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Biological functionality arises from the complex interactions of simple components. Emerging behaviour is difficult to recognize
with verbal models alone, and mathematical approaches are important. Even few interacting components can give rise to a wide
range of different responses, that is, sustained, transient, oscillatory, switch-like responses, depending on the values of the model
parameters. A quantitative comparison of model predictions and experiments is therefore important to distinguish between
competing hypotheses and to judge whether a certain regulatory behaviour is at all possible and plausible given the observed
type and strengths of interactions and the speed of reactions. Here I will review a detailed model for the transcription factor σF , a
regulator of cell differentiation during sporulation in Bacillus subtilis. I will focus in particular on the type of conclusions that can
be drawn from detailed, carefully validated models of biological signaling networks. For most systems, such detailed experimental
information is currently not available, but accumulating biochemical data through technical advances are likely to enable the
detailed modelling of an increasing number of pathways. A major challenge will be the linking of such detailed models and their
integration into a multiscale framework to enable their analysis in a larger biological context.

1. Introduction

The success of modern physics came about by a fruitful com-
bination of theory and experiment. Models in physics suc-
ceed, in general, in predicting experimental results quanti-
tatively. Where applicable, concepts from physics and chem-
istry have also greatly helped to understand biological mech-
anisms, the generation of ATP by coupling phosphorylation
to an electrochemical concentration gradient [1], the emer-
gence of action potentials based on changes in membrane
conductivity [2], and the kinetics of enzymatic reactions [3],
among many others. However, in most cases it is the regula-
tory structure that emerges from a complex network of pro-
tein and gene interactions that determines biological func-
tionalities and appearances. Jacob and Monod were the first
to recognize the regulatory logic of a gene regulatory network
[4], a network that has since attracted numerous computa-
tional studies and has led to the discovery of many important

concepts in molecular biology [5]. Further theoretical studies
have established the basic requirements for a range of quali-
tative properties of the regulatory system, that is, its ability to
show transient, sustained, or oscillatory responses, or to be
sensitive or robust to molecular noise [6, 7]. While the basic
requirements are now mostly understood, their functioning
in the complex setting of a cell has remained hazy.

Careful experiments in biochemistry, genetics, and
molecular biology have defined the key signaling pathways
and networks that regulate biological responses and have
provided information about the mode of interaction as well
as about the kinetics of catalysed reactions. The discovered
pathways and core networks are typically limited to less than
ten components and can therefore be captured by simple car-
toons as depicted in Figure 1 for the network that regulates
the transcription factor σF during sporulation in Bacillus
subtilis. In spite of much detailed information, mechanisms
that emerge from the dynamic interaction of components, it
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Figure 1: The regulation of the transcription factors σF during sporulation in Bacillus subtilis. (a) Differential cell fate during sporulation
in B. subtilis: in response to starvation, B. subtilis divides asymmetrically and σF becomes active in the smaller compartment. (b) The
regulatory networks that controls σF . (c) A contact map of the regulatory network. All possible interactions between regulatory components
are indicated. Boxes represent complexes. Circles represent binding sites, and connecting lines indicate binding interactions. Circles that are
both black and white demonstrate binding sites for competing ligands. (a) and (b) have been reproduced from [47].

can be difficult to derive by verbal reasoning alone, in par-
ticular when the regulatory mechanism is sensitive and thus
requires only small changes in the regulatory parameters.

Mathematical models can be employed to integrate
the available information into a formal framework that is
amenable to the complexity of biological reality. The level
of detail of a model is dictated by the question under inves-
tigation and by the type of data that is available to test the
model with. Many theoretical studies make use of simplified
phenomenological models since they can be analysed and
explored more comprehensively. Since the parameters in
phenomenological models typically do not directly relate
to measurable quantities, it is, however, difficult to assign
realistic values to the parameters in these models. The extent
of cooperativity in binding interactions and the resulting
nonlinearity are often overestimated and a separation of time
scales is assumed when this is not warranted. To understand
the mechanistic details of biological regulation to an extent
that the system can be externally controlled and manipu-
lated typically requires a more quantitative understanding
[8]. A quantitative comparison of model predictions and
experiments may also be necessary to distinguish between
competing hypotheses and to judge whether a certain
regulatory behaviour is at all possible and plausible given the
observed type and strengths of interactions and the speed
of reactions. We will illustrate the use of both detailed,
quantitative as well as phenomenological, qualitative models
by discussing the regulatory control of σF during sporulation
in Bacillus subtilis.

