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Abstract

The first total synthesis of the n-3 docosapentaenoic derived oxygenated product MaR2n-3 DPA has 

been achieved. The 13R and 14S stereogenic centers were introduced using 2-deoxy-d-ribose in a 

chiral pool strategy. The geometry of the Z,E,E-triene moiety was prepared using highly E-

selective Wittig- and Takai-olefination reactions as well as the Z-stereoselective Lindlar reduction. 

LC/MS-MS data of synthetic MaR2n-3 DPA matched data for the biosynthetic formed product that 

enabled the configurational assignment of this oxygenated natural product to be 

(7Z,9E,11E,13R,14S,16Z,19Z)-13,14-dihydroxydocosa-7,9,11,16,19-pentaenoic acid.
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Recent studies have demonstrated that polyunsaturated fatty acids (PUFAs) derived 

specialized pro-resolving mediators (SPMs) actively govern and promote the resolution of 

inflammation [1]. PUFAs are enzymatically converted into different families of SPMs, e.g. 

the lipoxins, resolvins, protectins and maresins [2]. Maresin 1 (MaR1) is biosynthesized [3] 

from docosahexaenoic acid (DHA) in the presence of 12-lipoxygenase and was the first 

member of the maresin family of SPMs to be reported [4] and prepared by total synthesis 

[5].

In 2013 Dalli and co-workers reported several new SPMs biosynthesized from n-3 

docosapentaenoic acid (n-3 DPA) [6]. n-3 DPA, consisting of 22 carbons and five all-Z 
double bonds, is an elongated product of eicosapentaenoic acid and an intermediate in the 

biosynthesis of DHA [7]. Using a self-limited model of inflammation and targeted 

metabololipidomics during the onset and resolution of acute inflammation, Dalli and co-

workers [6] uncovered several novel n-3 DPA SPMs that are potent bioactive molecules. The 

structures of MaR1n-3 DPA (1), MaR2n-3 DPA (2) and MaR3n-3 DPA (3) are shown in Fig. 1.

Based on their novel pro-resolving and anti-inflammatory bioactions, SPMs have attracted 

significant interest from the biomedical, pharmacological and synthetic organic communities 

[8]. SPMs act as agonists on individual GPCRs [9] exhibiting nanomolar pro-resolution and 

anti-inflammatory bioactions [10]. Some SPMs have entered initial clinical trial 

development programs [11]. These endogenously formed products are available in minute 

amounts from their natural sources and contain several stereogenic centers and conjugated 

E- and Z-double bonds. Hence, stereoselective synthesis for configurational assignment and 

extensive biological testing becomes necessary.

A few of the n-3 DPA-derived SPMs have recently been prepared [12] and subjected to 

biological evaluations [13], but MaR2n-3 DPA (2) has not been synthesized to date and its 

absolute configuration at C-13 remained to be determined. These facts, as well as the high 

demand for sufficient material for biological and pharmacological testing, inspired us to 

report the first total synthesis of MaR2n-3 DPA (2).

The three key intermediates 4, 5 and 6 in our retrosynthetic analysis are depicted in Scheme 

1. The stereogenic centers at C13 and C14 were assumed to be R and S, respectively, based 

on biosynthetic considerations [6]. Hence, 2-deoxy-d-ribose (7) was deemed a suitable 

commercially available starting material for preparing MaR2n-3 DPA (2). This carbohydrate 

has been used in the stereoselective total synthesis of other SPMs [14].

The phosphonium salt 8 was synthesized from Z-hex-3-en-1-ol (9) as previously described 

[12c]. Intermediate 11 was obtained from known TBS-protected aldehyde 10 [12d] using a 

highly Z-selective Wittig reaction with the in situ generated ylide of 8 (Scheme 2). This 

produced 11 as one diastereomer in 84% yield (ESI). Next, selective deprotection of the 

primary TBS-group in 11 was achieved with para-toluene sulfonic acid (PTSA) in MeOH at 

−20 °C giving alcohol 12 that was oxidized (Dess-Martin periodinane (DMP), NaHCO3, 

CH2Cl2) to its aldehyde 13 in 40% yield over the two steps. Aldehyde 13 was dissolved in 

toluene and 1.3 equiv. of the stabilized ylide (triphenyl-phosphoranylidene)acetaldehyde was 

added. The reaction mixture was heated at reflux for 19 h to afford the E-configured α,β-
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unsaturated aldehyde 14 in 60% yield after purification by column chromatography (ESI). 

To complete the formation of fragment 4, a Takai reaction was performed on aldehyde 14. 

After acidic work-up and purification by column chromatography the sensitive E,E-vinylic 

iodide 4 was isolated in 73% yield (Scheme 2).

Terminal alkyne 5 was conveniently prepared in a four-step sequence, starting from 

cycloheptanone (15), see Scheme 3. Bayer-Villiger oxidation on 15 followed by Fischer-

esterification gave hydroxyl-ester 16 that was oxidized to aldehyde 17 and reacted in the 

Ohira-Bestmann reaction affording alkyne 5 in 12% yield from 15.

