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Abstract

An outbreak of the coronavirus disease 2019 (COVID-19) caused by an infection of the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019. This new virus belongs to the
group of enveloped RNA beta-coronaviruses. Symptoms may differ in various infected persons, but major presentations
include dry cough, nasal congestion, shortness of breath, fever, and general malaise. The disease appears to be more
severe in patients above the age of 60 years and those with underlying conditions such as diabetes, cancer, cardiovascular
diseases, chronic respiratory disease, and hypertension. There is still no approved vaccine against COVID-19, but more
than a hundred are at different stages of development. It is known that the development of new drugs takes a relatively
long time, so several known and already-approved drugs are being repurposed for the treatment of this disease. In this
review, we explore the therapeutic and vaccine options that are available for COVID-19 6 months after its outbreak. Most
noteworthy among the therapeutic options are dexamethasone, remdesivir, Avigan (favipiravir) and convalescent plasma.
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Introduction nonstructural proteins.’ The nonstructural proteins are gen-
erated by processing of ppla and pplab by two or three
viral proteases encoded within the replicase. There are sev-
eral accessory proteins that seem to be important for patho-
genesis, but all are not functionally characterized.

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a novel human pathogenic virus; it belongs to the
Coronaviridae family, whose members are named after their
crown-like appearance caused by the surface glycoproteins
that decorate the virus. This novel virus, also referred to as
2019-nCoV, is responsible for the coronavirus disease 2019 Structural Proteins
(COVID-19).1? Coronaviruses including 229E, NL63,
0C43, and HKU1 are common human pathogens that cause
common cold-like symptoms. Other known pathogenic
coronaviruses for humans include SARS-CoV (which
causes the severe acute respiratory syndrome) and MERS-

A matured SARS-CoV-2 consists of four structural pro-
teins, spike (S), envelope (E), nucleocapsid (N), and mem-
brane (M), all of which constitute the complete structural
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Spike Protein (S)
Membrane Protein (M)

Envelope Protein (E)

Nucleoprotein (N)

Ribonucleic Acid (RNA)

Figure |. A schematic representation showing the structure of
SARS-CoV-2.

viral particle® (Fig. 1). Each of these proteins plays a pri-
mary role in the structure of the viral particle.

The S protein mediates viral attachment to the host cell
surface receptors and is responsible for the consequent
fusion between the viral and host membranes to facilitate
viral entry.%” The S protein has two subunits: S1, which
contains the receptor-binding domains (RBDs) that facili-
tate virus—host binding, which then transitions to the S2 for
virus—host fusion.!® Both SARS-CoV and SARS-CoV-2
recognize the human angiotensin-converting enzyme 2
(hACE2) as its host receptor binding to the S protein.’ A
novelty of the SARS-CoV-2 S protein is the presence of a
furin cleavage site at the S1/S2 boundary of the protein,
which is then cleaved during biosynthesis. The functional-
ity of this is still not fully understood. It should be empha-
sized that the indispensable function of the S glycoprotein
makes it a key target for therapeutic antibodies, diagnostics,
and tentative vaccines. The coronavirus N protein packages
viral genomic RNA into a ribonucleoprotein complex and
serves as an RNA chaperone.!? This protein localizes in the
endoplasmic reticulum—Golgi region that is structurally
bound to the nucleic acid material of the virus. The N pro-
tein is also involved in the host immunological response. It
is also heavily phosphorylated, which may lead to structural
changes enhancing the affinity for viral RNA.!! The M
structural protein is the most abundant and plays a promi-
nent role in determining the shape of the virus envelope.'?
M is involved in facilitating interactions between all other
structural proteins.'3 The M protein stabilizes the N proteins
and promotes the completion of viral assembly by stabiliz-
ing the N protein—-RNA complex within the virion, promot-
ing viral assembly.! Finally, the E protein is the smallest
structural protein and plays a role in the production and
maturation of the virion.!"* The majority of this protein is
located within sites of intracellular trafficking to participate
in coronavirus assembly and budding.!® The E protein is
abundantly expressed inside infected cells, but minimal
portions are incorporated within the envelope.'* Both the M