2. Cell Differentiation in Bacillus subtilis

Sporulation in B. subtilis is one of the best understood
examples for cell differentiation and development and has

provided a paradigm for asymmetric cell division and
differential cell fate decisions in genetically identical sister
cells [9]. In response to starvation, B. subtilis can initiate a
cellular program that leads to asymmetric cell division and
to the subsequent differentiation of the smaller compartment
(prespore or forespore) into an endospore that can withstand
and survive particularly harsh conditions (Figure 1(a)). The
larger sister cell develops into an altruistic mother cell that
supports the development of the prespore. The different fates
of the two compartments are sealed when the transcription
factor σF is activated in the smaller but not in the larger
compartment [10–12]. The network that controls σF activity
is simple (Figure 1(b)) and has been known for a long
time [12]. Yet how compartment-specific activation of σF is
achieved has long remained elusive.

The transcription factor σF is controlled by a 3-
component network which comprises the kinase SpoIIAB
(AB), the phosphatase SpoIIE (IIE), and the common sub-
strate SpoIIAA (AA) [13–17]. AB sequesters σF in an inactive
complex [16, 18], and binding of AA leads to the rapid release
of the transcription factor [19–21]. AB then uses the ATP in
its nucleotide-binding pocket to phosphorylate AA [16, 22,
23]. Phosphorylation causes a rapid dissociation of AA, and
AA needs to be dephosphorylated by the phosphatase IIE
[13–15] before it can bind to AB and release σF . To rebind
σF with high affinity AB needs to exchange ADP for ATP
in its nucleotide-binding pocket [23, 24]. Binding of AA to
ADP-bound results in the sequestration of AB in a stable,
long-lived complex because AA cannot be phosphorylated
[23, 25, 26].

Before septation most AA is phosphorylated [23, 27].
Upon septation, the phosphatase IIE accumulates on the
septum between mother cell and prespore [13, 28], and
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unphosphorylated AA emerges [23, 27]. It has remained
controversial whether IIE preferentially accumulates on the
side of the septum that faces the prespore compartment [28–
34]. However, because of the difference in size, the activity
of the phosphatase increases in the smaller compartment
also when IIE accumulates homogenously on both sides of
the septum [13, 28]. Since such increase would, however,
be small (about 4-fold), based on verbal reasoning, it
remained unclear whether the resulting higher concentration
of unphosphorylated AA would be sufficient to trigger σF

release in the smaller compartment. A number of alternative
mechanisms have been considered.

A transient imbalance between mother cell and prespore
was proposed to arise from a transient unequal distribution
of the chromosomes. The chromosomal part that encodes
the genes for AA, AB, and σF (spoIIA operon) remains in the
mother cell for the first 10–15 minutes after septation [35].
As a result AA, AB, and σF can initially not be expressed in
the prespore, and it has been suggested that this may lead to
a relative increase in the concentration of the phosphatase
relative to these components [36]. The expression of spoIIA
may also be repressed in the prespore compartment by
emerging unphosphorylated AA, a potent inhibitor of Spo0A
activation [37].

Further contributions have been proposed to enhance
any small asymmetries. Firstly, a starvation-induced drop in
the ATP concentration has been suggested to hamper the
ADP-ATP exchange at the catalytic side of AB [25]. Since
ADP-bound AB needs to exchange ADP for ATP to avoid
sequestration in an inactive complex with AA, it has been
argued that a starvation-induced drop in the ATP concen-
tration might favour σF release [25]. The physiological range
within which the ATP concentration changes is, however,
small (0.8–3 mM) [38–40]. Additionally, the protease ClpCP
has been found to target unbound AB for degradation, and
this has been suggested to lower the concentration of AB that
is available to rebind σF after AA-induced dissociation of the
complex [41, 42]. Recently, it has been suggested that ClpCP
acts preferentially in the forespore and that this may bias σF

release to this compartment [43]. However, the AB half-life
of about 28 minutes is much longer than the time within
which active σF first emerges in the cell (10 minutes).

In spite of many elegant experiments, it remained
impossible to judge whether the aforementioned contri-
butions would be sufficient to enable septation-dependent
and compartment-specific σF release, or whether further
important regulatory interactions had been overlooked.
Moreover, the distinct contributions of the many effects
to the physiological regulation of σF remained difficult
to evaluate with verbal models. Mathematical methods in
combination with experiments were thus the method of
choice to address the problem.

