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Quantum key distribution over 
120 km using ultrahigh purity 
single-photon source and 
superconducting single-photon 
detectors
Kazuya Takemoto1, Yoshihiro Nambu2, Toshiyuki Miyazawa3, Yoshiki Sakuma4, 
Tsuyoshi Yamamoto1, Shinichi Yorozu2 & Yasuhiko Arakawa3,5

Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique 
applications in the field of quantum information technology. In this paper, we report long-distance 
quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) 
emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At 
the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy 
states, which is at least threefold larger than the rate obtained in the previously reported 50-km-
long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 
120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow 
multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. 
The experimental results demonstrate the potential applicability of QD SPSs to practical telecom 
QKD networks.

Over the past decade, advances in sources, operational devices, and detectors have attracted the attention 
of many researchers in the field of quantum information technology. In particular, single-photon sources 
(SPSs) and single-photon detectors (SPDs) are key devices for enabling practical applications; e.g., quan-
tum key distributions (QKDs)1. Telecom-band SPSs and SPDs are of special interest because the existing 
telecom backbone networks exhibit a minimal transmission loss around 1.55 μ m.

For a good while, attenuated lasers and avalanche photodiodes (APDs) have been used for practical 
telecom-band SPSs and SPDs2–6. Potential attacks exploiting the nonideality of SPSs were pointed out7,8, 
but were soon countered with decoy-state QKDs9–11. However, because legitimate users need to precisely 
control the average number, μ , of photons in each pulse, statistical effects arising from the finite key size 
and ambiguity of μ  might be so severe that a significant shrinking of the sifted key might be required12. 
In addition, the complexity of the protocol and system may contain loopholes. For example, it has been 
pointed out that a source attack against decoy-state QKD is possible if Eve can exploit the source’s phase 
information13,14. In general, QKD based on a true SPS is desired because it relaxes relevant require-
ments and reduces the risk of loopholes resulting from a gap between actual and ideal implementations. 
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Currently, transmission of secure keys over 50 km of in-lab fiber is the record of standard QKD based 
on a true SPS; that experiment used a telecom-band InAs/InP quantum dot (QD) SPS and conventional 
InGaAs avalanche SPD (ASPD)15. The transmission distance was limited by the residual multiphoton 
emission of the SPS and dark count of the SPD. Extending the transmission distance is of course a 
motivation for further studies. In this paper, we report secure key distribution up to 120 km (i.e., cov-
ering a large metropolitan area) by using a true SPS and the standard QKD protocol. To achieve this, a 
high-purity SPS was needed, i.e., one having a small probability of emitting more or fewer than 1 photon. 
This is a challenging problem, because the goals of enhancing single-photon efficiency and suppressing 
multiphoton emission are incompatible in many SPSs16–21.

In this work, we demonstrate secure key distribution up to 120 km by using an ultrahigh purity QD 
SPS and a superconducting nanowire SPD (SNSPD)22–25. The effective suppression of multiphoton emis-
sion with second-order correlation values down to g(2)(0) ~ 0.002 was realized by the combination of a 
quasi-resonant optical excitation to the p-shell state of a QD and an excitation-pulse-width compression 
technique. Because the single-photon pulses have finite pulse widths of ~1 ns, the low dark count and 
nongated mode operation of the SNSPD enabled to significantly enhance the signal-to-noise (S/N) ratio 
of our QKD system. Finally, we demonstrate that our true SPS has the potential to extend the transmis-
sion distance over 200 km by accounting for the additional improvement of g(2)(0) and source efficiencies.