and E proteins constitute the viral envelope of the coronavi-
rus family.'16

Key Nonstructural Proteins

There are 29 proteins known to be produced by SARS-
CoV-2.!7 Several of these proteins are critical nonstructural
proteins that are valuable targets for antiviral drugs. Of
these, the most druggable targets in this virus are several of
its enzymes, some of which will be discussed below. The
viral genome has 14 open reading frames, each of which
encodes a variety of proteins. A viral replicase is used to
translate most of the viral genomic RNA. From this, two
polyproteins are synthesized (ppla and pplab), which are
further cleaved into nonstructural proteins.> These two
polyproteins are processed by two proteases, papain-like
protease (PLpro) and 3 chymotrypsin-like protease (3CLpro),
which are both essential for generating functional replica-
tion complexes. PLpro cleaves the N-terminal region of the
polyprotein to generate three nonstructural proteins (1/2/3)
and is thought to have deubiquitinating activity.'®!* 3CLpro
cleaves 11 different sites of the polyprotein to produce a
mature protein that anchors replication and transcription
complexes and releases mature nonstructural proteins.
RNA-directed RNA polymerase (RdRp) is critical for host
cell RNA replication in RNA viruses due to its functionality
of catalyzing the template synthesis of polynucleotides.
This protein was found to be critical for the infection cycle
of all RNA viruses. Chien et al. demonstrated the require-
ment of RdRp activity for SARS-CoV pathogenesis by
showing that without RdRp, there is a complete disruption
of SARS-CoV both in vitro and in vivo, as indicated by
stopping RNA replication and halting viral growth.?° These
proteases have emerged as important drug targets because
of their critical viral roles and low similarity with human
proteases.?!"?? 2'-O-Methyltransferase (2'-O-MT) mediates
mRNA cap 2'-O-ribose methylation of the 5’ cap of viral
mRNAs, while 2'-O methylation is important for the host
immune system to discern self-RNA from non-self-RNA.
Viral helicase is essential for viral replication and therefore
proliferation. Nonstructural uridylate-specific endoribonu-
clease (NendoU) is another nonstructural protein worth
investigating as an antiviral target since its endoribonucle-
ase is suspected to be similar in all coronaviruses.?3?*
Angiotensin-converting enzyme 2 (ACE2) is an antigen
receptor recognition enzyme that is located on the host cell
surface. To gain entry into a target cell, the SARS-CoV S
protein binds to the ACE2 receptor.2’ hACE2 is present in a
wide array of human tissues, including in the lung epithelia,
kidney, testis, and small intestine.?> The S protein consists
of three sections, an ectodomain, a single-pass transmem-
brane anchor, and a short intracellular tail.?® The ectodo-
main of the S protein consists of two subunits: S1 and S2.
The S1 subunit contains an RBD residing on its C terminus
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that is involved in the ACE2-binding process.?® The SARS-
CoV-2 S1 RBD has a substantially higher binding affinity to
hACE2 in comparison with the SARS-CoV-1 RBD.?’ Both
SARS-CoV-1 and SARS-CoV-2 rely on proteolytic pro-
cessing from cell surface transmembrane serine protease 2
(TMPRSS2) and lysosomal endopeptidase enzyme (cathep-
sin L) for the preactivation of the S protein. TMPRSS2
cleaves the S protein, allowing for transmission of the virus
via the ACE2 receptor, while cathepsin L activates mem-
brane fusion.’?®?° There is strong evidence that SARS-
CoV-2 has an additional novel preactivation mechanism
through the proteasomal processing from proprotein con-
vertase (PPC) furin.?’ A study has revealed that furin-medi-
ated preactivation of the SARS-CoV-2 S protein enhances
its ability to enter target cells.”’ This is significant as furin-
mediated cleavage of the SARS-CoV-2 S protein allows
SARS-CoV-2 to gain entry into cells with low expression of
TMPRSS?2 and/or cathepsin L.?’

Drugs against SARS-CoV-2

There are many drugs that are either in development or in
trial that target several of the SARS-CoV-2 structural and
nonstructural candidates mentioned. Furthermore, there
have been numerous reports of drug repurposing with the
intent of finding already approved or nearly approved com-
pounds that have efficient antiviral properties and are clini-
cally safe. Repurposing is critical because it speeds up the
amount of time for treatments to find their place in the clini-
cal setting. Several compounds, such as remdesivir (RDV)
and hydroxychloroquine (HQC), showed early promise,
though opinions differ on HQC. Table 1 shows several can-
didates that either target SARS-CoV-2 directly or serve to
reduce COVID-19 pathology by targeting human receptors.

