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Radiation pressure measurement 
using a macroscopic oscillator 
in an ambient environment
Mikko Partanen1,2*, Hyeonwoo Lee1 & Kyunghwan Oh1*

In contrast to current efforts to quantify the radiation pressure of light using nano-micromechanical 
resonators in cryogenic conditions, we proposed and experimentally demonstrated the radiation 
pressure measurement in ambient conditions by utilizing a macroscopic mechanical longitudinal 
oscillator with an effective mass of the order of 20 g. The light pressure on a mirror attached to the 
oscillator was recorded in a Michelson interferometer and results showed, within the experimental 
accuracy of 3.9%, a good agreement with the harmonic oscillator model without free parameters.

According to Newton’s second law, the force F on an object is well known to be equal to the rate of change of the 
momentum p of the object as F = dp/dt . From this fundamental law, we can expect the largest conversion of 
the optical momentum to the mechanical momentum of a medium when light is fully reflected from a mirror. 
The magnitude of this force on an ideal 100% reflecting mirror in a vacuum is given by

where P is the optical power and c is the speed of light. If light is irradiated on a non-planar or partly absorbing 
object, the value of the radiation pressure is always smaller than its maximum value given in Eq. (1). Thus, the 
measurement of the maximum value of the optical force-power ratio, F/P = 2/c , which has a universal value 
given in terms of the speed of light, provides a good test for the accuracy of the radiation pressure measurements.

The radiation pressure of light was first theoretically described by Maxwell1 in 1873, and then experimen-
tally measured independently by Lebedev2 and by Nichols and Hull3 in 1901, but the accuracy of these early 
experiments was very limited. Despite being a century-old discovery, the radiation pressure continues to be 
one of the key research interests in current optomechanics, such as in cooling of mechanical resonators4–8, 
solar sail development9, ultra-high laser power measurements10,11, and nano-scale cantilevers’ spring con-
stant calibration12,13, to name a few. Recently, there also has been renewed interest in the centennial Abra-
ham–Minkowski controversy on the light momentum in a dielectric medium14–24.

The main trend in light pressure studies in recent years has been to miniaturize a mechanical oscillator to the 
nano-micro scale for a higher sensitivity to the radiation pressure4,6,7,25. However, optical forces in those nano-
micromechanical systems have been directly accompanied by photothermal effects due to short thermal time 
constants of the miniaturized resonators6,7,26–29, which has required further sophisticated techniques to discern 
them from the radiation pressure effects. Therefore, various optical, mechanical, and thermal techniques have 
been developed to overcome the trade-off between the radiation pressure and the photothermal effects, such 
as complex resonator designs consisting of highly reflective multilayer coatings deposited on the cantilever to 
further increase the reflectivity7,12, attachment of an additional mass to increase the thermal time constant of the 
cantilever13, or other ways to separate the optical force from the photothermal effects30,31.

In this work, we attempted a new direction opposite to the current trends by achieving a quantitative measure-
ment of the radiation pressure of light in an ambient environment at room temperature by utilizing a macroscopic 
mechanical harmonic oscillator, which is orders of magnitude heavier than oscillators in previous reports30–35. 
The experimental setup is illustrated in Fig. 1. In contrast to conventional torsional oscillators used in most of 
the previous measurements, our oscillator is designed to allow only the longitudinal motion. Here we varied the 
mass and the damping constant to verify the accuracy of the harmonic oscillator model in the radiation pressure 
measurements. Note that our method can obviate the elaborated process to calibrate the spring constants30,31, 

(1)F =
2P

c
,

OPEN

1Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei‑ro, Seodaemun‑gu, 
Seoul 03722, South Korea. 2Photonics Group, Department of Electronics and Nanoengineering, Aalto University, 
P.O. Box 15500, 00076 Aalto, Finland. *email: mikko.p.partanen@aalto.fi; koh@yonsei.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-77295-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20419  | https://doi.org/10.1038/s41598-020-77295-5

www.nature.com/scientificreports/

as the only additional measurement of the oscillator parameters is the direct determination of the oscillator 
masses using a digital scale.

