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This study examined the influence of automation reliability on task-unrelated mind
wandering (MW) frequency and the impact of MW on task engagement. Automated
environment features make it particularly prone to increase MW frequency. Through
mechanisms like complacency or agency, automating a task could increase MW
frequency for the operator. For safety-critical industries, the lower perception and
degraded stimuli processing associated with MW, summarized by the term “decoupling
hypothesis,” are particularly concerning. Sixteen participants supervised an autopilot
avoiding obstacles with two levels of reliability. Each condition lasted 45 min. We
recorded thoughts as either pertaining to being focused, task-related MW or task-
unrelated MW. We also recorded perceived mental demand, trust regarding the autopilot
and oculometric measures. Based on questionnaire results, our protocol succeeded in
inducing more mental demand and lower trust when the automation was unreliable.
Attentional states were not correlated, nor did it influence trust in the system reliability.
On the contrary, mental demand ratings and pupil diameter were lower during both
task-related and task-unrelated MW, compared to those during the focus attentional
state. This shows that perceptual decoupling also affects the engagement of operators
in automated environments, which may dramatically lower their ability to supervise
automation efficiently. This research informs human-automation designers to consider
operator engagement when creating automated systems.

Keywords: mind wandering, perceptual decoupling, out-of-the-loop, complacency, automation, reliability, trust,
mental demand

INTRODUCTION

Automation has fundamentally changed our working environments. Particularly, the industry
makes extensive use of automated systems to design more reliable and efficient environments.
However, side-effects of these automated systems have been observed. Particularly, the externally
imposed task of maintaining sustained attention of human operators focused for long periods of
time on the automated system – which has a very low probability of failure – causes progressive
vigilance decrement preventing efficient automation supervision (Amalberti, 1999). The task of
detecting and reacting to alerts, which seldom occur and are drowned in noise, has become stressful
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and increasingly difficult (Mackworth, 1948; Hancock, 2013).
Problems linked to moving operators to an automated system
supervising role have been summarized by the term ‘out-of-the-
loop (OOTL) performance problem’ (Endsley and Kiris, 1995).
The OOTL problem has been studied in laboratories (Baxter
et al., 2007; Louw et al., 2015), but it is still difficult to quantify
it after decades of research (Baxter et al., 2012). One of the
key components of OOTL is often linked to decreased vigilance
leading to insufficient environment information extraction
(Pattyn et al., 2008). At an operational level, OOTL is
regularly encountered among the causes for various incidents
and accidents (Federal Aviation Authority, 1972, 1995; Bureau
d’Enquête et d’Analyse, 2013).

Mind wandering (MW) may play an important role in
this context. MW is a family of experiences related to the
human mind’s tendency to engage in thoughts away from
the ‘here and now’ (Smallwood and Schooler, 2006). We all
mind wander to some extent in our daily lives (Killingsworth
and Gilbert, 2010). We sometimes do it willingly to evade a
boring environment, but it can also happen without us being
able to control it, or even being conscious that our mind
had wandered (Smallwood, 2013; Golchert et al., 2016; Seli
et al., 2016). MW may start with some thoughts related to
the task (therefore called task-related MW, as when thinking
about task performance) or be completely unrelated to the
task (called task-unrelated MW, as when thinking about dinner
while driving). It is important to note that MW in general
is thought to have some evolutionary use, possibly helping to
solve problems or lower cognitive fatigue (Mooneyham and
Schooler, 2013; Gouraud et al., 2017a). More particularly, task-
related MW could allow future planning (Schooler et al., 2014).
Task-unrelated MW is more likely to occur in monotonous
environments (Eastwood et al., 2012), or when operators perform
familiar (Bastian et al., 2017) or long tasks (Smallwood and
Schooler, 2015). Interestingly, we have recently shown that an
automated context could increase MW frequency (see Gouraud
et al., 2017b for preliminary results): we demonstrated in a
plane simulator that operators cannot always control their MW.
Understanding how automation influences MW and how MW
influences operators’ engagement is of high interest for safety-
critical industries like aeronautics, nuclear plants or automobiles.
A first issue concerns the automation features causing an increase
in MW frequency. As previously stated, automated environments
are generally repetitive and monotonous, with very few target
events, all of which are characteristics known to increase MW.
However, they are not the only features of automation that could
influence MW. Among the most important characteristics of
automated systems, reliability is considered as one of the causes
of the observed vigilance decrement observed in OOTL episodes
(Metzger and Parasuraman, 2001). The paradox of ultra-safe
systems is that the absence of any failure for a prolonged period
of time will lead operators to make commission errors – i.e.,
accept an automation recommendation despite the fact that it
may be wrong (Amalberti, 2001). This phenomenon is called
automation-induced complacency (Parasuraman et al., 1993).
Complacency is the adoption of a non-optimal information
sampling behavior based on over-trust in the system’s capabilities