Of the several compounds tested as potential COVID-19
treatments, few have come out as front-runners, most nota-
bly, RDV, HQC, and lopinavir (LPV)/ritonavir (RTV).
RDV is a broad-spectrum antiviral prodrug that is metabo-
lized into its active form, GS-441524. This compound has
shown antiviral properties against several viruses, including
Ebola and MERS-CoV.>* RDV does exhibit in vitro antivi-
ral activity against SARS-CoV-2, warranting its use as a
potential treatment for COVID-19.3' More recently, RDV
was shown to be efficacious in shortening the recovery time
of hospitalized COVID-19 patients in a study spanning sev-
eral countries.>> RDV is a competitive inhibitor of RdRP,
competing with adenosine triphosphate.’> The RDV pro-
drug undergoes several metabolic steps within the cell in
the formation of the active RDV—triphosphate (GS-441524)
compound.® Recently, the claims of RDV’s efficacy as a
mortality-reducing drug by a small U.S. trial’> were
unfounded during a large trial by the World Health
Organization (WHO)** where RDV had little effect on
mortality reductions. HCQ is an aminoquinoline that is

commonly used as an antimalarial agent, but it has also
been used against lupus and rheumatoid arthritis.? It is an
analog of chloroquine (CQ) in which one of the N-ethyl
substituents of CQ is B-hydroxylated. The activity of HCQ
against malaria is equivalent to that of CQ, and HCQ is pre-
ferred over CQ when high doses are required because of the
lower level of ocular toxicity of HCQ.?** HCQ has had
promising in vitro data against SARS-CoV-2, suggesting its
use as a possible COVID-19 treatment. Mechanistically,
HCQ can pass through the host cell’s membrane and aggre-
gates within the host’s intracellular compartments, includ-
ing lysosomes and other vesicles. This accumulation results
in the increase of the vesicular pH, which consequently
does not allow the virus to release the vesicle into the cyto-
plasm, thus resulting in a minimized viral load within the
host cell.*> Also, HCQ might be involved in disruption of
various enzymatic functions, including glycosylation of
newly synthesized proteins.’” Several other mechanisms
have been proposed for how HCQ interacts with SARS-
CoV-2; however, HCQ is no longer considered a therapeu-
tic option as it does not reduce mortality.>® LPV, commonly
administered for treatment of HIV-1, is a retroviral protease
inhibitor.*® LPV is often combined with RTV, which acts as
an inhibitor against cytochrome P450 metabolism of LPV.%
LPV-RTV has also shown inhibitory activity against SARS-
CoV-1 cysteine proteases, making it a drug of interest in
combating SARS-CoV-2.% In regard to the inhibition of the
SARS-CoV-2 3CLpro, it has been suggested that both LPV
and RTV inhibit 3CLpro activity.*’

On June 16, 2020, a breakthrough repurposed drug was
reported for critically ill hospitalized COVID-19 patients
such as those on ventilators. The steroid, dexamethasone,
was found to reduce deaths due to COVID-19 by one-third
in a controlled clinical trial conducted in the UK.*' So far, it
is not advisable to use dexamethasone for patients who are
not critically ill since the steroid showed no effect.*!

The most recent promising drug alternative emanated
from a study by Bouhaddou et al.,*> who mapped the phos-
phorylation landscape of SARS-CoV-2 infection in Vero E6
cells and utilized the results to identify several drugs for
treatment of the infection. Silmitasertib, gilteritinib, apili-
mod, dinaciclib, ARRY-797, and ralimetinib were among
the compounds tested, and some of them were able to deci-
mate 50% of coronavirus at a lower concentration than
RDV.* While some of these compounds are already at dif-
ferent stages of clinical trials for other applications, it
remains to be seen in the near future if they will perform
equally well in human patients as they did in cells.

Antibody Treatments

Antibodies have immense potential as treatments for
COVID-19. This is because antibodies can neutralize the
viral particle or target inflammatory factors, such as
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Table |. Drugs That Have Been Either Repurposed or Synthesized to Show Antiviral Activity against SARS-CoV-2.