Results
Time-bin encoding QKD system. As a test-bed, we used a time-bin encoding QKD system26–29 
based on the standard Bennett-Brassard 1984 (BB84) protocol1. The experimental setup is shown in 
Fig. 1. It is based on two identical asymmetric Mach-Zhender interferometers (AMZIs) fabricated with 
a planar light-wave circuit, for Alice and Bob15,27. The two AMZIs defined a qubit space for quantum 
coding. They were precisely temperature-controlled so that no phase information of source was neces-
sary for establishing a relevant common reference frame during QKD operation (in contrast to ref. 13). 
At Alice’s site, an SPS emitted an optical pulse. The optical pulse passed through the first AMZI, which 
converted it into a traveling pair of double pulses with a 5-ns time interval and fixed polarization. One 
output of the AMZI was used for time-bin qubit, and the other was used for tracking the SPS’s position. 
The relative phase of the double pulse was subsequently modulated by using a phase modulator (PM) 
with a randomly chosen value from θ =  {0, π /2, π , 3π /2}. After traveling through a fiber core in two-
core single mode fiber (SMF), a double pulse arrived at Bob’s site, and its polarization was randomized 
by using a polarization scrambler (PS). Then, the double pulse was fed into the second AMZI. As a 
result of the waveguide’s polarization mode dispersion, the TM and TE modes of this AMZI worked as 
an analyzer for the X-basis associated with θ =  {0, π } and Y-basis associated with θ =  {π /2, 3π /2}. The 
PS and AMZI, followed by polarization beam splitters (PBSs) for distinguishing the TE and TM modes, 
constituted a BB84 decoder based on a passive basis choice. The arrival port of the photon yielded both 
the chosen basis and the measurement result, and arrival was detected by four SPDs connected to each 
port. The photon arrival port and time were recorded by using a time-interval analyzer (TIA).

Ultrahigh purity QD SPS and low-noise SNSPD. We refined our SPS and SPD for our novel sys-
tem. Our SPS is an optically excited self-assembled InAs/InP QD30 with an optical horn structure31,32. To 
ensure high photon emission efficiency and low multiphoton emission, the QD is excited by quasi-resonant 
optical pulses generated from a distributed feedback laser diode (DFB LD) with a tunable dispersion 
compensator (see Supplementary Fig. S1 online). The emitted photon with a wavelength of 1580.5 nm is 
typically characterized by two parameters, (≤ )n 1  (the average number of photons in the emitted pulse 
coupled to the fiber) and g(2)(0) (the second-order correlation function at zero time delay). Both of these 
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Figure 1. Experimental setup of single-photon QKD. Test-bed system, i.e., a time-bin encoding QKD 
system based on the standard BB84 protocol. PPG: pulse pattern generator, HJ: hybrid junction. The entire 
system was operated at the repletion rate of 62.5 MHz.
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parameters depend on the SPS’s operating conditions. We created a compressed optical excitation pulse 
of about 10 ps (shorter than that used in the previous system) for suppressing multiphoton emissions 
owing to multiexciton excitations. We also increased the repetition rate of the SPS from 20 to 62.5 MHz, 
by taking account of the previously established practical system working on a 62.5 MHz clock33. The best 
result for the correlation measurements of emitted photons by using the Hanbury-Brown-Twiss setup is 
reported in Supplementary Fig. S2 online, where we obtained g(2)(0) =  0.002 (after careful background 
subtraction) and n  =  0.03. In the current demonstration, we relaxed the conditions by widening the 
band pass filter’s bandwidth immediately after the SPS from 0.3 to 0.7 nm. As shown in Fig. 2, we obtained 
g(2)(0) =  0.0051 and n  =  0.05 at the repetition rate of 62.5 MHz. Although this condition is not optimal 
for multiphoton suppression, the value of g(2)(0) is almost one order of magnitude smaller than the value 
in the previous experiment, while n  is only slightly reduced (0.06 →  0.05)14.

We replaced ASPD with a four-channel SNSPD (SCONTEL, FCOPRS-00-15). The SNSPD is more 
advantageous than the ASPD, because it has both high detection efficiency and low dark count. Its per-
formance depends on the operating conditions, in particular the operation temperature and the applied 
bias voltage. Here, we chose conditions that would simultaneously ensure a dark count rate under 20 cps 
and quantum efficiency of 10%. One of the important differences between the ASPD and SNSPD is 
that the former operates in a gated mode, whereas the latter operates in a nongated mode. As will be 
discussed later, this feature and the small dark count of the SNSPD helped to significantly improve the 
S/N ratio of our QKD system.