3. The Development and Validation of
a Mathematical Model

The regulatory system was particularly amenable to a
quantitative analysis because all network components could

be purified and the network could therefore be reconstituted
in the test tube [44, 45]. This permitted us to develop a com-
prehensive differential equation model that would include
all states and reactions of the test tube network [46, 47].
As we intended to create a quantitative, predictive model,
it was important to move away from phenomenological
descriptions to a detailed, mechanistic model that considered
all binding reactions and conformational changes explicitly.
Figure 1(c) shows a contact map of all possible regulatory
interactions in the network. Accordingly, all parameter values
corresponded to a physical entity and could be determined
from experimental in vitro data. The detailed model for the
small regulatory network with only four components (plus
the RNA polymerase and the housekeeping transcription
factor σA for the cellular model) eventually comprised more
than 150 reactions that gave rise to a set of about 50
differential equations. The reaction kinetics depended on
about 30 independent parameter values that we measured in
experiments. While we took great care to validate the model
with experimental data, there always remain concerns with
regard to the estimated parameter values. Does the optimized
parameter set represent biological reality or are conclusions
misguided by errors in the data and limitations in the
parameter estimation? Parameter estimation procedures for
such large systems are prone to be trapped in a local
parameter optimum. To address such concerns, we have
recently conducted a wider parameter screen where we
searched within a larger parameter space for parameter
combinations that would capture the in vitro data (Iber,
unpublished results). We noticed that about 20–30% of the
parameter sets that fitted the in vitro behaviour reasonably
well captured also the in vivo behaviour. Only when we
required a very accurate fit to the experimental data did
we obtain a 100% success rate in our predictions of the in
vivo behaviour. This stresses the importance of high quality,
quantitative data to extract meaningful insight from a model.

4. The Predictive Power of Quantitative Models

Based on the fully parameterized and validated model, we
predicted that the difference in cell size would be sufficient
to determine cell fate [47]. A 2.5-fold increase in the phos-
phatase concentration was sufficient to trigger the appear-
ance of micromolar concentrations of RNA polymerase-σF

holoenzyme in the model (Figure 2). The model was not only
validated with in vitro data but also succeeded in predicting
the phenotypes of all mutants for which quantitative data
was available [46, 47]. This was important because it
enabled us to show that also those experiments that had
led to alternative proposals could be reproduced with our
model, and that the other proposed mechanisms would not
contribute significantly to the control of σF release under
physiological conditions (i.e., for physiologically realistic
parameter values). Thus neither the proposed temporal
imbalance in gene expression [36] nor AB degradation [41,
42] is relevant on the time scale on which σF becomes
active [46, 47]. Equally the same response is attained for the
entire range of physiological ATP concentrations. A lower
starvation-induced ATP concentration, therefore, does not
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Figure 2: The regulation of the transcription factors σF during sporulation in Bacillus subtilis. (a) The solid lines show the concentration
of RNA polymerase-σF holoenzyme before and after septation (time 0). Septation was modelled as a 4-fold increase in the concentration
of the phosphatase IIE. The dashed lines show the model prediction if AB is not allosteric with both AA and σF binding with high affinity.
(b) Predicted concentration of σF (lower curves) or σA (upper curves) RNA polymerase holoenzyme formed 90 min after septation, as
a function of an increase in IIE (including IIE complexed with AA-P) relative to the other sporulation proteins after 120 min of protein
expression, assuming that AB is allosteric (continuous lines) or not allosteric with both AA and σF binding with high affinity (dashed lines).
(a) and (b) have been reproduced from [47].

play a role in σF activation [25]. Once we had shown that
the regulatory interactions in Figures 1(b) and 1(c) were
sufficient to explain septation-dependent σF activation, the
model could be used to explain how this extraordinary high
sensitivity to changes in the phosphatase concentration could
be achieved. We realised that a combination of allosteric
effects and enzyme saturation enables this high sensitivity
with a small 3-component network.