due to a minimization of the automation failure probability
(Moray and Inagaki, 2000; Innes-Jones and Scandpower, 2012).
Even though it can emerge unconsciously, complacency can be
seen as a multiple-task strategy to optimize the global output
when supervising an automated system, while also performing
a more engaging task. However, this strategy can sometimes
lead to dramatic failures in safety critical environments. Multiple
meta-studies reported complacency as being one of the main
reasons for an important number of crashes (Wiener, 1981;
Parasuraman and Riley, 1997; Funk et al., 1999). Complacency
may lead operators to disengage from the task and reallocate
their cognitive resources to more personal matters, increasing
MW frequency. MW frequency would therefore increase with
automation reliability.

A second issue concerns the impact of MW on safety. One of
the most threatening aspect of MW for safety is the decoupling
from the environment (Schooler et al., 2011). Operators engaged
in an episode of MW will experience a deterioration of
their encoding of external information. MW disrupts visual
information flow by reducing pupil diameter (Smallwood et al.,
2011; McIntire et al., 2014) and increasing blink frequency
(Smilek et al., 2010). Neuronal studies demonstrated an
increase of alpha wave power during MW, linked with sensory
suppression (O’Connell et al., 2009; Foxe and Snyder, 2011),
and a reduction of Event Related Potentials linked to external
information perception and processing (Smallwood et al., 2008).
At the behavioral level, this decoupling translates into a decrease
in performance. Reaction exhibits higher variability (Bastian
and Sackur, 2013), while omissions and anticipations are more
common (Cheyne et al., 2011). Accuracy was shown to decrease
in both simple paradigms (Kam et al., 2012) and more ecological
ones (Yanko and Spalek, 2014). This evidence demonstrates that
MW disrupts online adjustment of behavior (Kam et al., 2012),
despite recent criticism of some of the paradigms used (Head
and Helton, 2016). Particularly, MW-induced decoupling might
lead supervisors to disengage from the task and overlook some
failures, leading to OOTL problems. Such disengagement should
be observed both at the behavioral and physiological levels.

Even though multiple studies have investigated MW-induced
perceptual decoupling, no attempt has been made, to our
knowledge, to do so when supervising automation. We report in
this article an experiment on the evolution and consequences of
MW within an automated environment of varying reliability. Our
hypotheses are that (1) higher reliability increases task-unrelated
MW by creating complacency and (2) MW-induced decoupling
impacts operators’ engagement (perceived mental demand and
oculometric signal) under operational conditions.

MATERIALS AND METHODS

Participants
Sixteen participants (3 female) performed the experiment (age
ranging from 22 to 43 years old; M = 29.0, SD = 5.8). The
participants enrolled in this study were volunteers from our
company (ONERA, the French Aerospace Lab). All participants
had normal or corrected-to-normal visual acuity. All participants
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were unfamiliar with the concepts at hand and the LIPS
environment. All participants signed a written declaration of
informed consent. The procedure was approved by ONERA and
conducted in accordance with the World Medical Association
Declaration of Helsinki.

