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ABSTRACT

Chromatin interaction data from protocols such as
ChIA-PET, HiChIP and Hi-C provide valuable insights
into genome organization and gene regulation, but
can include spurious interactions that do not re-
flect underlying genome biology. We introduce an
extension of the Irreproducible Discovery Rate (IDR)
method called IDR2D that identifies replicable in-
teractions shared by chromatin interaction experi-
ments. IDR2D provides a principled set of interac-
tions and eliminates artifacts from single experi-
ments. The method is available as a Bioconductor
package for the R community, as well as an online
service at https://idr2d.mit.edu.

INTRODUCTION

The Irreproducible Discovery Rate (1) (IDR) method iden-
tifies a robust set of findings that comprise the signal
component shared by two replicate experiments. The IDR
method is akin to the false discovery rate (FDR) in multiple
hypothesis testing, but instead of alleviating alpha error ac-
cumulation within one replicate, IDR quantifies the repro-
ducibility of findings using a copula mixture model with one
reproducible and one irreproducible component. A find-
ing’s IDR is the probability it belongs to the irreproducible
component. This permits findings that are likely in the ir-
reproducible noise component to be eliminated for subse-
quent analyses. Assessing the IDR of genomic findings has
been adopted by ENCODE (2), and is recommended for
all ChIP-seq experiments with replicates (3). IDR has also
been used in numerous projects outside of ENCODE (4–8).

Chromatin interaction experiments such as ChIA-
PET (9), HiChIP (10) and Hi-C (11) provide important
chromatin structure and gene regulation information, but
the complexity of their results and the sampling noise
present in their protocols makes the principled analysis of
resulting data important. Single replicate false discovery
rate (FDR) methods are often used to identify chromatin
interactions, but questions can remain about the veracity of

the interactions identified as significant as they may not be
observed in replicate experiments.

Here, we generalize IDR from one dimensional analysis,
performed on a single genome coordinate, to the analysis of
interactions that are identified in two dimensions by a pair
of genome coordinates. We call this extended method Irre-
producible Discovery Rate for Two Dimensions (IDR2D)
and it can be readily applied to any experimental data type
that produces two-dimensional genomic results that admit
appropriate distance metrics. We demonstrate the applica-
tion of IDR2D to data from ChIA-PET, HiChIP and Hi-C
experiments.

Like IDR, IDR2D independently ranks the findings from
each replicate. This ranking reflects the confidence of the
finding, with high-confidence interactions at the top and
low-confidence interactions at the bottom of the list. In a
subsequent step, corresponding interactions between repli-
cates are identified. A genomic interaction from replicate 1
is said to correspond to an interaction in replicate 2, if both
their interaction anchors overlap (see Figure 1C). After cor-
responding interactions are identified and ambiguous map-
pings of interactions between replicates are resolved (see
equation 1 and Figure 1D), IDRs are computed for each
replicated interaction.

If interaction xi, 1 in replicate 1 overlaps with more than
one interaction in replicate 2, the ambiguous mapping is re-
solved by choosing x*, 2 in the following way:

x∗,2 = argmin
xj,2∈�xi,1

f (xi,1, xj,2), (1)

where �xi,1 is the set of interactions in replicate 2 that over-
laps with the interaction xi,1 in replicate 1, and f( ·, ·) is
the ambiguity resolution value (ARV) between an interaction
in replicate 1 and an overlapping interaction in replicate 2.
Depending on the ambiguity resolution method, this value
corresponds to the genomic distance between anchor mid-
points (see 1 in Figure 1D), the additive inverse of the rela-
tive anchor overlap (see 2 in Figure 1D), or the sum of the
interaction ranks, where more significant interactions have
lower ranks.