4.1. Allosteric Effects. Allosteric effects (and the resulting
cooperativity) have long been recognised to enable increased
sensitivity [49]. Allosteric enzymes harbour several ligand-
binding sites and the different conformations that the protein
can assume bind ligand with different affinities Ki. Ligand
binding alters the conformational equilibrium and therefore
either increases or reduces the affinity of binding, resulting
in either positive or negative cooperativity, respectively [3].
This is illustrated in Figure 3(a) by example of the AB protein
which has two binding sites for AA. Unbound AB is mainly
in a conformation (denoted by squares in Figure 3(a)) that
binds AA with low affinity, that is, the AB-AA off-rate is
large. Binding of the first AA alters the conformational
equilibrium in that a higher fraction of AB now attains
a conformation (denoted by rhombs in Figure 3(a)) that
binds AA with high affinity, that is, low AB-AA off-rate
(grey arrows in Figure 3(a)). This favours the binding of
a second AA. As a result little AB is bound at low AA
concentrations. Once a critical AA concentration is reached
to enable binding of the first AA, binding of the second
AA is facilitated by the conformational change. As a result
the binding profile changes from mainly unbound to mainly
bound over a smaller AA concentration range (Figure 3(b),
solid line) compared to a mechanism where the binding of

the two ligands is independent (Figure 3(b), broken line). In
phenomenological models, Hill functions of the form y =
[X]n/(Kn + [X]n) are typically used to model the fraction of
allosteric protein (enzyme) binding sites y that are bound
by ligand X . The Hill constant K denotes the ligand con-
centration X at which half of the allosteric binding sites are
bound by ligand, while the Hill coefficient n determines the
sensitivity to the ligand concentration. Often this sensitivity
is overestimated by using large n. However, n cannot be larger
than the total number of ligand-binding sites, and typically
is much smaller; a more detailed discussion can be found
in standard text books in mathematical biology and protein
science [3, 50]. Figure 3(b) illustrates that even though
the different sensitivities of the allosteric and independent
binding mechanism can easily be noted, the difference is not
particularly large for physiological parameters.

We discovered a sophisticated modification of the stan-
dard allosteric mechanism that can lead to a particularly
sensitive switch-like behaviour (Figures 3(c) and 3(d)). AB
is an unusual allosteric protein in that the dimer binds two
different ligands, AA and σF (Figure 3(c)). There is only one
binding side for σF , which binds across the interface of the
dimer, while there are two binding sites for AA [51]. Only AA
induces a conformational change in the AB dimer, but this
conformational change also alters the AB-σF affinity. Impor-
tantly the AA-induced conformational change enhances the
AA-AB affinity but lowers the AB- σF affinity. Accumulation
of AA, therefore, biases AB to a conformation that binds σF

with low affinity and thus facilitates its release. This change
in AB-σF affinity not only enhances the sensitivity of σF to
a change in the AA concentration (Figure 3, compare solid
(change in AB-σF affinity) and broken (only high AB-σF

affinity) lines in panel (d) but also enhances the sensitivity
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Figure 3: Allosteric interactions enhance sensitivity. (a) The interactions between AB (red) and AA (blue) constitute an allosteric binding
mechanism. At low AA concentrations little AA can bind to AB. As the AA concentrations increase, more AB-AA complexes form (1).
Binding of AA biases the AB dimer into a different conformation (2) that binds AA with high affinity, and a second AA binds to the AB
dimer (3). (b) The allosteric binding mechanism enhances the sensitivity to changes in the AA concentration. The solid line shows the
fraction of AA-saturated AB dependent on the AA concentration when we use the physiological affinities. The dashed line shows the fraction
of AA-saturated AB if AB had only one conformation and interacted with AA with high affinity. (c) The interactions between AB (red), AA
(blue), and σF (green) lead to a sophisticated allosteric control mechanism. At low AA concentrations σF can bind to AB (1). As the AA
concentrations increase, AB-σF-AA complexes form (2). Binding of AA biases the AB dimer into a different conformation (3) that binds σF

with low and AA with high affinity. σF thus rapidly unbinds (4) and a second AA binds to the AB dimer (5). (d) The sophisticated allosteric
binding mechanism enhances the sensitivity to changes in the AA concentration. The solid line shows the fraction of unbound σF dependent
on the AA concentration when we use the physiological affinities. The dashed line shows the fraction of unbound σF if AB had only one
conformation and interacted both with σF and AA with high affinity.

of the AB-σF complex towards changes in the AA concen-
tration (Figure 3(d), solid line) beyond that of the AB-AA
interaction (Figure 3(b), solid line). This particular allosteric
mechanism thus greatly enhances the sensitivity of the AB-
σF complex to AA (Figure 3, compare panels (b) and (d) to a
switch-like response and explains the rapid, AA-induced dis-
sociation of AB-σF that is observed in experiments [19–21].

