cm) 80.7± 10.9 80.2± 9.9 83.1± 12.4

Waist-to-hip ratio 0.80± 0.08 0.80± 0.08 0.83± 0.10

Body mass index (kg/m2) 24.7± 3.9 24.7± 3.8 25.1± 4.6

Smoking (%) 37 33 58

Systolic BP (mm Hg) 127± 21 125± 20 136± 26

Diastolic BP (mm Hg) 77± 10 76± 10 77± 11

Hypertension (%) 16 15 17

Glucose (mmol/L) 5.44± 1.27 5.37± 0.99 5.79± 2.17

Total cholesterol (mmol/L) 6.44± 1.19 6.36± 1.14 6.85± 1.33

Triglycerides (mmol/L) 1.24± 0.75 1.15± 0.56 1.69± 1.25

LDL-C (mmol/L) 2.89± 0.82 2.85± 0.80 3.07± 0.93

HDL-C (mmol/L) 1.77± 0.48 1.77± 0.44 1.74± 0.62

ApoB/ApoA 0.57± 0.18 0.56± 0.17 0.64± 0.23

Lp (a) (mg/dL) 21.4± 21.7 21.9± 22.0 18.4± 19.8

EU SCORE 2.60± 2.58 2.16± 2.12 4.73± 3.45

Framingham 14.75± 3.54 14.21± 3.46 17.31± 2.74

Total
population
n = 308

C-group
n = 143

DC-group
n = 40

SC-group
n = 135

SH-group
n = 121

DH-group
n = 12

H-group
n = 165
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n = 103 n = 32

S = Survivors, no calcifications at baseline and at followup

C = Patients with calcifications at baseline
H = Patients with no calcifications at baseline
DC = Deceased with calcifications at baseline

DH = Deceased persons no calcifications at baseline

S+ = Survivors, no calci cations at baseline but calci cations
at followup

SC = Group S and S+ :survived patientsat followup,
+/− calci cations at baseline
SH = Survived persons at followup, no calci cations
at baseline or followup

Figure 4: A schematic overview of the study population.

2.5. Statistical Analysis. Kendall’s coefficient of concordance
[25] was used to assess the level of agreement between AC24
scorings of calcified images made by radiologists directly
on the original X-rays and AC24 scorings by the computer,
based on the radiologist’s annotation outlines.

To measure the inter- and intraobserver variability of
the manual annotations of the radiologists on the 8 images
allocated specifically for this purpose, we used the Jaccard
Index (A) [26]. We computed the ratio of the area identified

Table 2: The inter- and intraobserver mean coefficients of variation
for the AAC markers based on the inter-intra-observer test popula-
tion.

Inter-intra-observer
population

Interobserver CV
%

Intraobserver CV
%

Area % 24.1 24.9

Sim. area % 24.9 20.3

Thickness % 16.8 14

Wall % 13.0 12.5

Length % 13.0 12.5

NCD 19.4 16.6

as calcified in two outlines, divided by the area identified as
calcified in at least one outline:

A = |A1 ∩ A2|
|A1 ∪ A2| , (1)

where A1 and A2 are a binary annotations. The Jaccard Index
varies from 0 for no agreement to 1 for complete agreement.
Typically, Cohen’s κ [27] would be used to measure the inter-
rater agreement for categorical items like pixels. However,
the statistics will be dominated by the very large class of
non-calcified pixels, and individual pixel scorings cannot be
considered statistically independent.

The inter- and intraobserver variability of the AAC mark-
ers computed from the radiologist’s outlines was analysed on
the 8 images by the mean coefficients of variation (CV).

The predictive power of mortality in terms of hazard
ratio per standard deviation change (HR) of the individual
AAC scorings was analysed by Cox regression [28, 29], where
time of death was the outcome variable and survivors were
right-censored. This analysis was performed on unadjusted
markers as well as markers adjusted with three different
sets of biological variables: (a) a model consisting of age,
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(a) (b) (c)

Figure 5: An X-ray of a participant in the EPI followup population. (a): an annotation by a radiologist. (b): a second annotation by the same
radiologist. (c): an annotation done by another radiologist.