Task
Environment
We used the LIPS (Laboratoire d’Interactions Pilote – Système,
or Pilot-System Interaction Laboratory) environment developed
at ONERA to program our experiment (see Figure 1). An
unmanned air vehicle (UAV), depicted as a plane seen from
above, stayed at the center of a 22-inch 2D radar screen and
moved following waypoints arranged in a semi-straight line.
Clusters of obstacles appeared along the way (every 45 s on
average). Each cluster could contain between 1 to 5 obstacles,
including one on the trajectory. When an obstacle was present
on the trajectory (this situation is called “conflict”), the autopilot
detected it and initiated a deviation automatically. This avoidance
trajectory could result in a left or right turn, depending on the
placement of all obstacles in the conflict. The participants were
instructed to monitor the UAV and correct any mistake that
the autopilot may make (i.e., an avoidance trajectory that would
result in an impact with another obstacle). When the autopilot
decided that the obstacle was not on the trajectory anymore, it
initiated a change in the avoidance trajectory to head to the next
checkpoint. The LIPS environment includes a physics engine to
reproduce convincing Rafale military aircraft motion behavior.
The LIPS was displayed on the left screen within the environment
shown in Figure 1.

Conditions
Participants were required to monitor the autopilot
avoiding obstacles. They had to click on an “Acquittement”
(acknowledgment) button to acknowledge automated avoidance
decisions as soon as they saw it (twice per trial, once to
acknowledge avoidance of the object and once to acknowledge

the return to normal trajectory after avoiding the object).
A feedback message was displayed to the participants. Finally,
if participants detected an incoming collision warning, they
were instructed to click on the button “Changement d’altitude”
(change height) so that the UAV would perform an emergency
descent to avoid colliding with the obstacle. A feedback message
was displayed in that case as well. Collisions could occur during
the avoidance trajectory, if there was another obstacle on the
bypass trajectory chosen by the autopilot. In that case, an orange
circle appeared around the obstacle to indicate that the UAV
was too close to some object, threatening the safety of the flight.
Two conditions were proposed. Under the “Risky” condition,
the autopilot made an error (choosing the wrong side) leading
to a collision in 40% of the trials (27 errors in total), selected
randomly. This number was chosen so that there would be a
significant number of collisions, while keeping the automated
system performance above the chance expectation (50%). Under
the other “Safe” condition, the autopilot only made 5 errors (7%
errors; errors on trials 24, 40, 56, 62 and 64). Each condition
contained 67 clusters of obstacles. All decisions and collisions
were predefined and, therefore, they were the same for all
subjects.

Experience Sampling Probes
Python 3.6 was used to program experience sampling probes.
On average every 2 min, an experience sampling probe appeared
on a secondary 10-inch screen next to the main screen. For
technical reasons, the obstacle-avoidance task was not paused
when the experience sampling probes appeared. Participants
were asked to enter it as soon as it appeared, and any successful
or failed trial during this interval would not be taken into account
to compute their performances. Participants were informed
that the questionnaire probes were for informational purposes
only and were not used to assess performance. This limited
the possibility of participants being reluctant to report their
distraction. Participants were required to answer the following
questions (originally in French, see Figure 2): “When this

FIGURE 1 | Screenshot of the LIPS interface and the environment. On the right, the general set-up of the experiment is depicted. One of the screens is used for the
task and the other is used for questionnaire probes. On the left, the screen used for the task is focused on. The plane in the center is static and the surrounding
objects (yellow and red numbered symbols) are moving. During left and right avoidance maneuvers, the plane is again static and the background is rotated.
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FIGURE 2 | Screenshot of the experience-sampling probes in French.

questionnaire appeared, where was your attention directed?”
Answers could be “On the task” (focused, e.g., thinking about
the next obstacle, the decision to make, the incoming waypoint),
“Something related to the task” (task-related MW, e.g., thinking
about performance, interface items, last trial), “Something
unrelated to the task” (task-unrelated MW, e.g., thinking about
a memory, their last meal, or a body sensation) or “External
distraction” (e.g., conversation, noise). The preceding examples
were given to participants to illustrate each category prior to
the experiment. We were primarily interested in reports of
being focused or having task-related or task-unrelated MW. The
possibility of reporting “task-related MW” was proposed to avoid
participants reporting task-unrelated MW when thinking about
their performance (Head and Helton, 2016). The answer “Noise”
was proposed to avoid participants reporting MW if they were
focused on any external signal. The second question was “how
much do you trust the system?” We made explicit that this was
the trust in the ability of the system to perform its task without
errors. Answers ranged from “no trust” to “total trust” on a 5-
point Likert scale. Finally, the third question was: “what is your
perceived workload?” We used the word “workload” (“charge
de travail” in French) because the term is generally understood
by everyone. Perceived mental demand was measured as an
important aspect of task engagement (Parasuraman and Riley,
1997). However, we further clarified this term for the participant
prior to starting the experiment as the perceived quantity of
mental effort needed to achieve the objectives. We refer to this
question as “perceived mental demand” throughout the rest of

the paper. Answers ranged from “low mental demand” to “high
mental demand” on a 5-point Likert scale.