4.2. Bistability and Hysteresis. A switching behaviour during
cell differentiation has also been accounted to bistability [52].

Bistability arises when a dynamic system has more than one
steady state and a change in a so-called bifurcation parameter
that either renders the current steady state unstable or
removes it altogether [53]. The system then jumps from the
initial steady-state branch to a new branch as the bifurcation
parameter passes the bifurcation point. Since the change
happens at a single point the systems is highly sensitive to
changes in the bifurcation parameter close to this bifurcation
point. In case of hysteresis, the system does not switch back at
the same bifurcation point. A larger change in the bifurcation
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parameter is required to bring the system back to its initial
state, and it is possible to generate systems that do not switch
back within the physiological parameter range. Given the
combination of high sensitivity and robustness, bistability
and hysteresis provide an attractive mechanism to explain
cell differentiation [54, 55].

Bistability has also been argued to be important for
heterogeneity in cellular decision making. Since two stable
steady states exist in a bistable system, molecular noise can
result in a heterogenous fate within a cellular population.
As a result not all members of a population take the same
differentiation path and changes in external conditions can
be withstood more easily on the population level (bet-
hedging strategy) [56]. A bimodal response has indeed
been observed also in starving B. subtilis cultures, and it
is thought that the bimodal activation levels of the Master
transcription factor Spo0A are the result of both negative
regulatory effects of phosphatases such as Spo0E and RapA
and autostimulatory Spo0A loops [57–59]. Activation of
Spo0A affects the transcription of more than 100 genes,
among these the spoIIA operon and spoIIE [60].

The analysis of greatly simplified, phenomenological
models suggests that also the σF signaling network exhibits
bistability and hysteresis [61, 62]. A bimodal activation pro-
file of σF would, however, be detrimental because asymmet-
ric septation and compartment-specific activation of σF hap-
pen only about 2 hours after Spo0A has first been activated.
At this time, the cell is already fully committed to the sporu-
lation program and failed activation of σF will result in cell
death. Bistability is a steady-state behaviour, but more than
the steady-state behaviour the rapid kinetics appear to be
particularly important in the regulation of σF . σF is activated
within 10 minutes of septum formation and mainly serves to
initiate compartment-specific programs of gene expression
both in the prespore and in the mother cell [63]. Spores have
typically already been engulfed within another 90 min [64].
The entire sporulation process takes about 6–8 h [65].

The current focus of mathematical models on the steady-
state behaviour mainly stems from the lack of good analytical
techniques to investigate the dynamical behaviour. Given
the likely importance of pre-steady-state dynamics in many
cellular signalling systems, a greater focus on the dynamical
aspects will be important to understand the details of
biological regulation.

4.3. Ultrasensitivity. Almost 30 years ago, Goldbeter and
Koshland coined the concept of an ultrasensitive response
[66]. In an ultrasensitive system, minute changes in enzyme
activity can lead to the full activation or deactivation of a
downstream system. While similar in effect, the mechanisms
of bistable and ultrasensitive responses are fundamentally
different. Unlike in bistable systems where the system jumps
between two steady states, in an ultrasensitive system the
steady state itself changes its value rapidly as the enzyme
activities are altered. Moreover, ultrasensitive systems cannot
exhibit hysteresis and are therefore not robust to a subse-
quent removal of signal. Robustness to a subsequent removal
of signal may, however, not be particularly important during
spore formation since once the septum is formed the proteins

are confined to their compartments. Rather robustness to
noise in gene expression can be expected to be crucial and
we will discuss mechanisms to address this aspect in a later
part of this paper.

As an example for an ultrasensitive response, Goldbeter
and Koshland considered two enzymes with opposing activ-
ity (e.g., kinase/phosphatase, methylase/demethylase, etc.)
that act on a common substrate X that exists in two states,
say X and Xp (Figure 4(a)). In the Goldbeter-Koshland
model, the kinetics of the common substrate are described
by Michaels-Menten-type kinetics, that is,

dX

dt
= ν1E1

Xp

Xp + K1
− ν2E2

X

X + K2
. (1)

A sensitive, switch-like response can be obtained when
both enzymes (phosphatase E1, kinase E2) are saturated (i.e.,
their Michaelis-Menten constants are low relative to the
substrate concentrations (K1/Xp � 1, K2/X � 1) as is
achieved by a high affinity of binding and a low maximal
catalytic rate (ν1, ν2)).

