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Abstract

(S)-2-Hydroxypropylphosphonate ((S)-2-HPP) epoxidase (HppE) is a mononuclear non-heme 

iron-dependent enzyme1,2,3 responsible for the last step in the biosynthesis of the clinically useful 

antibiotic fosfomycin4. Enzymes of this class typically catalyze oxygenation reactions that 

proceed via the formation of substrate radical intermediates. In contrast, HppE catalyzes an 

unusual dehydrogenation reaction while converting the secondary alcohol of (S)-2-HPP to the 

epoxide ring of fosfomycin1,5. HppE is shown here to also catalyze a biologically unprecedented 

1,2-phosphono migration with the alternative substrate (R)-1-HPP. This transformation likely 

involves an intermediary carbocation based on observations with additional substrate analogues, 

such as (1R)-1-hydroxy-2-aminopropylphosphonate, and model reactions for both radical- and 

carbocation-mediated migration. The ability of HppE to catalyze distinct reactions depending on 

the regio- and stereochemical properties of the substrate is given a structural basis using X-ray 

crystallography. These results provide compelling evidence for the formation of a substrate-

derived cation intermediate in the catalytic cycle of a mononuclear non-heme iron-dependent 

enzyme. The underlying chemistry of this unusual phosphono migration may represent a new 

paradigm for the in vivo construction of phosphonate-containing natural products that can be 

exploited for the preparation of novel phosphonate derivatives.
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Fosfomycin (1) is a clinically useful antibiotic for the treatment of limb-threatening diabetic 

foot infections and lower urinary tract infections4. Its biological target is UDP-GlcNAc-3-O-

enolpyruvyltransferase (MurA), which catalyzes the first committed step in the biosynthesis 

of peptidoglycan, the main component of the bacterial cell wall6, 7. Importantly, fosfomycin 

has been shown to be effective against ciprofloxacin-resistant Escherichia coli8, and 

methicillin- or vancomycin-resistant strains of Staphylococcus aureus9, 10. Fosfomycin is 

derived from phosphoenolpyruvate (PEP, 2), with the phosphonate moiety being generated 

in a rearrangement reaction catalyzed by PEP mutase (2→3, Fig. 1A)11, 12. This is followed 

by a reaction sequence involving decarboxylation, reduction, and C-methylation to produce 

(S)-2-hydroxypropylphosphonate ((S)-2-HPP, 4)13, 14. The final step of the pathway is the 

conversion of (S)-2-HPP (4) to fosfomycin (1) catalyzed by (S)-2-HPP epoxidase (HppE)1, 2.

Early studies showed that HppE is a mononuclear non-heme iron-dependent enzyme1, 2 that 

employs a 2-His-1-carboxylate facial triad as the iron ligands and its overall structural fold 

belongs to the cupin superfamily3, 15. However, unlike many other enzymes in this class16, 

its activity is not dependent on α-ketoglutarate. Instead, HppE utilizes reducing equivalents 

derived from NADH to activate molecular oxygen1, 2. Furthermore, isotope-labeling 

experiments demonstrated that the oxygen atom of the oxiranyl ring in 1 is not derived from 

O2, but instead from the secondary hydroxyl group of 4 (Fig. 1A)1, 5. Thus, the HppE-

catalyzed conversion of 4 to 1 is in fact a dehydrogenation reaction and not an oxygenation 

reaction.

Previous experiments have also shown that the HppE reaction course is dependent on the 

substrate stereochemistry, since the HppE-catalyzed dehydrogenation of (R)-2-HPP (5) 

produces the ketone 6 rather than an epoxide (Fig. 1B)17. Recent spectroscopic and 

crystallographic studies revealed that both enantiomers of 2-HPP (4 and 5) act as bidentate 

ligands to the mononuclear iron, such that only a single hydrogen atom is poised for 

abstraction by a reactive iron-oxygen species3, 18, 19. The direct coordination of the 

negatively charged phosphonate group to the iron center likely helps to activate FeII for 

reaction with O2 and thus facilitates the formation of higher iron oxidation states for 

substrate oxidation3, 20, 21. These findings prompted a more thorough examination of the 

substrate flexibility and reactivity of HppE. Toward this aim, both enantiomers of 1-

hydroxypropylphosphonate (7, 1-HPP) were synthesized and used as mechanistic probes of 

the HppE-catalyzed reaction22.