Table 3: The mean ± one standard deviation of all the imaging markers stratified for the different subsets of patients. NCD# stands for
number of calcifications.

All
(n = 308)

Survivors
(n = 256)

CVD
(n = 20)

Cancer
(n = 27)

CVD/Can
(n = 47)

Other
(n = 5)

All-cause
(n = 52)

AC24 1.67± 2.55 1.35± 2.34 3.50± 2.35 3.41± 3.23 3.45± 2.86 1.35± 2.36 3.23± 2.86

Area % (%) 0.6± 1.2 0.5± 1.1 1.0± 0.9 1.6± 1.8 1.3± 1.5 0.5± 1.1 1.2± 1.5

Sim. area % (%) 11± 17 8.9± 15.7 24± 16 25± 24 25± 21 8.7± 15.5 23± 21

Thickness % (%) 11± 20 9.0± l9 17± 16 25± 28 21± 24 8.7± 19 20± 24

Wall % (%) 1.03± 1.83 0.79± 1.64 2.08± 1.70 2.51± 2.68 2.33± 2.30 0.80± 1.63 2.16± 2.27

Length % (%) 7.5± 12.8 6.0± 11.7 15.4± 11.2 17.3± 17.6 16.5± 15.1 5.9± 11.6 15.4± 15.0

NCD# 3.8± 7.7 2.6± 6.4 8.5± 6.5 11.6± 13.4 10.3± 11.0 2.6± 6.3 9.6± 10.8

smoking status, and triglyceride levels, (b) the SCORE,
and (c) Framingham scores. We adjusted by combining
the biological variables of each set into one new variable
by a linear weighing with their β-weights derived by a
Cox regression. This new variable was then included in
another Cox regression model for the imaging marker we
wanted to adjust. The resulting β-weight for the imaging
marker determines the biologically adjusted prognostic
power.

To analyse the complementarity of the AAC markers,
a backwards stepwise deletion Cox regression model with
all AAC markers was built. Least significant markers were
successively deleted until only markers with significant β-
values (P < 0.05) were left. This way, single markers that
complemented each other and gave supplementary informa-
tion were identified.

3. Results

The data consisted of baseline images taken in 1992 from
308 subjects. Of these, 121 subjects had no calcifications at

baseline or followup. Of the remaining 187 subjects, 52 had
died before followup due to cancer (n = 27), CVD (n = 20),
or other causes (n = 5), and 135 surviving subjects had
varying degrees of abdominal aortic calcification at baseline
or followup. A schematic overview of the study population
is given in Figure 4, while an overview of the physical and
metabolic measurements is given in Table 1.

The radiologist and computer-based AC24 scores for the
135 calcified images were in excellent agreement (Kendall’s
κ = 0.97, P < 0.0001).

On the set of 8 images with four annotations each, the
mean Jaccard Index between the radiologists’ AAC outlines
was 0.56 ± 0.14 (0.24–0.79) for the intraobserver variation
and 0.51 ± 0.13 (0.29–0.73) for the interobserver variation,
for an example, see Figure 5. The two radiologists had
an intraobserver variability of 0.53 ± 0.14 (0.24–0.65) and
0.59 ± 0.14 (0.38–0.79), respectively. The CV values for the
AAC marker precision on the same set of 8 images were
between 12.5% and 24.9% (Table 2).

The mean values and respective standard deviations of
each of the AAC markers can be found in Table 3. There was
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Table 4: The relative risk per standard deviation increase in marker values stratified into death cause and adjusted for physical/metabolic
markers, EU SCORE, and Framingham score, respectively. The symbols ∗, ∗∗, and ∗∗∗ denote the significance corresponding to P < 0.05,
P < 0.01, and P < 0.001, respectively. NCD# stands for number of calcifications.