IDR2D is used as the final step in chromatin interac-
tion data workflows (see Figure 1A). The input to IDR2D
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Figure 1. IDR2D identifies reproducible genomic interactions. (A) IDR2D is a potential post-processing step in the data analysis pipelines for ChIA-PET,
HiChIP and Hi-C experiments that were done in replicate. It is compatible with a range of different interaction callers, such as ChIA-PET2, Mango, and
CID. (B) This schematic depicts the five steps of the IDR2D procedure. In step 1, the data is prepared for IDR analysis, which includes the removal of
interactions on non-standard chromosomes and a suitable transformation of the value column, which will be the basis of the ranking. In step 2, interactions
in replicate 1 that overlap interactions in replicate 2 are identified, and in step 3 a one-to-one correspondence between overlapping interactions is established
by resolving ambiguous cases. After this unambiguous mapping is established, in step 4 the irreproducible discovery rates are estimated for each interaction
pair. Lastly, diagnostics plots are created in step 5. (C) An interaction in replicate 1 (R1) is assigned to all interactions in R2 for which both interaction
anchors overlap or are within maximum gap of each other. (D) If more than one interaction in R2 overlaps with an interaction in R1, there are three
methods to resolve this ambiguous mapping: select the interaction in R2 with (1) the smallest distance between the anchor midpoints (width of the green
bars), (2) the largest relative overlap (width of the green bars divided by the sum of the anchor widths) or (3) the lowest rank sum of the interactions, which
prioritizes more significant interactions.
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are BEDPE formatted files of genomic interactions, where
each genomic interaction has a score associated with it.
This score is used to rank the interactions and can be
probability-based, such as the scores from MICC-based
methods (12–14), or based on a heuristic. For Hi-C experi-
ments, IDR2D supports the .hic file format from the Juicer
/ Straw pipeline and the .matrix/.bed file formats from the
Hi-C Pro pipeline. Figure 1B breaks the IDR2D procedure
into five steps.

MATERIALS AND METHODS

IDR

IDR2D extends the reference implementation of IDR in
R by Qunhua Li (1). All datasets were analyzed with the
IDR2D package using default parameters. We used over-
lap as ambiguity resolution method and allowed no gaps
between overlapping interactions (max.gap = 0L). The
applied value transformations were dependent on the inter-
action calling method. The results were not sensitive to the
initial values of the mean, standard deviation, correlation
coefficient, or proportion of the reproducible component.

ChIA-PET datasets

We used 17 ChIA-PET datasets associated with protein fac-
tors that include POL2RA, CTCF and RAD21 from se-
lected cell types (Supplementary Table S1). The datasets
were downloaded from the ENCODE Project portal (https:
//www.encodeproject.org/). All FASTQ files of both biolog-
ical replicates were pre-processed and aligned to the hg19
genome assembly using steps 1, 2 and 3 in the ChIA-PET
data analysis software Mango.

HiChIP datasets

The FASTQ SMC1A HiChIP data from GM12878
cells (10) were downloaded from the NCBI GEO por-
tal (GSE80820). Raw read files were analyzed with HiC-
Pro (15), and interactions were subsequently called by CID
and hichipper (16).

Hi-C datasets and subsampling procedure

Preprocessed contact matrix files in .hic format were down-
loaded from the NCBI GEO portal (see Supplementary Ta-
ble S1 for details) and parsed with Straw, a data extraction
API for .hic files (17).

FASTQ files for Hi-C datasets from ENCODE were pro-
cessed with the HiC-Pro pipeline (15) using default parame-
ters for HindIII digested DNA. Contact matrices were nor-
malized with the ICE procedure (18). Subsampling of Hi-C
contact matrices was performed using uniform sampling of
individual reads without replacement.

Mango pipeline

Mango 1.2.1 (19) was downloaded from https:
//github.com/dphansti/mango. Additionally, we installed
the dependencies R 3.4.4, bedtools 2.26.0, macs2 (version
2.1.1.20160309) (20), and bowtie-align 1.2 (21). Mango

was executed with the default parameters and the flags
verboseoutput and reportallpairs were set. For
datasets that were generated with the ChIA-PET Tn5
tagmentation protocol, additional parameters recom-
mended by the author were used: -keepempty TRUE
-maxlength 1000 -shortreads FALSE. For sub-
sequent IDR2D analyses, we used the P column in the
Mango output files to establish the ranking of interac-
tions. This column contains unadjusted P-values, which
were transformed using the log.additive.inverse
transformation to match the IDR semantics of the value
column, where interactions with larger values are more
likely to be true interactions.

The BEDPE files generated by Mango after step 3 were
also used by the ChIA-PET2 and CID pipelines.

ChIA-PET2 pipeline

ChIA-PET2 0.9.2 (13) was obtained from https://github.
com/GuipengLi/ChIA-PET2. The default setting was used
for all parameters, except that the starting step was set to 4
to start the analysis from Mango-derived BEDPE files. The
ranking for the IDR2D analysis was established by the un-
transformed -log10(1-PostProb) column, which is an
output of MICC (12), a Bayesian mixture model used inter-
nally by ChIA-PET2 and CID.