Drug Name

2D Structures

Target

Mechanism

Novel (NV) or
Repurposed (RP)

References

Arbidol

Aurine tricarboxylic
acid

Benzopurpurin B

Baricitinib

Camostat mesylate

Chloroquine

Colchicine

S glycoprotein and

hACE2

RdRp

Endoribonuclease
NSPI5

JAK kinase

TMPRSS2

Endosome/ACE2

Host tubulin

Blocks viral entry

Blocks viral
replication

Causes viral RNA
degradation

Suppression of
proinflammatory

cytokines typically
observed in people

with COVID-19

Blocks nucleocapsid

entry from
phagosome to
cytoplasm

Interferes with S

protein processing

by lysosomal
enzymes as well
as viral envelop
assembly

Suppression of

proinflammatory
cytokines typically
observed in people

with COVID-19

RP

RP

RP

RP

RP

RP

RP

Vankadari’?

Morse et al.”4

Ortiz-Alcantara
etal®

Richardson
etal”®

Hoffmann et al.’

Vincent et al.?’

Finkelstein
et al.”¢

(continued)
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Table I. (continued)
Novel (NV) or
Drug Name 2D Structures Target Mechanism Repurposed (RP) References
Remdesivir S0 RdRp Blocks viral RP Agostini et al.3°
- replication
Ribavirin RdRp Blocks viral RP Morse et al.”*
e replication
Favipiravir (Avigan) o RdRp Blocks viral RP Guo”’
replication
Galidesivir RdRp Blocks viral RP Warren et al.”®
replication
Gilenya (fingolimod) wo " Host sphingosine Anti-inflamatory RP Torjesen®
CE |-phosphate
receptor
Lopinavir C/’! 3CLpro and PLprop Blocks viral RP Sheahan et al.*
o replication
W by inhibiting
polyprotein
processing
Darunavir 3CLpro and/or PLpro Blocks viral RP Liu et al.”

replication
by inhibiting
polyprotein
processing

(continued)
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Table 1. (continued)

Novel (NV) or

Drug Name 2D Structures Target Mechanism Repurposed (RP) References
Hirsutenone . j 3CLpro and/or Blocks viral RP Kumar et al.,%
i \(/\‘,L PLpro replication Zhou et al.®!
~ \1 by inhibiting
= polyprotein
1& processing
Ll
(L
f o
Rupintrivir - 3CLpro and/or Blocks viral RP Anand et al.?'
ey PLpro replication
A . by inhibiting
\ ~ il polyprotein
sl processing
Nitazoxanide J/" Unknown Slows replication; RP Guo”’
- unknown target
7:\\
\T//"
- t\\
[
NSC-306711 ) Endoribonuclease Viral genomic RNA RP Ortiz-Alcantara
RER LS, NSPI15 degradation by etal®
@ host cellular innate
i immunity blocking
C-473872 ® Endoribonuclease Viral genomic RNA RP Ortiz-Alcantara
NSP15 degradation by etal®
v host cellular innate
wo e immunity blocking
D
QL
e
C-467929 o Endoribonuclease Viral genomic RNA RP Ortiz-Alcantara
' NSPI5 etal®

degradation by

host cellular innate
immunity blocking
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cytokines. Research groups at universities and companies
have used antibodies from recovered COVID-19 patients to
treat new patients. Many of these are at the clinical stage,
while others are still in preclinical phases. The most popular
of these was the use of convalescent plasma developed
early in the course of the COVID-19 pandemic.** Numerous
case series and observational studies have since been pub-
lished with variable results.**® Two published randomized
controlled trials were halted early, one due to concern of a
lack of benefit and the other due to low enrollment.*”*® To
date, one randomized controlled trial has been completed
but did not meet its composite endpoint of progression to
severe disease or all-cause mortality at 28 days; the median
time from symptom onset to administration was 8 days, and
the median antibody titer was 1:40. The results of additional
randomized controlled trials are forthcoming. Questions
remain about the antibody titer that should be used when
treating patients with COVID-19, and if timing of adminis-
tration is an important consideration. In August 2020, the
Food and Drug Administration (FDA) announced an
Emergency Use Authorization (EUA) for convalescent
plasma in patients with COVID-19. On September 23, 2020,
the FDA issued an update on convalescent plasma therapy
for COVID-19. The update included an analysis that sup-
ported the concept of an antibody dose—response effect; the
FDA concluded convalescent plasma “may be effective.”
Another strategy is through using lab-synthesized antibodies
that can neutralize the virus. Most often, antibodies are syn-
thesized through genetically modified mice that are able to
express various antibodies. Our laboratory uses a ribosome
display method to synthesize antibodies against various
pathogens, including the Zika virus, Ebola, and Marburg
virus,*>*® and most recently has focused on SARS-CoV-2.
Antibody therapeutics are of critical importance in the fight
against this pandemic, and thus, in the coming months, we
expect rapid progress to be made through available synthe-
sis methodologies.