The Sonogashira coupling reaction with key fragments 4 and 5 produced alkyne 18 in 50% 

isolated yield after careful chromatographic purification (Scheme 4). Next, removal of the 

two-TBS groups in 18 with excess TBAF in THF produced diol 19. Reduction of the 

internal alkyne in 19 using the Lindlar-reduction (Pd-CaCO3, EtOAc/pyridine/1-octene, H2 

1 atm) gave the methyl ester of MaR2n-3 DPA (20) in 55% isolated yield over the two steps 

and with >95% chemical purity (HPLC, ESI). Finally, careful saponification (LiOH, H2O, 

MeOH, 0 °C) of 20 gave MaR2n-3 DPA (2) in 97% yield (Scheme 4). Data from NMR, 

LC/MS-MS and UV experiments (ESI) confirmed the structure of 2.

We next tested whether synthetic 2 matched the endogenous MaR2n-3 DPA (2) prepared from 

human samples. We first isolated material from human serum and the retention time of the 

endogenous mediator using RP-HPLC-MS-MS lipid mediator profiling experiments [15]. 

Using multiple reaction monitoring (MRM) of the parent ion with m/z 361 and the daughter 

ions m/z 223 or m/z 193, we obtained a sharp peak with retention time (RT) of 14.4 min 

(Fig. 2A). Of note, a similar retention time of 14.4 min was obtained with synthetic 2 (see 

Fig. 2A). Moreover, co-injection (2 μL) of a homogenous sample of biological MaR2n-3 DPA 

(2) with synthetic 2 in a 1:10 M ratio, respectively, gave a single sharp peak in MRM 

experiments, with RT 14.4 min (Fig. 2A). Similar findings were made with platelet rich 

plasma, where endogenous MaR2n-3 DPA (5) gave a RT of 14.4 min that co-eluted with 

synthetic 2 (Fig. 2B). To obtain further evidence that the chemical structure for synthetic 2 
matches that of endogenous MaR2n-3 DPA we next assessed the MS/MS fragmentation 

spectra. Here we found that, in accordance with published findings [6], MaR2n-3 DPA from 

both human serum and platelet rich plasma gave the following ions m/z 361 = M−H, m/z 
344 = M−H−H2O, m/z 325 = M−H−2H2O, m/z 317 = M−H−Co2, m/z 299 = M−H−H2O

−CO2, m/z 281 = M−H−2H2O−CO2, m/z 179 = 223-CO2, m/z 161 = 223-H2-O−CO2, m/z 
149 = 193-CO2, ions that were also found in the MS/MS spectrum of synthetic 2 (Fig. 3).

The SPMs are among the most exciting small and naturally occurring molecules currently 

undergoing investigations towards drug development of new anti-inflammatory drugs [1,16]. 

The stereoselective synthesis of 2 using the Lindlar reaction, the Sonogashira coupling 

reaction and the Takai olefination produced multi milligram quantities of 2 that is now 

available for further biological and pharmacological evaluations to be conducted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structures of MaR1n-3 DPA (1), MaR2n-3 DPA (2) and MaR3n-3 DPA (3). The absolute 

configuration is presented where established.
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Fig. 2. 
Synthetic 2 matches endogenous MaR2n-3 DPA in human serum and cells. (A) human serum 

(B) platelet rich plasma were collected, placed in ice-cold methanol, lipid mediators were 

extracted and MaR2n-3 DPA was identified using lipid mediator profiling. Panels depict 

representative MRM chromatograms for m/z 361 > 223 (human serum) or m/z 361 > 193 

(platelet rich plasma). Top panels depict the chromatograms obtained with biological 

material, center panels depict chromatograms obtained with synthetic 2 and bottom panels 

depict chromatograms obtained with the biological material co-injected with synthetic 2. 

Results are representative of three determinations for A and n = 3 distinct human donors for 

B.
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Fig. 3. 
MS/MS fragmentation spectra for synthetic 2 and MaR2n-3 DPA from human serum and 

platelet rich plasma. Lipid mediators were extracted from (A) human serum and (B) platelet 

rich plasma and MS/MS spectra for endogenous MaR2n-3 DPA, together with those of (C) 

synthetic 2, were obtained using lipid mediator profiling. Results are representative of n = 3 

determination for A and C and 3 volunteers for B.
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Scheme 1. 
Retrosynthetic analysis of MaR2n-3 DPA (2).
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Scheme 2. 
Synthesis of vinylic iodide 4. Reagents and conditions: i) NaHMDS, CH2Cl2, − 78 °C; ii) 

para-toluene sulfonic acid (PTSA), MeOH, −20 °C; iii) DMP, NaHCO3, CH2Cl2; iv) 

toluene, (triphenyl-phosphoranylidene)acetaldehyde, Δ; v) CrCl2, dioxane, THF, CHI3, 0 °C.
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Scheme 3. 
Synthesis of alkyne 5. Reagents and conditions: i) a) m-CPBA, CH2Cl2; b) MeOH, H2SO4; 

ii) DMP, NaHCO3, CH2Cl2; iii) dimethyl(1-diazo-2-oxopropyl) phosphonate; K2CO3, 

MeOH.
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Scheme 4. 
Total synthesis of MaR2n-3 DPA (2). Reagents and conditions: i) CuI, Et2NH, Pd(PPh3)4 

(5%); ii) TBAF, THF; iii) Pd/CaCO3, EtOAc/pyridine/1-octene, H2; iv) LiOH, H2O, MeOH, 

0 °C.
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