Mechanical oscillator
The oscillator is driven optically by the reflection of the modulated laser beam at the wavelength of 975 nm at a 
highly reflective dielectric mirror, which is the oscillator mirror 1 in Fig. 1. The laser diode at this wavelength has 
been widely used to pump optical amplifiers and provides a good power stability of ∼ ±0.5% . The effective total 
reflectivity of the oscillator mirror 1 was larger than 99.9% (see “Methods”) and Eq. (1) can be used to quantify 
the optical force. The longitudinal displacement of the oscillator was detected by a Michelson interferometer using 
another laser at the wavelength of 632.8 nm. The interferometer beam was reflected from the oscillator mirror 2. 
The shifts of the interference fringes were recorded using a camera at a frame rate of 200 frames per second, from 
which the displacement of the oscillator was estimated for various incident light powers. It is noteworthy, in par-
ticular, that photothermal effects can be excluded since light is reflected from a highly reflective dielectric mirror 
on a macroscopic mechanical oscillator whose thermal time constant is much longer than the modulation time 
of the laser field. A more complete description of the experimental setup is presented in the “Methods” section.

Newton’s equation of motion for the mechanical oscillator with an effective mass m is given by4

where ω0 is the undamped resonance frequency of the harmonic oscillator, ζ is the damping coefficient, and F 
is the net external force. The damping coefficient is related to the Q factor as Q = 1/(2ζ ) . When the mass of the 
vertically aligned spring is not negligible, the effective mass of the oscillator is given by m = m0 +ms/3 , where 
m0 is the rest mass of the oscillator and ms is the rest mass of the spring36.

If the force is harmonically modulated with the angular frequency ω as F = F0 cos
2( 1

2
ωt) = 1

2
F0[1+ cos(ωt)] , 

where F0 is the peak to peak amplitude of the force, then the steady-state solution of Eq.  (2) is given as 
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Figure 1.   The experimental setup consists of three main parts shown in the left panel: the mechanical oscillator, 
the diode laser driving the oscillator, and the Michelson interferometer. The right panel focuses on the vertically 
hanging mechanical oscillator. The mechanical oscillator is driven by a modulated laser beam at 975 nm through 
the reflection from the highly reflective oscillator mirror 1. The nanoscale oscillation is detected through 
the oscillator mirror 2 by the Michelson interferometer using the He–Ne laser at 632.8 nm. The motorized 
mirror below the oscillator is used for the remote tuning of the interference fringe spacing, but it is not actively 
controlled during the measurements. The illustration includes the damper fibers that are used for increasing the 
damping constant of the higher damping oscillator. The apparatuses are mounted on an actively damped optical 
table for isolating the setup from external acoustic and seismic vibrations. The oscillator part of the setup is 
also protected with plastic walls not shown in this illustration. A more complete description of the experiment 
is presented in the “Methods” section. (Image created by using Blender 2.8, https​://www.blend​er.org/, and 
Inkscape 0.92, https​://inksc​ape.org/).

https://www.blender.org/
https://inkscape.org/
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The resonance frequency of the significantly underdamped oscillator with ζ < 1/
√
2 is ωr = ω0

√

1− 2ζ 2
36. At this frequency, the displacement amplitude of the oscillator in Eq. (3) obtains its peak value, given by 
x0 = F0/(4mω2

0ζ
√

1− ζ 2) . Thus, from the measured peak value of the displacement amplitude, we can obtain 
the optical force as

Here, for our macroscopic oscillator, the undamped angular frequency and the damping constant can be accu-
rately determined based on the position and width of the mechanical resonance peak and the effective mass of 
the oscillator can be determined from the oscillator and spring masses measured with a digital scale. The effec-
tive mass of the lower damping oscillator without the damper fibers in Fig. 1 is m = (18.363± 0.001) g, while 
the effective mass the higher damping oscillator with the damper fibers is m = (19.007± 0.001) g. Note that 
the difference in the oscillator masses is mainly produced in their fabrication and it is not due to the damper 
fibers whose total mass is less than 0.2 g. The damper fiber is commercially available optical fiber (Thorlabs, 
FG105LCA), which provides a very high mechanical stability against tensile stress.