Demonstration of single-photon QKD. For the demonstration, four-letter codes randomly chosen 
from {X0, X1, Y0, Y1} and cyclic with a 100-bit period (1.6 μ s) were each encoded into a series of photon 
pulses. The time reference between Alice and Bob was established by sending synchronizing laser pulses 
in parallel through a two-core SMF. The histograms in Fig. 3 show the arrival time distributions of the 
photon for the four SNSPDs, where only parts of data are shown. The distributions are localized around 
the predefined temporal positions with finite widths. This temporal width mainly reflects the finite life-
time (~1 ns) of the photon emission in our QD SPS. We observed that the width was independent of the 
transmission distance. This indicates that the photon pulse was chirp-less, i.e., our system was completely 
dispersion-free. Raw keys were generated by postselecting the useful events from such distributed events. 
This postselection clearly depends on the window size of the event selection. The larger the window 
size is, the more we can select the events and increase the raw key rate as well as the error rate. This is 
because, in our time-bin optics, there are satellite events before and after the useful events, which yield 
50% of the errors. Therefore, enlarging the window too much may decrease the secure key rate. For this 
reason, we chose a window size of 4 ns. The resulting quantum efficiency η eff and dark count probability 
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Figure 2. Photon correlation measurement. Results of correlation measurements of emitted photons 
associated with this experiment; g(2)(τ ) is plotted as a function of the time delay τ  of the arrival time of the 
photons. We chose g(2)(0) =  0.0051 and n  =  0.05 at the repetition rate of 62.5 MHz. The lower trace is a 
magnification of the central part of the upper trace around τ  ~ 0, and g(2)(0) is plotted on a logarithmic scale.
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dB per window were slightly smaller than 10% and 1 ×  10−7, respectively. Moreover, the resulting effective 
S/N ratio of our SNSPD was about 60.8 dB. By contrast, the ASPD window is usually very small, e.g. 
around 1 ns, because it is usually operated in a gated mode to keep the dark count at a reasonable level. 
Moreover, we could only apply triangular gate pulses (rather than rectangular ones) to the ASPD for such 
a short temporal range because of the limited bandwidth of the peripheral circuit. This, together with the 
finite widths of the photon arrival time distributions, severely limited the quantum efficiency per gate of 
the ASPD. In our case, quite a small fraction of arriving photons could be postselected as useful events. 
The resulting effective S/N ratio was below 50 dB, and this is why we replaced the ASPD with an SNSPD 
that improved the S/N ratio of the SPD by more than one order of magnitude.

To summarize, we reduced the multiphoton emission of our SPS by more than one order of magni-
tude and increased the S/N ratio of our SPD by more than one order of magnitude relative to the previ-
ous system. The latter improvement significantly contributed to reducing the quantum bit error rate 
(QBER). Figure 4 shows the measured QBER after transmission through 50, 100, 110, and 120 km-long 
two-core SMF spools. In all the distances, the QBER was below 10%, which suggests the possibility of 
secure key distribution up to 120 km. To prove this prediction, we need to analyze the secure key rate 
while accounting for the finite value of evaluated g(2)(0). We performed security analysis according to the 
GLLP theory34,35. To this end, we needed to determine several system parameters. Some parameters were 
measured directly by using classical light, while others were obtained by fitting the measured QBER 
(Fig.  4). The relevant parameters are listed in Table  1. The error correction algorithm was assumed to 
consume 1.2 times the number of bits attainable in the Shannon limit. The red dotted and solid lines in 
Fig. 5 show the results for the raw and estimated secure key rates for a series of experiments, respectively. 
The estimated secure (raw) key rate was about 27.6 bps (79.9 bps) and 0.307 bps (34.3 bps) at 100 km and 
120 km, respectively. It should be noted that the theory suggests that we could further extend the maxi-
mal range of secure keys distribution by ~10 km under the same g(2)(0) if we could increase n  from 0.05 
to ~0.10, because the leading factor limiting the maximal range in this demonstration is the detector’s 
noise (see Supplementary Fig. S3 online). This result clearly indicates that our novel system has the 
potential to distribute secure keys over 120 km, corresponding to the size of a typical metropolitan area.
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Figure 3. Histograms of detected signal. Histograms showing the arrival time distributions of photons 
for the SNSPDs. Only ten bits of data are shown here. Encoded letters are shown in temporal order on the 
abscissa axis. The predefined temporal positions associated with meaningful events are shown as vertical 
dashed lines. Successfully decoded events are shown as circles.