Incubation of (S)-7 with HppE produced the acyl phosphonate 8 (Fig. 1C and Fig. 2A), a 

reaction analogous to the dehydrogenation of (R)-2-HPP (5) to form the corresponding C2 

ketone (6, Fig. 1B). Both reactions are consistent with H-atom abstraction from the oxygen 

bearing carbon to yield an α-hydroxyalkyl radical that undergoes one electron oxidation to 

form the corresponding oxo product. In contrast, when (R)-7 was treated with HppE, 1-

oxopropan-2-ylphosphonate (9) was obtained as the sole product (Fig. 1D and Fig. 2B). The 

structure of 9 was initially determined by NMR, and was verified after NaBH4 reduction to 

the more stable product 1-(hydroxymethyl)ethylphosphonate (10) and comparison with the 

chemically synthesized standard23. To further validate the structure of 9, (R)-7 was prepared 

enriched with 13C at C1 ((R)-[1-13C]-7) and used as the substrate in the HppE reaction22. 
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Analysis by 13C NMR demonstrated that the large C1-P coupling constant of 150.0 Hz in 

(R)-[1-13C]-7 was reduced to 2.7 Hz in 10 following reaction with HppE. These results 

indicate that HppE catalyzes a 1,2-shift of the phosphono group during catalytic turnover of 

the substrate analogue (R)-7, for which there is no enzymatic precedent.

The crystal structures of FeII-HppE in complex with (R)-7 and (S)-7 were determined to 2.71 

and 2.80 Å resolution, respectively, in order to provide a structural basis for the altered 

stereo- and regiospecificity of the HppE-catalyzed reactions with these substrates22. Our 

results showed that (R)- and (S)-7 bind to the iron center in a bidentate fashion via an 

oxygen from the phosphonate moiety and the C1 hydroxyl (Fig. 3, Supplementary Fig. 5-6). 

Three additional coordination sites of the iron are filled by the 2-His-1-carboxylate facial 

triad, leaving one site available for dioxygen binding. This site, partially occupied by a water 

molecule in these structures, is the same putative O2-binding pocket to which the O2-mimic 

nitric oxide binds18. This spatial arrangement would direct the C1 hydrogen of (S)-7 and the 

pro-R C2 hydrogen of (R)-7 towards the reactive iron-oxygen species, consistent with the 

observed reaction products 8 and 9.

To verify the stereochemistry of hydrogen atom abstraction from the prochiral carbon of 

(R)-7, substrate stereospecifically deuterated at the pro-R (11) or pro-S (12) positions of C2 

were synthesized (Supplementary Fig. 2) and reacted with HppE. 1H NMR analysis of the 

methyl group splitting pattern of the reaction products from both diastereomers 

(Supplementary Fig. 3) demonstrated retention of only the pro-S hydrogen, consistent with 

the stereospecific abstraction of the pro-R hydrogen atom from C2 of (R)-7 (Fig. 4A)22 

predicted by crystal structural analysis (Fig. 3).

While non-enzymatic 1,2-phosphono migrations are known, they require either strong Lewis 

acids24 or harsh alkaline conditions25 and are generally thought to proceed through 

carbocationic intermediates. It is therefore plausible that such an intermediate may also be 

involved in the HppE-catalyzed 1,2-phosphono migration of (R)-7 (Fig. 4B, route a). 

Following pro-R hydrogen atom abstraction by a reactive iron-oxygen species to form the 

C2-centered radical 14, electron transfer to the iron center would produce the corresponding 

C2 carbocation 15. This oxidation would then trigger the 1,2-phosphono migration in direct 

analogy to the non-enzymatic reactions. However, an alternative route involving a C2 

radical-mediated migration of the C-P bond to generate the ketyl radical 16 prior to electron 

transfer could not be excluded (Fig. 4B, route b).

To gain insight into the chemistry of the defining intermediates of these two mechanistic 

hypotheses, model studies were carried out with compounds 17 and 1822. As summarized in 

Figure 4C, when 17 was treated with silver triflate to generate the carbocation intermediate 

19, the migration product 20 was produced. In contrast, when the alkyl radical 21 was 

generated, either by exposure of compound 18 to UV radiation or treatment of 17 with 

tributyltin hydride, formation of alkene 22 was observed. These findings provide a 

correlation between formation of a carbocation intermediate and 1,2-phosphono migration. 