CID pipeline

CID 1.0 (14) is part of the Java genomics software package
GEM 3.4, which was downloaded from https://groups.csail.
mit.edu/cgs/gem/versions.html. We used the default CID
parameters. Before running MICC, we filtered all interac-
tions that were supported by only one PET read. Same as
with ChIA-PET2, we used the untransformed -log10(1-
PostProb) column to rank interactions in IDR2D.

Package and web development

The R package development process was supported using
devtools. We used roxygen2 for inline function documenta-
tion, and knitr and R Markdown for package vignettes. With
the R package we provide a platform-independent imple-
mentation of the methods introduced in this paper. The Hi-
C analysis part of the package requires the Python package
hic-straw (17), which is a data extraction API for Hi-C con-
tact maps.

The website was developed in R with the reactive web
application framework shiny from RStudio. The compo-
nents of the graphical user interface were provided by shiny
and shinyBS, which serve as an R wrapper for the compo-
nents of the Bootstrap front-end web development frame-
work. The analysis job queue of the website uses an SQLite
database.

RESULTS

IDR2D identifies reproducible components of ENCODE
ChIA-PET experiments

To assess the performance and utility of IDR2D we ana-
lyzed the read data of 17 ChIA-PET experiments that had

https://www.encodeproject.org/
https://github.com/dphansti/mango
https://github.com/GuipengLi/ChIA-PET2
https://groups.csail.mit.edu/cgs/gem/versions.html
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Figure 2. IDR2D analysis of 17 replicated ChIA-PET experiments identifies reproducible components. (A) Diagnostic scatterplot of IDRs of genomic
interactions called by CID from replicated ChIA-PET experiments targeting RAD21 in HepG2 cells. Plotted are replicated interactions with their estimated
IDR (color) and their scores in the two replicates (position). As expected, interactions with low IDRs that have a low probability of belonging to the
irreproducible component, are along the diagonal (similar scores in both replicates). (B) Similar to panel A, but plots interaction ranks instead of scores
(higher score results in lower rank). (C) A comparison of ChIA-PET interaction callers ChIA-PET2, CID, and Mango across 17 ChIA-PET experiments.
Significant IDR <0.05, highly significant IDR <0.01, total interactions is the number of interactions in replicate 1.

replicates (see Supplementary Table S1 for details). Mango
was used for data preprocessing such as linker removal,
read mapping (via bowtie), and peak calling (via macs2).
We called interactions with three different methods (ChIA-
PET2, CID, and Mango) and then used IDR2D to identify
reproducible interactions across replicates. The number of
identified interactions varies greatly between the three in-
teraction callers, with on average CID identifying the most,
and Mango the fewest interactions (see Figure 2C and Sup-

plementary Tables S2–S4). As a result, the overall repro-
ducibility of interactions is also dependent on the interac-
tion caller. For example, the ChIA-PET experiments Sny-
der.GM19239.RAD21 and Snyder.GM19240.RAD21
show poor reproducibility across all three interaction call-
ing methods. By identifying the reproducible component
within each of the replicated experiments, IDR2D helps to
assess the overall reproducibility of each experiment, as well
as the reproducibility of individual findings, which in turn
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Figure 3. Mappings of genomic interactions between replicated ChIA-PET experiments are predominantly unambiguous. The great majority of inter-
actions in replicate 1 that overlapped with interactions in replicate 2 only overlapped with one interaction, leading to an unambiguous assignment of
corresponding replicated interactions (green bars). Unsurprisingly, the number of ambiguous mappings (interactions in replicate 1 that overlap with more
than one interaction in replicate 2) increases when the maximum acceptable gap is increased, the tolerated distance between anchors to still be considered
overlapping.

informs the conclusions drawn from the data. In addition,
it can be used to help qualify new experimental protocols
for consistent results. Venn diagrams depicting the overlap
of identified interactions between ChIA-PET2, CID and
Mango are shown in Supplementary Figure S1.

Furthermore, we used IDR2D to analyze experimental
results from replicated HiChIP (see Supplementary Tables
S5 and S6). Similar to ChIA-PET, IDR2D can identify re-
producible HiChIP interactions and expose poorly repli-
cated experiments, which is valuable information for sub-
sequent analysis steps.