Results
Figure 2 presents the experimental results. In Fig. 2a, the measured displacement amplitude of the lower damping 
oscillator is plotted as a function of the modulation frequency of the driving laser field with an example peak to 
peak power amplitude of P0 = 0.975 W. Fig. 2b presents the same plot for the higher damping oscillator. Each 
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√
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Figure 2.   The measured displacement amplitude of the mechanical oscillator is plotted (a) for the lower 
damping oscillator and (b) for the higher damping oscillator as a function of the modulation frequency of the 
driving laser with an example peak to peak power amplitude of P0 = 0.975 W. Each graph that is marked with a 
solid line is the averaged frequency spectrum of a measurement for a single modulation frequency. The graphs 
peak at the modulation frequency and the peak points are marked with red dots. The modulation frequency is 
varied around the resonance frequency of the mechanical harmonic oscillator. The peak points of the graphs 
form together a curve that is the response function of the mechanical harmonic oscillator. The fitted harmonic 
oscillator response function is marked with the dashed line. In (c) and (d), the measured peak to peak radiation 
force amplitude is plotted for the two oscillators as a function of the peak to peak laser power amplitude. 
The least-squares regression lines are marked with the solid lines. The linear theoretical curve F0 = 2P0/c is 
presented by the dashed lines. The horizontal error bars corresponding to the ± 0.5% uncertainty of the laser 
power are not shown because of their smallness.
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graph that is marked with a solid line is the averaged frequency spectrum of a measurement for a single modula-
tion frequency. The measurement time is an integer multiple of the modulation period close to 1000 s and the 
ensemble averaging is made over 10 or more measurements. The error in the displacement amplitude is the stand-
ard deviation of the average and it could be made smaller by averaging over a larger number of measurements.

In Fig. 2a,b, one can see that the fitted harmonic oscillator response function in Eq. (3) accurately describes 
the experimental results of both oscillators. It can be noted that, in the presence of photothermal effects, this 
response function would be modified from the ideal harmonic oscillator form as described, e.g., in Refs.30,31. 
Thus, the ideal harmonic oscillator form of the frequency response function in Fig. 2a indicates that photothermal 
effects are negligible in our macroscopic setting as expected. In Fig. 2a,b, one can also see that the mechanical 
resonance peak is observable in the noise spectrum that is seen below the fitted harmonic oscillator response 
function.

In the least-squares fitting of the harmonic oscillator response function in the experimental data of the 
lower damping oscillator in Fig. 2a, the undamped frequency of the mechanical oscillator is found to be 
f0 = (1.730943± 0.000018) Hz and the damping constant is found to be ζ = 0.000750± 0.000012 , which 
corresponds to the quality factor of Q = 667± 11 . The errors indicate the 68.27% confidence intervals, 
which correspond to one standard deviation of normally distributed quantities. Using the experimental data 
of the higher damping oscillator in Fig. 2b, we respectively obtain the undamped oscillator frequency of 
f0 = (1.696275± 0.000073) Hz and the damping constant of ζ = 0.003006± 0.000051 , which corresponds to 
Q = 166.3± 2.8.

Figure 2c shows the measured peak to peak radiation force amplitude of the lower damping oscillator fol-
lowing from Eq. (4) as a function of the peak to peak laser power amplitude. The corresponding radiation 
force amplitude graph for the higher damping oscillator is presented in Fig. 2d. In both cases, the uncertainty 
in the laser power is ±0.5% . For the lower damping oscillator, the slope of the least-squares regression line is 
dF0/dP0 = (6.63± 0.29)× 10−9 s/m = (1.986± 0.086)/c . The relative error is 4.3%, from which 1.6% comes 
from the determination of the damping constant in the fitting of Fig. 2a and 2.7% comes from the determination 
of the peak displacement amplitude and the uncertainty of the laser power. These values include uncertainties 
related to the laser power fluctuations around the expectation value. For the higher damping oscillator, the 
regression line is dF0/dP0 = (6.66± 0.26)× 10−9 s/m = (1.998± 0.077)/c , where the relative error is 3.9%, 
from which 1.7% comes from the determination of the damping constant and 2.2% comes from the determina-
tion of the peak displacement amplitude and the uncertainty of the laser power. The slope of the corresponding 
universal theoretical line, F0 = 2P0/c , is 2/c = 6.67× 10−9 s/m. Thus, the experimental results of both the lower 
and higher damping oscillators agree with the theory within the experimental accuracy.