It is also worth noting that the intermediacy of carbocationic species has been implicated in 

most biological 1,2-hydride and 1,2-alkyl shift reactions, such as those catalyzed by various 

terpenoid cyclases26 and the “NIH shift” of aromatic amino acid hydroxylases27. However, 
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the situation could still be different on the enzyme since, in the model reaction, formation of 

22 from 21 may simply be more rapid than rearrangement to form 20 in solution.

Further evidence supporting a carbocationic intermediate in the HppE-catalyzed reaction 

was obtained using the substrate analogues (1R,2R)- and (1R,2S)-1-hydroxyl-2-

aminopropyl-phosphonate ((RR)- and (RS)-23, Fig. 4D)22. Using a NMR assay and authentic 

standards (Supplementary Fig. 4)22, HppE was shown to convert both isomers of 23 to 26 
with no detectable formation of the migration or other product. This ketone product can be 

envisioned as forming via hydrogen atom abstraction from C2, yielding an α-aminoalkyl 

radical (24) that is oxidized to the stable C2 iminium ion 25, which can undergo 

spontaneous hydrolysis to yield 26. Hydrogen atom abstraction from C2 and the conversion 

of both isomers of 23 to 26 are consistent with bidentate coordination to the active site iron 

through the C1 hydroxyl and phosphonate moieties, in a manner analogous to (R)-7 
(Supplementary Fig. 7, 8). Support for the hypothesis that the C2 amino group of 23 is 

unable to sustain the bidendate substrate coordination required for catalysis was obtained 

with the substrate analogue 2-aminopropylphosphonate ((±)-27, Fig. 4D), which lacks the 1-

hydroxyl group of 23 and is not a substrate of HppE22. Taken together, these results are 

consistent with a mechanism in which a reactive iron-oxygen species generated during the 

catalytic cycle of HppE is capable of oxidizing the C2-centered radical 24 to the 

corresponding carbocation 25 during the conversion of 23 to 26 (Fig. 4D).

In summary, this investigation provides new insight into the catalytic capability and 

chemical mechanism of the non-heme iron enzyme HppE. HppE displays remarkable 

catalytic versatility, converting the (R)- and (S)-isomers of 1- and 2-HPP to aldehyde, acyl 

phosphonate, ketone, and epoxide products, respectively (Fig. 1). This study reveals an 

unprecedented 1,2-phosphono migration reaction and provides support for the existence of 

carbocation intermediates in the HppE reaction. The unique chemistry observed during the 

phosphono migration reaction catalyzed by HppE may represent a new paradigm for the 

rearrangement of C-P bonds in Nature, which can be exploited for the synthesis of novel 

phosphonate-containing natural products. Moreover, the likely use of a carbocation 

intermediate in the HppE-catalyzed conversion of 23 to 26, buoys the proposal of a 

carbocation (15) intermediate in the conversion of (R)-7 to 9 (phosphono migration product 

in Fig. 1D), and prompts reexamination of the mechanism of HppE in general. In terms of 

the types of iron-oxygen species employed by HppE, 18O kinetic isotope effect (KIE) 

studies with the natural substrate, (S)-2-HPP (4), demonstrate partially rate-limiting 

formation of a ferric-hydroperoxo intermediate (30)28, which implicates ferric-superoxo as 

the species that likely abstracts the H-atom from the substrate (29→30, Fig. 5)29, 30. At first 

glance, the C1-H of (S)-2-HPP (29 in Fig. 5) might seem more activated than the C2-H of 

(R)-7 (Fig. 4), with the latter bond cleavage requiring the use of a highly reactive iron(IV)-

oxo species. However, density functional theory (DFT) calculations indicate that the 

phosphonate moiety of the substrate provides significant β-stabilization to the C2-centered 

radical (14), such that the bond dissociation energy of the C2-H of (R)-1-HPP is actually 

∼2.7 kcal/mol less than that of the C1-H of (S)-2-HPP (93.8 vs. 96.5 kcal/mol)22. Thus, a 

ferric-superoxo species may also be employed by HppE to effect hydrogen atom abstraction 

from C2 of (R)-7, allowing the iron(IV)-oxo intermediate generated in a subsequent step to 
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be utilized for the oxidation of the C2 radical to the cationic intermediate (14→15, Fig. 4B). 