Camelid-derived single-domain antibody fragments, also
called VHHs or nanobodies (nAbs), offer several advantages
over conventional antibodies as candidates for specific ther-
apies. Despite being approximately one-tenth of the size of a
conventional antibody, they retain specificity and affinity
similar to conventional antibodies, while being far easier to
clone, express, and manipulate. They are readily expressed in
bacteria in large quantities and show high thermal stability
and solubility, making them easily scalable and cost-effective.
Their modularity means that they can be oligomerized to
increase avidity or to increase serum half-life.>! Critical to
their use as antivirals in humans, they can easily be human-
ized with existing protocols.’? Importantly, they have proven
to be highly potent inhibitors of viral infections in vivo, par-
ticularly respiratory infections.>>>*

nAbs may be an alternative source of treatment against
COVID-19, and various avenues for antibody treatment

(Table 2) are currently being explored, with a surge in
research findings. Unfortunately, the poor cross-neutralizing
efficacy of SARS-CoV-derived antibodies against SARS-
CoV-2 has required additional input to generate new anti-
bodies and improve existing ones. Thus, the shift in attention
toward producing SARS-CoV-2-specific antibodies that
have demonstrated higher neutralizing potential is timely
and imperative. Antibodies such as REGN-COV, BD-23,
CB6-LALA, SARSVHH-72, S309, 47D11, 311 mAb-
31BS5, and 311 mAb-32D4 appear to be particularly promis-
ing for combating the COVID-19 pandemic in view of their
potent in vitro neutralizing activities and/or in vivo protec-
tion efficacies in animal models> (Table 2). Current struc-
tural and sequence comparison-based analyses have
attempted to summarize the various possible mechanistic
reasons why most SARS-CoV-2 and SARS-CoV-derived
antibodies do not cross-react and/or cross-neutralize.>
Gavor et al.>® have offered some insights into what types of
antibodies might cross-react and cross-neutralize SARS-
CoV-2 and SARS-CoV, and these should be further addressed
experimentally. Gavor et al.*’ have also provided a perspec-
tive on the impact of Asp614Gly and other mutations on the
neutralizing effect of current antibodies.

Gavor et al. have considered a platform to easily iden-
tify and choose antibodies that might be tested in a cocktail
against COVID-19 to overcome escape mutant strains. For
example, promising cocktails might include REGN-COV,
414-1 + 553-15, COV2-2196 + COV2-2130, CR3022 +
CR3014, or B38 + H4. The prospect of combining mono-
clonal antibodies (mAbs) 553-15 and S309 with other anti-
bodies in a cocktail is particularly attractive because these
mAbs demonstrate a potent synergistic neutralizing effect
with many of the other antibodies.’®” Moreover, mAb
CR3022 might be combined with mAb COV21, C105, or
B38 in a cocktail because CR3022 does not appear to com-
pete with these three antibodies for binding to the SARS-
CoV-2 S glycoprotein, and therefore might offer synergistic
neutralizing effects.’®> Similarly, the potent NTD-binding
nAb 4A8 might also be considered in a cocktail with RBD-
binding antibodies because 4A8 binding to the NTD leaves
the RBD region of the S glycoprotein free for co-binding
antibodies that might offer additive neutralizing effects. Of
note, in addition to cocktail antibody therapies, a cocktail
with other antiviral drugs such as RDV might be therapeuti-
cally explored against COVID-19. Moving forward, because
antibody-dependent enhancement (ADE) of COVID-19
cannot be reliably predicted after vaccination or antibody
treatment, careful analysis of safety will need to be con-
ducted in humans.

A lot of antibodies have also been repurposed for use
against COVID-19. Many of these antibodies do not have
mechanisms of action relevant to SARS-CoV-2, but rather
to COVID-19 pathology. Researchers have shown that the
infection of SARS-CoV-2 activates CD4+ T lymphocytes,
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which consequently become pathogenic T-helper cells gener-
ating various cytokines.®® This then leads to high expression
of interleukins (ILs) like IL-6 that accelerate inflammation.
A report has shown that IL-6 levels in COVID-19 patients
were significantly elevated,®' suggesting that antibodies tar-
geting the IL-6 receptor may reduce COVID-19 pathology.
Actemra is one of the repurposed antibodies against
COVID-19. Actemra was first approved in Japan in 2005
as a treatment for rheumatoid arthritis and cytokine release
syndrome.®? As severe cytokine release is part of COVID-19
pathology, Actemra may help reduce symptomatic expres-
sion of the disease. Kevzara is another antibody repurposed
to treat COVID-19. It was first approved in the United
States in 2017 for the treatment of rheumatoid arthritis.®
Several Kevzara clinical trials are ongoing or are expected
to start in the near future (i.e., NCT04315298, NCT043
21993, and NCT04324073).