Suppose the common substrate, X , is mostly phospho-
rylated (i.e., vmax, the maximal rate times the enzyme con-
centration (vmax = νi × Ei), is higher for the kinase (vmax 2 >
vmax 1)). If both enzymes are saturated with substrate, then
increasing the activity of the enzyme with the lower vmax

(here the phosphatase) will lead to an increased substrate
concentration (unphosphorylated protein in this case) for
the enzyme with the higher vmax (here the kinase). However,
since the kinase is already saturated with substrate, this will
not enhance the rate at which proteins are phosphorylated.
If the vmax of the phosphatase is sufficiently increased so
that its vmax is now higher than that of the kinase, then the
proteins will switch from being mainly phosphorylated to
being mainly unphosphorylated. Even a small increase in the
phosphatase concentration can be sufficient to trigger such a
switch if the vmax of the two enzymes are similar to start with.
This then results in the observed ultrasensitivity to small
changes in enzyme activity.

The model predicted (and experiments confirmed) that
the maximal turn-over rate of SpoIIE is very low [47]. As
a result, about 60% of the phosphatase is predicted to be
bound by its substrate at the time of septation (time t =
0, Figure 4(b)) even though the affinity of binding is low
(∼10 micromolar [47]). Accumulation of the phosphatase
on the septum then leads to the simultaneous accumulation
of substrate and thus to a strongly increased rate of AA
emergence (Figure 4(c), blue line). Unlike in the Goldbeter-
Koshland model, the kinase AB is not at all saturated with
its substrate AA, and the emerging AA therefore results also
in an increase in kinase activity (Figure 4(c), green line).
However, the increase in kinase activity is smaller than the
increase in phosphatase activity and since the two activities
were rather similar before septation the change is sufficient
for the phosphatase to suddenly dominate (Figure 4(d), blue
line) and free σF emerges that binds to the RNA polymerase
holoenzyme (Figure 4(d), green line).

The activity of the AB kinase is limited also by seques-
tration of the ADP-bound form in a complex with AA
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Figure 4: The σF response as an ultrasensitive response. (a) The phosphorylation and dephosphorylation reactions of AA by AB and IIE,
respectively, enable an ultrasensitive response. (b) The fraction of IIE that is bound in IIE/AA-P complexes over time. (c) The rate of AA-P
dephosphorylation (blue line) is lower than the rate of AA phosphorylation (green line) until septation (time t = 0). (d) The relative rate of
AA-P dephosphorylation and AA phosphorylation (blue line) is close to but below 1 until septation (t = 0). The stronger increase in the rate
of AA-P dephosphorylation then leads to the accumulation of free σF and binding to the RNA holoenzyme (green line). Septation (a 4-fold
increase in the IIE concentration) takes place at time t = 0 in all panels.

(Figure 5). Activation of the transcription factor is possible
also without such a sequestration step if the phosphatase
activity can be raised to higher activities. This has been
realised in a network that is based on homologous proteins
and that achieves activation of the transcription factor σB

without forming much complex between the ADP-bound
kinase and its substrate (Iber, unpublished results).

4.4. Economic Efficiency. Formation of the inactive complex
between the ADP-bound kinase and its substrate serves a
second important function, conservation of energy. Sporu-
lation is a response to starvation, and it is therefore expected
that the bacterium will limit its energy expenditure. How-
ever, activation of σF during sporulation requires the AA-

dependent release of the transcription factor σF which results
in AA phosphorylation and ATP expenditure. Importantly
AA binds ADP-bound AB with high affinity, and binding
of AA to AB-ADP prevents the exchange of ADP and ATP
in the nucleotide-binding pocket. Since the ADP form of
AB cannot phosphorylate AA, AA-AB-ADP complexes are
rather stable and can act as a sink that sequesters AB
and prevents it from rebinding σF (Figure 5(a)). Cycles of
ATP-consuming AA-dependent σF release and rebinding
are, therefore, avoided once AA-AB-ADP complexes form.
The model indeed predicts that the amount of ATP that
is required to keep one σF released drops some hundred
folds upon septation (Figure 5(b), green line) as complexes
between ADP-bound AB and AA emerge (Figure 5(b), blue
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Figure 5: Economic efficiency. (a) Binding of AA to ADP-bound AB
reduces the amount of active kinase and thus slows down the cycles
of phosphorylation and dephosphorylation of AA. (b) The amount
of ATP per σF released per minute drops sharply as the fraction of
AB that is sequestered in inactive AB-ADP-AA complexes sharply
increases at the time of septation (time t = 0).