0 50 100

Average

Best
~4.9%

Transmission distance (km)

Q
B

E
R

 (
%

)

12

10

8

4

6

0

2

0 50 100

~9.0%

Figure 4. QBER. Measured QBER as a function of transmission distance. Data sent through 50, 100, 110, 
and 120 km-long SMF spools are shown. The rectangles and circles are, respectively, the best data and 
the average of the top ten data during the experiment. The solid line is the fit for obtaining some of the 
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Discussion and Outlook
From a practical viewpoint, it is important to discuss the potential performance of the time-bin encoding 
QKD system by accounting for further improvement of QD SPS and SNSPD. The orange dotted (solid) 
and green dotted (solid) lines in Fig.  5 show the calculated raw (secure) key rate based on the GLLP 
theory for an ideal horn structure30 and a pillar microcavity structure36, respectively. In both cases, the 
g(2)(0) is assumed to be ~10−4, which is lower than the current QD SPS by one order of magnitude. This 
might be attainable by further shortening the excitation pulses (see Supplementary Information). As for 
the detector’s performance, we assumed a dark count rate of 18 Hz at a system detection efficiency of 
40%, which is within the current experimental reach37. For the ideal horn structure (i.e., orange dotted 
and solid lines in Fig.  5), we assumed n  =  0.175 taking into account the maximal photon extraction 
efficiency of 35% and 3-dB loss between the lens and a SMF core. For the repetition rate of 62.5 MHz, 
which is the same as in the above QKD demonstration, the secure key rate was estimated as ~40 bps at 
150 km. The distance is comparable to the record of phase-encoding QKD system using decoy states38. 
In this case, the radiative lifetime of ~1 ns for the exciton state limits the maximal repetition rate to 
several hundred megahertz. Recently, we have proposed a novel hybrid pillar microcavity structure in 
which a large Purcell factor (up to 110) with output efficiency of ~60% can be obtained36. If such an SPS 
is integrated into our system, reduced timing jitter of the single-photon emission can contribute to 
extending the maximal repetition rate into gigahertz range. In addition, it enables to narrow the temporal 
postselection window of SNSPDs, thus reducing the influence of background noise. The green solid line 
in Fig. 5 shows the calculated secure key rate at the repetition rate of 1 GHz, assuming that the timing 
jitter of emitted photons is reduced by 1/10 while keeping g(2)(0) at 10−4 and n  at 0.175. The simulation 
indicates that the predicted secure bit rate reaches ~100 bps at 200 km, which is similar to the recent 
polarization-encoding QKD system using decoy states39. Note that the condition of the source perfor-
mance ( n  =  0.175 and g(2)(0) =  10−4) assumed for these simulations is greatly mitigated compared with 
ideal SPS ( n  =  1 and g(2)(0) =  0). This shows that the possibility of pursuing g(2)(0)-engineering to obtain 
high-purity QD SPS offers unconditionally secure QKD based on single-photon technology as well as 
high throughput comparable to the current QKD system based on coherent light, even for SPSs with 
moderate efficiencies.

Relevant parameters Symbol Value

SPS parameters
n 0.05

g(2)(0) 0.0051

SPD parameters
ηeff 0.096

dB 4 ×  0.75 ×  10−7

QBER due to optical misalignment QBERopt 2.3%

Optical loss of Alice’s system ηA 7.43 dB

Optical loss of Bob’s system ηB 3.00 dB

Optical loss of fiber α 0.194 dB/km

Table 1.  Relevant parameters necessary for the security analysis according to the GLLP theory.

Figure 5. Key rate as a function of the transmission distance. Measured raw key rates plotted as a 
function of transmission distance (red open circles and red dotted line) together with the estimated secure 
key rates (red closed circles and red solid line). The previous result15 (50-km-long transmission) is shown for 
comparison. Orange dotted (solid) and green dotted (solid) lines shows raw (secure) key rates for ideal horn 
structure and micropillar cavity structure, respectively (see text).



www.nature.com/scientificreports/

6Scientific RepoRts | 5:14383 | DOi: 10.1038/srep14383

In conclusion, we demonstrated secure QKD over 100 km by using the true SPS. This achievement 
was by virtue of the improved SPS and SPD. By applying a very short and resonant excitation pulse to 
optically excite our InAs/InP QD, we obtained pulsed photons emitting at 1.58 μ m with ultralow g(2)(0) 
and relatively high n . Our QKD system also used SNSPDs, which greatly improved the S/N ratio. The 
raw and secure key rates at 100 km were about 79.9 and 27.6 bps, respectively. The latter value was more 
than threefold larger than the rate obtained in the previous 50-km-long QKD experiment14. Furthermore, 
the maximal range of secure QKD reached 120 km, for which we achieved the raw and secure key rates 
of 34.3 bps and 0.307 bps, respectively. This result demonstrates that our QD-based 1.5-μ m SPS could be 
used in future telecom QKD networks.
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