Vaccines against SARS-CoV-2

A vaccine is of utmost importance to fully defeat the
COVID-19 pandemic. Presently, there are more than 120
different vaccines being developed. There are different vac-
cine platforms that are currently being tested, some of
which have not been tested in clinical settings before. Virus-
like particle (VLP) vaccines consist of manipulated viral
shells that mimic the viral structure but are not infectious
because they lack the natural genetic material. They are
used to prime the immune system by eliciting a strong
immune response. Protein subunit-based vaccines consist
of several viral proteins with an adjuvant that are expected
to elicit an immune response, though several doses may be
required. DNA- and RNA-based vaccines use modified
nucleic acid scripts that encode a SARS-CoV-2 protein.
Several of these vaccines encode and produce several cop-
ies of the SARS-CoV-2 S protein. There are also many vac-
cines that are viral vector based, including replicating viral
vector and nonreplicating viral vector vaccine platforms.
Replicating viral vector vaccines utilize weakened patho-
gens such as measles and horsepox, which can encode and
express various structural proteins of the SARS-CoV-2
virus through viral replication. This methodology can pro-
voke a strong immune response, but existing immunity
to the viral vector can subdue the vaccine’s efficacy.
Nonreplicating vector vaccines are like the latter but utilize
different vectors, such as adenoviruses, which do not induce
a great immune response. Although no licensed vaccines use
this methodology, adenoviruses have been widely used in
gene therapy. Vaccines will be necessary both for individual
protection and for the safe development of population-level
herd immunity.

Public—private partnership collaborative efforts, such as
the Accelerating COVID-19 Therapeutic Interventions and
Vaccines mechanism, are key to rapidly identifying safe and

effective vaccine candidates as quickly and efficiently as
possible. Table 3 shows several vaccines that are in pre-
clinical or various phases of clinical trials. There are several
more vaccines that are being developed that are in the pre-
clinical phase. Several of these vaccines use methodologies
that have never been used in a viral candidate, so there is
uncertainty with regard to their utilization in the clinical
sphere.

The vaccine mRNA-1273 was developed by the National
Institute of Allergy and Infectious Diseases (NIAID) and the
company Moderna. This vaccine uses messenger RNA to
express SARS-CoV-2 proteins.** This was the first vaccine
to be tested in clinical trials in the United States. The first
participant was administered this investigational vaccine on
March 16, 2020. The ChadOx1 nCoV-19 vaccine candidate
was developed at the University of Oxford Jenner Institute.®
This vaccine uses an adenovirus vector to induce a protec-
tive immune response. The ChadOx1 platform has been
used to develop investigational vaccines against several dif-
ferent pathogens, including MERS-CoV. Recently, it was
found that the vaccine was effective in tests on macaques
and showed no viral replication within the lungs.®® Ad5-
nCoV was the first SARS-CoV-2 vaccine tested in Chinese
clinical trials. This vaccine candidate is also adenovirus vec-
tor based (type 5 vector) and expresses the SARS-CoV-2 S
protein.®” It was developed by CanSino Biologics Inc. in
Tianjin, China. The AAVCOVID vaccine candidate was
developed in the laboratory of Luk Vandenberghe at
Massachusetts General Hospital. This vaccine uses an
adeno-associated virus (AAV) vector that expresses the
SARS-CoV-2 S protein. AAV technology has been exten-
sively used in the field of gene therapy, and this lab is a
leader in the realm of AAV. This vaccine is expected to reach
clinical trials by the end of 2020 (https://www.masseyean-
dear.org/news/press-releases/2020/05/mee-and-mgh-
advancing-aavcovid-vaccine). In late June 2020, the clinical
trial of an RNA-based vaccine, LNP-NCOVsaRNA, from
Imperial College London started off in the United Kingdom
(trial registration no.: SRCTN17072692). The self-replicat-
ing RNA vaccine relies on the encoded S protein from the
envelope of SARS-CoV-2 and should induce immunity in
recipients without causing COVID-19.