line) [23, 25, 26]. In the homologous network that controls
σB activity, such complexes are barely formed and almost
a 100-fold more ATP is necessary to keep the transcription
factor active (Iber, unpublished results). The advantage of the
added energy expenditure is that the response can be reversed
faster when conditions change.

4.5. The Evolution of Operons. Protein expression is impor-
tant both in the regulation of σF and σB. Intriguingly, both
in the σF and in the σB network the transcription of the genes
for the kinase, its substrate, and the transcription factor (but
not the gene for the phosphatase) is linked by organization
into an operon (Figure 6(a)). The formation and mainte-
nance of operons has intrigued evolutionary biologists ever
since their first discovery, and many theories have been put
forward. Jacob and Monod proposed that the benefits of
cotranscription drive operon formation [4]. Other models
that focus on genetic rather than functional aspects have
since been proposed to explain the selective advantage of
operons, that is, the natal model, the Fisher model, and the
selfish-operon model. According to the natal model, gene
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Figure 6: Operons and molecular noise. (a) The spoIIA operon
comprises the genes for SpoIIAA, SpoIIAB, and σF . The genes
for SpoIIAA and SpoIIAB overlap; the genes for SpoIIAB and σF

are separated by 11 bp. The impact of stochastic variation in gene
expression on sporulation efficiency. (b) The fraction of successful
sporulation events depend on the variance in gene expression if
expression of the spoIIA genes is either coupled (black lines),
the expression of SpoIIAB and σF is coupled (grey lines), or the
expression of SpoIIAA and σF is coupled (blue lines). The broken
lines show the effect of an additional independent normal variation
in the rate of σF expression from the coupled rates. (a) and (b) have
been reproduced from [48].

clustering is the consequence of gene duplication. However,
since many operons comprise genes that belong to very
distant families and the majority of paralogues do not cluster,
this model is insufficient to explain the existence of operons
[67, 68]. Similarly the selfish-operon model, which proposes
that the organization of genes into operons facilitates the
horizontal transfer of functionally related genes [67], does
not agree with the observed gene cluster pattern [69, 70].
The Fisher model, applied to prokaryotes, proposes that
clustering of genes reduces the likelihood of coadapted
genes to become separated by recombination. However, since
recombination is as likely to generate as to destroy clusters,
this does not explain how operons can emerge.

Co-transcription provides a number of potential selec-
tive advantages. When the genes of a protein complex
are encoded by an operon, co-transcription enables co-
translational folding [68], it limits the half-life of toxic
monomers [69], and its reduces stochastic differences in gene
expression [71]. Operons that do not code for interacting
proteins may be advantageous because proteins act in a
cascade where they are required in defined ratios as is the case
for metabolic operons [70, 72]. Evidence in favour of any of



Advances in Bioinformatics 9

the proposed driving forces has mainly been obtained from
comparative genomics.

We used our quantitative model to study the benefit of
such an operon organization and noticed that in the presence
of molecular noise this genetic linkage significantly increases
the survival probability [48]. We compared the fraction of
simulation runs with successful σF activation upon septation
(increase in IIE concentration) when the expression of AB,
AA, and σF was either correlated (Figure 6(b), black curve)
or one of the three proteins was expressed independently.
Since in experiments those independently expressed proteins
were expressed with the same promotor, the expression
rates were all drawn from a Gaussian distribution with the
same mean and variance. The model predicted that at a
physiological level of variance in protein expression (i.e., η ∼
0.6 [73]), independent expression of AB (while AA and σF

expression remained coupled) would lower the sporulation
efficiency to 40–80% (Figure 6(b), blue curve), even if the
same promotor (same mean and variance) was used. Such a
lower sporulation efficiency has indeed been observed when
the gene for AB was moved out of the operon and was
expressed independently with the same promotor [74]. The
model further predicted that the separate expression of AA
(while AB and σF expression remained coupled) would have
a similar, yet milder effect (Figure 6(b), grey curve) as indeed
observed in experiments. Independent expression of σF is
not as detrimental. This may be important since the 11
basepair distance between the AB and the σF genes is likely
to introduce additional noise in the translation of the mRNA
into proteins. Here it is interesting to note that unlike the
genes for AB and σF the genes for RsbW and σB overlap
and the model for the σB network predicts that the relative
concentration of the transcriptional factor σB and the other
components is more important than in the σF network (Iber,
unpublished results).