Hazard ratio not adjusted Hazard ratio bioadjusted Hazard ratio SCORE-adjusted Hazard ratio Framingham-adjusted

AC24

CVD 1.66 (1.25–2.19)∗∗∗ NS 1.38 (1.02–1.86)∗ NS

CVD/cancer 1.64 (1.35–2.00)∗∗∗ 1.31 (1.06–1.63)∗ 1.40 (1.13–1.72)∗∗ 1.29 (1.02–1.63)∗

Area%

CVD 1.60 (1.16–2.20)∗∗ NS NS NS

CVD/cancer 1.68 (1.36–2.09)∗∗∗ 1.32 (1.04–1.66)∗ 1.47 (1.16–1.86)∗∗ 1.34 (1.04–1.72)∗

Sim. area%

CVD 2.96 (1.76–4.99)∗∗∗ 2.00 (1.15–3.49)∗ 2.46 (1.41–4.27)∗∗ 2.27 (1.26–4.09)∗∗

CVD/cancer 2.37 (1.73–3.25)∗∗∗ 1.68 (1.20–2.34)∗∗ 1.96 (1.40–2.73)∗∗∗ 1.79 (1.26–2.54)∗∗

Thickness%

CVD NS NS NS NS

CVD/cancer 1.45(1.20–1.75)∗∗∗ NS 1.27 (1.04–1.55)∗ NS

Wall%

CVD 1.50 (1.16–1.95)∗∗ NS NS NS

CVD/cancer 1.60 (1.34–1.91)∗∗∗ 1.26 (1.04–1.53)∗ 1.42 (1.17–1.73)∗∗∗ 1.30 (1.05–1.62)∗

Length%

CVD 1.55 (1.18–2.04)∗∗ NS NS NS

CVD/cancer 1.61 (1.34–1.95)∗∗∗ 1.26 (1.03–1.55)∗ 1.42 (1.16–1.73)∗∗∗ 1.29 (1.03–1.62)∗

NCD#

CVD 2.44 (1.72–3.48)∗∗∗ 1.76 (1.20–2.60)∗∗ 2.20 (1.48–3.26)∗∗∗ 2.04 (1.34–3.12)∗∗∗

CVD/cancer 2.28(1.79–2.90)∗∗∗ 1.69 (1.30–2.21)∗∗∗ 2.00 (1.53–2.62)∗∗∗ 1.86 (1.40–2.47)∗∗∗

a clear difference between the means in the CVD-death and
cancer-death groups compared to the survivors.

Table 4 shows that the simulated area percentage and
number of calcification (NCD) have the largest individual
predictive power (HR = 2.96, P < 0.001 and HR = 2.44,
P < 0.001) for CVD mortality. Their hazard ratio is between
2.0 and 2.96 and 1.76 and 2.44, respectively, for the CVD-
death group and between 1.68 and 2.32 and 1.69 and 2.28,
respectively, for the combined CVD/cancer-death group. All
hazard ratios are significantly different from unity (P < 0.01)
both before and after adjusting for three different biological
models. AC24’s unadjusted individual predictive power is
lower (HR = 1.66, P < 0.001). After adjustment for the three
different biological models, the significance of the hazard
ratios for AC24 is reduced and in some cases removed,
leading to a hazard ratio between 0 and 1.66 for the CVD-
death group and between 1.29 and 1.64 for the CVD/cancer-
death group.

The results of the combined predictive power of the
seven imaging markers can be seen for the CVD and the
CVD/cancer group in Table 5. When combining the markers
in a Cox regression model, only area percentage and NCD
remained significant (Parea < 0.001, PNCD < 0.001).

4. Discussion

We evaluated whether a radiologist’s manual scoring of the
AC24 correlated with a computer-based scoring of the AC24

derived from a radiologist’s manual outline of the calcifi-
cations on a digitized radiograph. The Kendall’s coefficient
of concordance showed the two scorings were in excellent
agreement. Further we evaluated inter- and intraobserver
variability of manual annotations using the Jaccard Index
and coefficients of variation of the AAC markers, including
the AC24. Although the Jaccard Index showed that the
variation in the outlined calcified deposits was high, the
coefficients of variation for the AC24 and the other AAC
markers based on the outlines were relatively low. These
results demonstrated that, even though the outlining of
the individual plaques is a challenging task, the resulting
markers based on the annotations provided reasonably
precise measurements.