Procedure
Participants were explicitly instructed that detection accuracy
was more important than speed of response. Each participant
performed under the two conditions on two separate days in a
counterbalanced way. Each day started with an explanation of the
task, followed by a 10-min training period and a 50-min session
under the proper condition. Each session contained 67 clusters of
obstacles, totaling 201 obstacles. Each cluster contained between
1 and 5 obstacles, including one on the trajectory. Clusters were
separated by 45 s on average. 20 probes were responded to
under each condition (see Figure 3). The distribution of the
experience-sampling probes was not correlated with events on
the obstacle-avoidance task, in order to minimize performance
influence over experience-sampling reports (Head and Helton,
2016). The “Risky” condition included six conflicts with a probe
presented within the 10-s interval following the conflict, while the
“Safe” condition included seven conflicts with a probe presented
within the 10-s interval following the conflict.

Data Collection
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

Experience-Sampling Probes
Comma Separated Value (CSV) text files were used to store
all answers from each session with each subject. The exact
appearance time was saved along with each answer, in order to
synchronize the questionnaire data with the oculometric signal.

Oculometry
Oculometric data was recorded using the SmartEye Pro 3.0
hardware and the SmartEye 7.1.0 software. The system included
two infrared illuminators and three cameras (120 Hz sampling
frequency) placed below the computer screen (see Figure 1). Gaze
calibration was performed using a 4-point grid, using the Gaze
Calibration Client proposed by SmartEye. The SmartEye software
gave an average of both pupil diameters. When only one eye was
available, then this pupil was used and the software indicated
degraded quality of measure.

Performance
We recorded button clicks throughout both conditions. Each
button click was saved along with its timestamp in a CSV text
file by the LIPS environment.

Data Analysis
Experience Sampling Probes
We used R-Studio 1.0.143 and R 3.4.1 (RStudio Team, 2015; R
Core Team, 2016) to analyze the data.

Oculometry
We defined oculometric epochs as data during the 10-s intervals
preceding each questionnaire. This duration is in line with the
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FIGURE 3 | Step by step explanation of a trial. The UAV moves forward cruising without events for 27 s on average. The automated pilot will detect any obstacle
along the way and decide which way to go (left or right). Once it decides the direction, participants must click on “Acknowledge.” When the automated pilot decides
that the obstacle is not on the trajectory anymore, it heads to the next checkpoint and participants must once again click on “Acknowledge.” However, when the
automated pilot chooses the wrong side, participants must click on “Altitude Change” to avoid the collision. At any randomly selected moment, an
experience-sampling probe may appear.

literature (He et al., 2011; Franklin et al., 2013; Bixler and
D’Mello, 2014, 2015). We performed pupillometry filtering and
processing using the R packages reshape (Wickham, 2007), psych
(Revelle, 2017), ggplot2 (Wickham, 2009, 2), and robfilter (Fried
et al., 2014). We only seized the pupil diameter when the subject
was looking at the main screen to avoid any luminosity effect (e.g.,
to avoid reporting effects when it was only a case of the people
reporting MW looking more outside the screen). Pupil diameters
smaller than 1 mm and larger than 10 mm were excluded (due
to the physical limits of pupil diameter, see Lemercier, 2014).
Pupil diameters differing from the preceding value by more
than 80% were also excluded (due to pupil dynamic limits).
Pupil diameter with a quality metric (computed by the SmartEye
software) below 0.01 were excluded, in order to discard tracking
losses (given by a quality of 0). 10-s epochs were discarded if
their resulting pupil diameter series consisted of more than 30%
discarded samples. We excluded 5.5% of all segments, which is
in line with the literature (Smallwood et al., 2011). Resulting
segments were completed using linear interpolation if necessary.
After interpolation, a second moving average filter was applied
(moving window of 50 frames or 417 ms). We also discarded

all epochs that included some actions by participants during the
interval (i.e., if participants clicked on a button during the 10 s).
This ensured that all epochs were free of phasic activity linked to
decisions (which could mask the MW influence). Finally, the data
for each participant were standardized by subtracting the mean
and dividing by the standard deviation of all retained epochs for
this participant.