Taken together, it appears that at least in the models
for the σF and σB networks operon formation strongly
increases fitness (survival) by reducing the detrimental
impact of noise in gene expression. The reason for this is
that the activity of the transcription factor is determined
mainly by the relative concentrations of the kinase and its
substrate and to a lesser extent by the concentration of the
transcription factor itself. As a consequence, even relative
small, uncorrelated fluctuations in these expression rates
during the 2 hours prior to septation will result either in pre-
septational activation of the transcription factor or failure
to activate. Small fluctuations in the phosphatase expression
rate on the other hand can be tolerated.

5. Outlook

(Molecular) biology has been incredibly successful in uncov-
ering the regulatory principles and foundations of life while
remaining largely a descriptive science. The key cellular
machineries as well as the principles of cellular regulation
have been revealed. Entire genomes have been sequenced,
and the proteomes of important model organisms are
currently being determined and quantified. Many interaction
partners have been characterized [75, 76], and this has led

to detailed wiring diagrams that describe the regulatory
interactions in many important signalling pathways. The
generation of large amount of data has necessitated the
development of powerful bioinformatic tools to organize,
analyse, store, and disseminate the available information
and computational approaches are well established in these
biological disciplines. In spite of huge amounts of data and
powerful computational algorithms, it has remained difficult
to predict biological functionalities and dependencies from
the available data.

In particular, what we fail to understand is how sensitive
the cellular responses are to variations in the signal and in the
cellular proteome, how information is integrated by the cell,
which set of downstream targets are activated (and which of
these is important for the response of interest), and at what
network components can sensitively control the output. This
is the case, for instance, when a sensitive switch is observed
and it remains unclear which combination of effects can yield
the observed sensitivity in the system. The model for the σF

network could be applied to such a wide range of questions
because the model had been parameterized so carefully based
on detailed experimental information. While many signaling
pathways have been modelled also in eukaryotes, including
the MAPK, integrin, and TGF-beta signaling pathways [77–
79] and much experimental information is available, realistic
models of cellular signaling dynamics with predictive power
as described in this paper are still largely missing.

One of the difficulties in generating predictive models
is that most cellular information appears to be passed
on without generating much “interesting” dynamics. Most
cellular measurements reveal a slowly (or rapidly) increasing
response of downstream signaling factors in response to a
signal that may or may not fade after some time. A direct link,
sometimes combined with a feedback can typically readily
explain the data, and the experiments therefore contain
insufficient information to uncover the intricate cross-talk
between signaling components. Moreover, most models are
typically based on experiments that have been conducted in
different cell systems by different experimental groups. Since
a single pathway typical can give rise to a wide range of
different responses [80], it is difficult to obtain a consistent
model from such varied datasets, and most studies thus
again focus on the signaling capacity of signaling networks
rather than on predictions of cellular behaviour under
defined conditions. As a beneficial side effect of such efforts,
important signaling paradigms, such as the importance of
nuclear shuttling for the signaling response in eukaryotes
[81, 82], have been uncovered.

Advances in microfluidics are likely to provide more and
more consistent kinetic data to develop better models for cel-
lular systems [83]. Eventually it will be important to link dif-
ferent detailed models and to integrate these into a multiscale
model that puts the molecular regulation into the context
of larger-scale processes such as tissue reorganization. Here
a further important avenue will be the inclusion of spatial
information to better understand the context in which cells
signal. We have recently developed models for limb and lung
development. In spite of largely missing kinetic information,
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mechanistic models with predictive power could be formu-
lated [84, 85] because information on the spatiotemporal
activation of gene expression in wildtype and mutant mouse
embryos sufficiently constrained our models. A deeper
understanding of biological mechanisms will require further
careful modelling of well-characterized signaling networks in
the functional context in which cells operate.
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