In the course of the 8-9-year-long study, 52 people died,
of whom 20 died from CVD-related causes and 27 from can-
cer. The Cox regression models showed similar correlations
to CVD and CVD/cancer mortality for the different markers.
Since cancer and CVD have many overlapping pathogenetic
factors, this is no surprise. The simulated area percentage and
the number of calcified deposits could individually predict
CVD and CVD/cancer death and contained additional
information for CVD mortality even after adjustments for
age, triglycerides and cholesterol, and the SCORE model
and Framingham score. Hence, in this post hoc study, they
predicted CVD mortality independently from traditional risk
factors, in contrast to AC24. A reason for this could be that
the AC24 does not discriminate between severity and spread
of individual calcifications.
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Table 5: The individual hazard ratios for the markers in the CVD and the CVD/cancer group as well as two Cox regression elimination
models. First the nonadjusted hazard ratios from Table 2 are stated again, and then two elimination models are shown. The symbols ∗, ∗∗,
and ∗∗∗ denote the significance corresponding to P < 0.05, P < 0.01, and P < 0.001, respectively. #NCD stands for number of calcifications.

CVD: β · std CVD Elim.: β · std CVD/cancer: β · std CVD/cancer Elim.: β · std
AC24 1.66∗∗∗ — 1.64∗∗∗ —

Area % 1.60∗∗ −3.84∗∗∗ 1.68∗∗∗ 2.39∗∗∗

Sim. area % 2.96∗∗∗ — 2.37∗∗∗ —

Thickness % 1.32 — 1.45∗∗∗ —

Wall % 1.50∗∗ — 1.60∗∗∗ —

Length % 1.55∗∗ — 1.61∗∗∗ —

NCD# 2.44∗∗∗ 2.76∗∗∗ 2.28∗∗∗ 1.88∗∗∗

The risk of death due to myocardial infarct (MI) may
be related to the number of active plaques [30]. During
plaque development, smaller plaques develop into larger
complicated lesions that either rupture or become stable
plaques [31, 32]. Smaller lipid-laden plaques with high
turnover have been identified as those most likely to
rupture and consequent in MI [31, 32]. Thus, a large
number of smaller calcifications may indicate a higher
risk of rupture than few large, stable, calcifications in the
same area. Techniques for measuring different aspects of
plaques, such as size, distribution, and number, are in part
captured by the simulated area percentage and the number
of calcified deposits. This higher emphasis on the number
of calcifications, rather than the total calcium burden, may
reflect aspects of vulnerability that help improve the CVD-
mortality prediction as observed in this work.

The Cox regression combination model showed that,
when combining all the AAC markers into one model and
deleting the markers that do not significantly contribute to
the combined marker, only area percentage and the number
of calcified deposits remained. This shows that these two
AAC markers offer complementary and highly significant
information about the risk of death. The complementarity
of area percentage and number of calcifications suggests that
size and spread of the calcifications both play important roles
in atherosclerosis.

The sample size is a limitation of the present study.
The relatively small population with only 20 CVD deaths, a
limited representation of ethnicity and gender, and a mixture
of death causes may limit the generalizability of our results.
Therefore, the presented findings need to be validated in
larger, independent studies. A limitation of the proposed
markers could be the cost of manual annotations, but efforts
have been made to automate annotations of calcified deposits
[33, 34].

Compared to markers of CVD obtained with other
imaging modalities, such as carotid IMT or CAC, a clear
advantage of using standard radiographs is the availability
of large, long duration osteoporosis screening studies [16–
18]. For example, such historical data was used to verify the
developed AAC markers and can improve understanding of
CVD death risk factors. The clinical applicability of AAC
markers can be increased if the same radiographs are used
for osteoporosis screening and CVD risk assessment.

While AC24 captures essential information about AAC,
the results demonstrate that some of these novel mor-
phometric markers of AAC may capture complementary
information. Therefore, the proposed radiographic AAC
markers may enable improved screening for and monitoring
of CVD mortality risk.
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