In fact, this chemical logic could apply to HppE in reaction with its natural substrate. With a 

ferric-superoxo intermediate responsible for H-atom abstraction, an iron(IV)-oxo 

intermediate is available to catalyze the more challenging oxidation of a C1 radical to a 

carbocation (31→32, Fig. 5). Indeed, this may be a more common strategy than previously 

surmised, being utilized by the growing number of identified non-heme iron-dependent 

enzymes that initiate substrate oxidation using iron-superoxo intermediates30. The formation 

of the iron(IV)-oxo intermediate 31 requires the input of a single electron at the stage of a 

highly reactive substrate radical intermediate (30). The precise timing of this redox reaction 

may be accomplished by the transfer of an electron from the putative proton-coupled 

electron transfer pathway of HppE, which is comprised of several tyrosine residues3. The 

resulting protein radical could then be quenched by the external reductant at a subsequent 

(and not necessarily precisely controlled) time to regenerate the active form of the enzyme. 

Experiments to further characterize the catalytic mechanism of HppE are in progress.

Methods Summary

HppE used in this study was purified as described previously29. All synthetic and enzymatic 

reaction products were characterized by NMR spectroscopy and/or high-resolution mass 

spectrometry. A typical NMR assay contained 0.25 mM HppE, 0.25 mM 

Fe(NH4)2(SO4)2•6H2O, 7.5 mM FMN, 25 mM substrate ((R)-7, (S)-7, 11, 12, (RR)-23, 

(RS)-23, or 27), and 25 mM NADH in 700 μL of 20 mM Tris buffer (pH 7.5). The 

conversion of (RR)-23/(RS)-23 to 26 by HppE was confirmed by spiking the reaction 

mixture with an authentic standard of 26. Further details regarding experimental procedures 

and DFT calculations are described in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fosfomycin biosynthetic pathway and HppE-catalyzed conversion of various substrate 
analogues
(A) Formation of fosfomycin (1) from PEP (2). (B) Conversion of (R)-2-HPP (5) to the 

corresponding ketone 6. (C) Conversion of (S)-1-HPP to acyl phosphonate (8). (D) 

Conversion of (R)-1-HPP (7) to the aldehyde product (9).
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Figure 2. 1H NMR time-course for the HppE-catalyzed conversion of (A) (S)-7 to 8, and (B) (R)-7 
to 9
The peak at δ 2.49 is from DMSO-d6, and those (in black) centered between δ 2.50 and 2.65 

are from NADH. The NMR signals and the contributing proton(s) are color-coded.
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Figure 3. Structures of (S)-7 and (R)-7 bound to the iron center of HppE in a bidentate mode
(A) (S)-7 (carbons in blue) in Fo-Fc omit map density contoured at 6 σ (left) and its chemical 

structure (right), with hydrogen atoms accessible for abstraction in red and inaccessible in 

blue. The putative dioxygen binding site on Fe is partially occupied by water molecules (red 

spheres) in both of these structures (Fe-H2O distances are 3.7 and 3.0 Å). Colors: Fe in rust, 

P in orange, O in red, N in blue, protein C in gray. (B) (R)-7 (carbons in green) in Fo-Fc omit 

map density contoured at 6 σ (left) and its chemical structure (right). Hydrogen atoms 

labeled as in (A).

Chang et al. Page 10

Nature. Author manuscript; available in PMC 2013 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Stereochemistry of hydrogen atom abstraction from (R)-1-HPP (7) determined using the 

stereospecifically deuterated compounds 11 and 12. (B) Hypothetical mechanisms for 

HppE-catalyzed 1,2-phosphono migration involving cation (route a) and radical (route b) 

mediated rearrangements. Intermediate 14 could be generated in a manner analogous to the 

formation of 31 from (S)-2-HPP (see Fig. 5). (C) Model reactions to probe the involvement 

of radical or cation intermediates in the 1,2-phosphono migration catalyzed by HppE. The 

migration product is only observed when cation 19 is formed from 17 using silver-triflate. 

(D) HppE-catalyzed conversion of (RR)- and (RS)-23 to the imine hydrolysis product 26, 

consistent with the oxidation of (R)-7 to a cationic intermediate by a reactive iron-oxygen 

species. Inset: Compound 27, which lacks the C1 hydroxyl group, is not a substrate of 

HppE, indicating that the amino group is not capable of supporting the bidentate substrate 

coordination required for catalysis.
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Figure 5. 
Revised mechanisms for the HppE-catalyzed epoxidation of (S)-2-HPP (4) involving C1 

cation formation (route a) or O-atom rebound (route b).
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