To date, just two coronavirus vaccines have been approved.
Sputnik V—formerly known as Gam-COVID-Vac and devel-
oped by the Gamaleya Research Institute in Moscow—was
approved by the Ministry of Health of the Russian Federation
on August 11% (Table 3). Experts have raised considerable
concern about the vaccine’s safety and efficacy given it has
not yet entered phase 3 clinical trials. A second vaccine in
Russia, EpiVacCorona (ClinicalTrials.gov ID: NCT04527
575), has also been granted regulatory approval, also without
entering phase 3 clinical trials (Table 3).

Several antibodies have been identified to target different
domains of SARS-CoV-2 and are effective in neutralizing

(text continues on p. 16)
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SARS-CoV-2 (Table 2). These antibodies may have the
potential to treat SARS-CoV-2-infected patients, and future
work to define these antibody epitopes will further aid
vaccine development. The experimental and clinical results
of some vaccine candidates, such as BBIBPCorV and
PiCoVacc, were reported, with most vaccines showing neu-
tralizing capacity.” For vaccine development, it is critical to
generate protective T- and B-cell immune responses. The S
protein has been shown to be the most potent antigen for
SARS-CoV and MERS-CoV vaccines, and we hypothesize
this may be similar for SARS-CoV-2 vaccines. However, the
immunopathology induced by SARS-CoV or MERS-CoV
vaccines was observed in animal models, which might be
attributed to ADE, an aberrant Th2 response partially due to
the N protein, as well as other unknown reasons.®

The mechanisms underlying this immunopathology
deserve further investigation, which may provide instruc-
tive guidance for the future development of SARS-CoV-2
vaccines. Apart from immunopathology, other important
questions remain to be addressed, such as how to protect the
population vulnerable to lethal human CoVs, such as the
elderly, and how best to provide protection against variant
and heterologous CoV strains. Recently, hACE2 transgenic
mice were developed that could be infected by SARS-
CoV-2 and generated typical pathology that were similar to
those of COVID-19 patients.””’! Rhesus macaques infected
by SARS-CoV-2 also exhibited humoral and cellular
immune responses and were protected from rechallenge.”
In essence, it is equally important to identify the ideal ani-
mal model for evaluating potential SARS-CoV-2 vaccines.

Summary

The spread of SARS-CoV-2 continues to cause problems to
health systems and economies worldwide. There is currently
no available vaccine against it that has passed the required
clinical trials and received approval for use. However, only
two drugs have emerged as effective treatments to combat it:
the steroid drug dexamethasone, for critically ill patients on
ventilators, and the antiviral drug RDV, for less critical cases,
shortening the disease period. The international scientific
community has intensified efforts on vaccines and therapeu-
tic research at an unprecedented pace, and collaborations or
formations of consortiums have allowed such speed in scien-
tific advancement to take place. For antivirals against SARS-
CoV-2, the development and clinical approval of novel
compounds that specifically target SARS-CoV-2 will require
an extended period of preclinical testing before they can enter
clinical trials. The COVID-19 pandemic is a large-scale
emergency and warrants the rapid use of already approved
drugs that can be repurposed for its treatment. This strategy is
what has facilitated the trials and uses of RDV, HQC, CQ,
LPV, Avigan (favipiravir), and dexamethasone to treat
COVID-19 in emergencies. It is expected that more effective

drugs against SARS-CoV-2 will be found in the near future.
Convalescent plasma may be used in the United States to
treat hospitalized patients under an EUA or an Investigational
New Drug (IND) application. “Adequate and well-controlled
randomized trials remain necessary for a definitive demon-
stration of COVID-19 convalescent plasma efficacy and to
determine the optimal product attributes and appropriate
patient populations for its use,” according to updated guid-
ance issued by the FDA on September 2. While the world is
transfixed by the high-stakes race to develop a COVID-19
vaccine, an equally crucial competition is heating up to pro-
duce targeted antibodies that could provide an instant immu-
nity boost against the virus. Clinical trials of these mAbs,
which could both prevent and treat the disease, are already
underway and could produce signs of efficacy in the next few
months, perhaps ahead of vaccine trials. In conclusion, we
have listed the possible therapies, many of which are being
tested in clinical trials and some that still need more testing.
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