That our results are in accurate agreement with the theory is another indication for the insignificance of 
thermal effects in the present experimental setup. However, the role of thermal effects could be studied in more 
detail in further experiments. For example, we could follow the closely related experiments by Požar et al.37 and 
repeat the experiment by using mirrors with increasingly higher reflectivities, starting from low reflectivities, in 
which case thermal effects are surely present, and continuing to ultra high reflectivities, in which case thermal 
effects become insignificant. We could also accurately verify that the results are independent of the excitation 
beam radius, as must be the case for true radiation pressure.

Comparison of the orders of magnitudes of the characteristic physical quantities in the present and selected 
previous works is presented in Table 1. Most notably, it is seen that the effective oscillator mass in the present 
work is several orders of magnitude larger than the oscillator masses in previous works. Also, the mechanical 
frequency is lower and the laser power modulation amplitude is larger compared to previous works. The com-
parison of the optical force per power, F0/P0 , shows that only a few works have used the mechanical oscillator 
to study the force on an ideal mirror with F0/P0 = 2/c and found an accurate correspondence with this relation 
as we have done in the present work. Regarding the determination of the absolute radiation force, in contrast to 
our work, the main experimental uncertainties in most previous works have originated from the determination 
of the magnitudes of the small optical power and the spring constant of the oscillator.

Conclusions
In conclusion, we have demonstrated that the radiation pressure of light can be accurately measured in ambient 
environment by utilizing a macroscopic mechanical oscillator and detecting how the modulation of the optical 
signal can be tuned to drive the nanoscale motion of the oscillator. We have carried out measurements for two 
oscillators with different masses and damping constants, and shown that the correspondence between the theory 
and experiment is obtained within the relative experimental accuracy. The introduced setup can also be used 
for probing optical forces when the oscillator is driven through the optical fibers that are present as the damper 
fibers in the setup of Fig. 1, but these investigations related to the Abraham–Minkowski controversy are left as 
a topic of further work. One might also be able to access additional information on the momentum of light in 
a medium by immersing the oscillator or its driving mirror in liquids with known refractive indices. However, 
in the related analysis, one should account for the effects of fluid dynamics and also the surface tension if the 
immersion is only partial. Our macroscopic oscillator setup and its larger-scale variations can also be used for 
measuring high laser powers through the determination of the radiation pressure.

Methods
Mechanical oscillator.  The mechanical oscillator masses are fabricated by 3D printing from polylactic acid, 
commonly known as PLA. The printing is performed by using the fused deposition modeling (FDM) technique. 
The design of the oscillator mass includes two mirror mounts and the hook that connects the oscillator mass 
to the mechanical extension spring, which carries the weight of the oscillator mass. The semicircle form of the 
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oscillator has a mean radius of R = 4.25 cm. The design of the higher damping oscillator mass also includes the 
damper fibers (Thorlabs, FG105LCA) whose ends are clued to the oscillator. The rest masses of the lower and 
higher damping mechanical oscillators are 15.606 g and 16.250 g, respectively. These masses include 1.637 g of 
the mass of the oscillator mirror 1 (Edmund Optics, 63-129) and 6.715 g of the mass of the oscillator mirror 2 
(Thorlabs, BB1-E02).