Mappings of genomic interactions between replicated ChIA-
PET experiments are predominantly unambiguous

The great majority of interactions in replicate 1 that over-
lapped with interactions in replicate 2 overlapped with only
one interaction, leading to an unambiguous assignment of
corresponding replicated interactions (see Figure 3). Unsur-
prisingly, the number of ambiguous mappings (interactions
in replicate 1 that overlap with more than one interaction in
replicate 2) increases when the maximum gap is increased,
the tolerated distance between anchors that are considered
to overlap. On average, only 2.66% of interactions are am-
biguous in the case of zero max gap, whereas this number
increases to 8.00% and 24.11% with maximum gaps of 1000
and 5000 bp, respectively.

There are more ambiguous mappings between replicated
interactions that were called with CID (14.73% for CID,

9.90% for ChIA-PET2 and 10.14% for Mango). We expect
this is because (i) CID on average calls significantly more
interactions than ChIA-PET2 and Mango and (ii) inter-
actions called with CID exhibit a wider range of anchor
lengths, and longer anchors naturally increase the proba-
bility of overlap.

Assessing reproducibility of Hi-C experiments

When analyzing pairs of Hi-C experiments with IDR2D,
blocks from Hi-C contact matrices are used as observations.
The resolution of contact matrix values typically ranges be-
tween 5 kb (kilo base pairs) to 2.5 Mb blocks. With the
fixed grid of contact map observations, finding correspond-
ing observations in the second replicate is straightforward.
Each block in replicate 1 is simply matched with the block
spanning the same genomic regions in replicate 2. Blocks
are subsequently ranked by their read counts and analyzed
using the same procedure that was used for ChIA-PET and
HiChIP data.

In addition to computing IDR values, IDR2D produces
diagnostic plots that help interpret the overall reproducibil-
ity of a pair of Hi-C experiments, as well as identify repro-
ducible parts of Hi-C contact matrices for a more focused,
downstream analysis.

In Figure 4, we show IDR2D results for three pairs of
Hi-C experiments. The first pair of Hi-C experiments con-
sists of true replicate experiments in GM12878 cells (22).
The second pair of experiments were obtained in phased
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Figure 4. Reproducibility analysis of Hi-C experiments. (A) Summary of IDR2D results on individual chromosomes of three pairs of Hi-C experiments,
True replicate Hi-C experiments (Lieberman.GM12878) are compared to IDR2D analysis of Hi-C experiments of different alleles (Lieberman.Patski) and
different treatments (Skok.NSD2). (B) Histograms of the IDR distribution of IDR values for all blocks of chromosome 1 for the three pairs of Hi-C
experiments. (C) Scatterplots of block ranks of chromosome 1 of the two Hi-C replicate experiments, colored by IDR. (D) Analagous to C, for Hi-C
experiments of paternal and maternal alleles. (E) Analagous to C, for Hi-C experiments before and after overexpression of NSD2. Axis scales are not fixed
between scatterplots.

murine embryonic kidney fibroblasts, where allele-specific
Hi-C reads (22) were available (different alleles in Fig-
ure 4) (23), and the third pair of Hi-C experiments were
obtained before and after the overexpression of NSD2 (dif-
ferent treatments) (24). GEO identifiers of all data sets are
listed in the Supplementary Table S1 and detailed results
in Supplementary Table S7. Figure 4A gives an overview of
all data sets and all resolutions, showing that, as expected,
the reproducibility is highest between true replicates, and

in general higher at lower resolutions (larger blocks). Fig-
ure 4B depicts the distribution of IDR values for chro-
mosome 1 of each of the Hi-C pairs at block resolutions
of 1 Mb, 250 kb and 10 kb. The largest fraction of re-
producible blocks is found between replicated experiments.
Figures 4C–E are scatterplots of interaction pairs (corre-
sponding blocks in the contact matrices) of the two experi-
ments, where the color denotes the IDR value of the interac-
tion pair. Given a Hi-C experiment with a fixed sequencing
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depth, the higher the resolution of the Hi-C analysis the less
reproducible the individual interactions will be as a conse-
quence of sampling noise.