Driving laser.  The driving laser beam at 975 nm is generated by a multimode laser diode module (Lumics, 
LU0975T090) and it is directed through a low-loss 0.22 NA silica core multimode fiber (Thorlabs, FG105LCA) 
to the collimation arrangement after which the laser beam hits the mirror on the mechanical oscillator. The 
intensity of the driving laser beam is modulated by the waveform generator (Agilent, 33120A) connected to the 
laser driver (Arroyo Instruments, LaserPak 485-08-05). The temperature of the laser is controlled with the tem-
perature controller (Arroyo Instruments, TECPak 585-04-08). The laser beam coming out from the end of the 
multimode fiber is collimated by using the achromatic lens (Thorlabs, AC050-008-B) with a diameter of 5 mm 
and focal length of 7.5mm. After the collimating lens, we use two mirrors (Thorlabs, BB1-E03) for accurately 
aligning the beam normally to the oscillator mirror 1. In addition, at 80 cm before the mechanical oscillator, we 
use a focusing lens to adjust the spot size of the laser beam so that the spot diameter is 5 mm when it hits the 
mirror on the mechanical oscillator. The focusing and diverging angles of the order of one percent are so small 
that the non-normally incident field components on the mechanical oscillator have negligible influence on our 
measurement results. Thus, we can safely use the normal incidence assumption in the analysis of the experi-
mental results. We also minimize thermal drifts by using a highly reflective dielectric oscillator mirror 1 with 
an effective total reflectivity larger than 99.9%. This effective total reflectivity consists of the specular reflectivity 
> 99.8 % and the estimated normal component of the diffusive reflectivity corresponding to more than half of 
the light that is not specularly reflected. The reflectivity of this mirror is assumed unity in the analysis, in which 
case Eq. (1) can be used for the optical force.

Laser power measurement.  The laser power is measured using an optical power meter (Thorlabs, 
PM400) with an integrating sphere sensor (Thorlabs, S145C) at the position before the laser beam hits the last 
mirror directing the beam toward the mechanical oscillator. The reduction of the power due to the reflectivity of 
99.5% of the last mirror is accounted for in the analysis. The peak to peak amplitude of the sinusoidal modula-
tion was 2.0% smaller than the otherwise stationary beam. Thus, for example, for a stationary beam with a power 
of 1.000 W, after adding the modulation and accounting for the reflectivity of the last mirror, the peak to peak 
power hitting the oscillator mirror 1 becomes 0.975 W, which is the value used in the measurements correspond-
ing to Fig. 2a,b.

Table 1.   Comparison of the orders of magnitudes of characteristic physical quantities, i.e., mechanical 
frequency f0 , effective oscillator mass m, laser power modulation amplitude P0 , peak displacement amplitude 
x0 , force amplitude F0 , and quality factor Q, in the present and selected previous works on the measurement of 
optical forces with mechanical oscillators. For direct comparability, the quantities in the table are obtained by 
fitting the harmonic oscillator response function of Eq. (3) to the experimental data corresponding to Fig. 2a 
or Fig. 2b of the present work. In the column for the optical force per power, F0/P0 , the uncertainties do not 
account for the uncertainties in the determination of the optical power, which is separately shown in the last 
column. a Determined from the slope of the line in Fig. 2d. b Determined as F0/P0 , where F0 = kA0 with k 
being the spring constant obtained from the nanoindenter and the off-resonance amplitude A0 = 2P0/(mω2

0c) 
is obtained from the quantities given in Table I of the reference. c Determined from the values in Table 1 of 
the reference as Fsho/Pc. d Determined as F0/P0 , where F0 = kArad with given values for the spring constant k 
determined from the thermal vibration spectrum and for the off-resonance amplitude Arad. e Determined from 
Fig. 3(b) of the reference at 750 nm. The value is much lower than 2/c due to the transmission and absorption 
which reduce the reflectivity. f Determined from the slope of the line fitted in the experimental data of Fig. 4 of 
the reference. The value is much lower than 2/c due to the partial transmission which reduces the reflectivity.

Work f0 (Hz) m (kg) P0 (W) x0 (m) F0 (N) Q F0/P0 (1/c) �P0/P0 (%)

Present 1 10−2 1 10−7 10−8 102 1.998± 0.077a 0.5

Weld et al. 200613
102 10−9 10−6 10−9 10−14 104

Wilkinson et al. 201312
102 10−7 10−3 10−9 10−11 103 1.974± 0.116b 1

Wagner et al. 201833
103 10−8 10−4 10−11 10−10 103 1.656± 0.043c 8

Melcher et al. 201435
104 10−9 10−3 10−10 10−13 103

Kleckner et al. 20067
104 10−11 10−3 10−7 10−12 105 2.113± 0.163d 20

Ma et al. 201831
104 10−12 10−4 10−10 10−12 10 1.234± 0.235e 3

Ma et al. 201530
104 10−13 10−3 10−8 10−11 10 0.521± 0.010f 5

Evans et al. 201434
104 10−14 10−5 10−10 10−13 102

Gigan et al. 20066 105 10−11 10−3 10−10 10−11 104
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Extension springs.  In the experiments, we have used three hard extension springs in series to obtain a 
suitably small total spring constant. The upper and lower springs (Acxess Spring, PE016-312-129000-MW-2500-
MH-N-IN) both have a mass of ms,1 = 3.025 g and a reported extension rate of ks,1 = 5 N/m, while the middle 
spring (Acxess Spring, PE016-312-90250-MW-1880-MH-N-IN) has a mass of ms,2 = 2.221 g and a reported 
extension rate of ks,2 = 7 N/m. The springs are made of music wire and they have cross-over type hooks at their 
ends. The total mass of the three springs in series is given by ms = 8.271 g. In addition to the extension rates 
above, the masses of the vertically aligned springs also contribute to the total spring constant of the oscillator. 
In the case of the higher damping oscillator, where damper fibers are used, there is 3.0 mm loose in the damper 
fibers so that the oscillator mass is entirely carried by the spring. In our analysis of the experimental results, 
we use the effective mass, undamped angular frequency and the damping constant as the only parameters of 
the oscillator. Thus, the total spring constant of the system can be determined from the experimental results as 
k = mω2

0 . For the lower damping oscillator, we thus have k = 2.172 N/m, while for the higher damping oscillator 
we have k = 2.159 N/m.

Michelson interferometer.  The motion of the mechanical oscillator is detected by the Michelson inter-
ferometer to which the oscillator is connected by setting the oscillator mirror 2 in one of the two interferometer 
arms. One of the other interferometer arm mirrors is motorized so that it can be used for the remote tuning of 
the interference fringe spacing. The fringe spacing is adjusted only before the measurements and it is not actively 
changed during the measurements. The arm length of the interferometer is about 10 cm. All mirrors in the 
interferometer arms have a reflectivity of over 99% (Thorlabs, BB1-E02). The interferometer utilizes the 5-mW 
continuous-wave TEM00 He–Ne laser (JDSU, 1125P) at 632.8 nm. The laser power is reduced by a factor of 1/10 
by a neutral density filter (Thorlabs, NE10A). The dynamics of the interference fringes is recorded by a CMOS 
camera (Edmund Optics, EO-0413C) with a frame rate of 200 frames per second. The frame size recorded is 
600× 30 pixels.

Tracking the dynamics of interference fringes.  The dynamics of the interference fringes is tracked 
from the recorded video files by observing the movement of the intensity maxima and minima frame by frame. 
The interference fringes are illustrated in the computer screen of Fig. 1, where the movement of the fringes takes 
place in the horizontal direction when other disturbances are settled down. If the fringes move a distance that 
is equal to the distance between two intensity maxima, this indicates that the mechanical oscillator moves half 
a wavelength in the vertical direction. For efficient analysis of millions of frames, a C++ code was written that 
utilizes the Open Computer Vision Library (Open CV). The code also detects possible changes in the distance 
between intensity maxima as these scale changes indicate motion of the oscillator in lateral directions. Since the 
mechanical oscillator is hanging on a spring, it can move in all three dimensions. However, the interferometer 
is the most sensitive for the vertical motion of the oscillator that is of our interest. If the oscillator is particularly 
disturbed, the interference fringes can also rotate and the scale of the fringes can vary. These effects are, however, 
negligibly small during measurement conditions, when external noise sources are minimized. The frequency 
responses of these effects are also different from the mechanical resonance frequency of the oscillator so they do 
not contribute to the magnitude of the observed displacement amplitude.

Acoustic and seismic isolation.  The apparatuses are mounted on an actively damped optical table for iso-
lating the setup from acoustic and seismic vibrations. The mechanical oscillator part of the setup is covered with 
plastic walls to minimize air flows. The measurements were carried out at nighttime to minimize disturbances 
in the surroundings of the laboratory.
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