Not all Hi-C interaction pairs that lie on the diagonal
and have similar ranks in both replicates are deemed repro-
ducible by IDR2D. For example, see the upper right panel
of Figure 4C. This lack of reproducibility is intended and
is justified by taking into account the poor reproducibility
of other interaction pairs with similar ranks. Hi-C contacts
close to the diagonal can be found irreproducible when they
are in rank neighborhoods of irreproducibility. We note that
while experiment level methods may find a Hi-C experi-
ment reproducible, IDR2D may find a specific interaction
irreproducible because it is in a rank neighborhood that is
not reproducibly ordered. IDR2D may require increased se-
quencing depth to consistently rank interactions to ascer-
tain reproducibility of such interactions.

IDR2D is largely insensitive to sequencing depth when
it is sufficient to recover contacts, thus reproducible pairs
of experiments are identified as such even if their sequenc-
ing depths are different. Reproducibility as measured by
IDR2D only starts to degrade significantly at extremely low
coverage, with only very few reads (single to low double dig-
its) per block. Subsampling experiments were performed to
illustrate this behavior (see Supplementary Figure S2).

DISCUSSION

The appropriate choice of significance values for the com-
putation of interaction ranks depends on the method used
to identify contacts. As a general rule, larger values should
reflect higher confidence and there should be as few ties
as possible. IDR2D operates on the ranks of the interac-
tions in both replicates and therefore is invariant to order-
preserving transformations of the original significance val-
ues. If P-values are used as significance values for interac-
tions, the additive inverse or the log additive inverse of un-
corrected P-values is recommended. Unadjusted P-values
are preferred over P-values adjusted for multiple hypothe-
sis testing, because uncorrected P-values reduce rank ties.

Other methods assess the overall reproducibility of
genome interaction experiments but do not character-
ize the reproducability of each reported contact. Such
methods include HiCRep (25), HiC-spector (26), and
GenomeDISCO (27). GenomeDISCO also supports exper-
imental data from ChIA-PET and HiChIP. HiCRep calcu-
lates a score of experiment reproducibility between contact
matrices based on aggregated stratified Pearson correlation
coefficients, while HiC-spector determines experiment re-
producibility by comparing the eigenvectors of a spectral
decomposition of the contact maps, and GenomeDISCO’s
concordance score is based on random walks on a graph
representation of contact maps. These methods have in
common that they assess the overall reproducibility of repli-
cated experiments with a global measure of similarity be-
tween contact matrices. IDR2D provides a measure of re-
producibility for each reported contact and then summa-
rizes these findings to characterize experiment reproduca-
bility (see Supplementary Figure S3). IDR2D’s fine-grained
analysis of reproducibility identifies contacts that are in-
variant across experimental replicates and those that are

not, which is a unique capability. Thus, IDR2D is intended
to complement, rather than replace previous Hi-C repro-
ducibility assessment methods.

IDR2D, and the methods mentioned above, are limited to
comparisons of two replicates at a time. If more replicates
are available, multiple pairwise analysis can be performed
and the results combined.

While IDR2D is a compatible post-processing step for
the tested interaction callers, it cannot recover true interac-
tions that were discarded by the interaction caller and there-
fore the identified set of reproducible interactions is always
limited by the sensitivity of the caller.

IDR2D can potentially support single-cell or single-
molecule chromatin interaction data obtained by methods
such as Sci-Hi-C (28) and ChIA-Drop (29). However, the
sparsity of interaction data from single cells will necessitate
data imputation or cell clustering as preprocessing steps to
IDR2D, similar to strategies applied to single-cell ATAC-
seq data (30).

IDR2D offers a complementary way to evaluate the re-
sults of chromatin interaction experiments for significance,
and provides a foundation for subsequent analysis such
as enhancer-gene mapping that incorporates the important
concept of experimental replicability.

DATA AVAILABILITY

The implementation of IDR2D facilitates workflow inte-
gration with other data analysis pipelines, and is also web-
accessible at https://idr2d.mit.edu. IDR2D is implemented
in R and bundled as an R/Bioconductor package (idr2d),
supporting observations with both one-dimensional and
two-dimensional genomic coordinates. The IDR2D web-
site implementation offers a number of ways to transform
the scores to match IDR requirements, and to map interac-
tions between replicates. The source code of the R package
is hosted on GitHub (https://github.com/gifford-lab/idr2d).
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Supplementary Data are available at NAR Online.
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