Fixations, saccades and blinks were computed by the SmartEye
Pro software. Blinks were computed using 700 ms sliding
windows. Saccades were defined in SmartEye Pro parameters as
gaze velocity over 35 deg/s. Saccades were limited to 200 ms.
Fixations were frames associated with a gaze velocity below
15 deg/s.

Performance
Performance was assessed by determining if participants clicked
when they were required to do so. “Acknowledge” command
for the beginning of the avoidance trajectory was considered
missed if participants did not click before the UAV starts the
return on trajectory (4 s delay, see Figure 3). “Acknowledge”
command for the return on trajectory was considered missed if
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TABLE 1 | Descriptive of MW frequency per block (in percentage of reports in one
block).

Task-related MW Task-unrelated MW

Block Mean SD Mean SD

Block 1 32.8 23.5 30.2 29.6

Block 2 26.4 23.5 31.2 30.4

Block 3 22.2 20.0 33.4 31.7

Block 4 23.9 20.6 37.6 25.2

Block 5 33.1 25.3 47.3 33.0

participants did not click at most 10 s after the start of the return
on trajectory. “Altitude change” command was considered missed
if the participant did not click on it during the 15 s preceding the
collision.

RESULTS

Mind Wandering Frequency
We split the 50-min sessions into five blocks of 10 min containing
five experience-sampling probes each. Participants reported on
average 1.38 task-related MW episodes (SD = 1.14) and 1.80
task-unrelated MW episodes (SD = 1.52) per block. This rate is
consistent with previous studies (Smallwood and Schooler, 2006,
2015; Kam et al., 2011; Gouraud et al., 2017b). Each participant
reported on average 0.79 external distractions (SD = 1.21) during
each session. Given that this represented only 3% of all reports,
we approximated attentional state as a ternary state – i.e., as
being either in focused, task-related MW and task-unrelated MW
states.

We investigated the first hypothesis (influence of trust over
MW rates) by looking at task-related and task-unrelated MW
frequency evolution over time and conditions (see Table 1 for
a description). We used the lme function (Pinheiro et al., 2017)
and the anova function (R Core Team, 2016) to perform a linear
nested mixed-effect analysis including a different number of
reports between attentional states (Winter, 2013). We considered
Blocks as a categorical variable. We defined a random intercept
for subjects to take our repeated-measure design into account.
No random slope were possible because of convergence problems
due to not having enough data. Visual inspection of residual
plots did not reveal any obvious deviations from normality
or homoscedasticity. Each model, starting from the baseline
without any predictor, added one predictor or interaction to the
preceding model, until the complete model was reached. P-values
were obtained by likelihood ratio tests using ANOVA on nested
models. All results are gathered in Table 2, bold values being
significant.

Blocks did not significantly influence task-related MW (see
Figure 4). There was a significant interaction between blocks
and conditions, χ2 = 12.28, p = 0.015. Without specific a priori
predictions regarding the block-by-block evolution, we used the
glht (Hothorn et al., 2017) and mes (Del Re, 2014) functions of R
to conduct Tukey’s post hoc tests on the model, including Block
and Condition interaction. Tests revealed that task-related MW

TABLE 2 | Summary of statistics regarding the influence of blocks and condition
over task-related and unrelated MW frequency.

Task-related MW Task-unrelated MW

Effect added df χ2 p-value χ2 p-value

Block 4 8.71 0.069 14.50 0.006

Condition 5 0.69 0.406 0.42 0.518

Block:Condition 9 12.28 0.015 4.57 0.358

All values in bold are significant at p < 0.05.

frequencies were significantly higher under the “Risky” condition
during Block 1 compared to the “Safe” condition during Block
3, p = 0.010, d = 1.31. However, with only this significant result,
no general trend can be observed regarding task-related MW in
both condition. We can only say that task-related MW seems
to decrease in the middle of the “Safe” condition, whereas no
particular trend can be seen for the “Risky” condition.

Task-unrelated MW frequency also changed with time-on-
task (see Figure 5), χ2 = 14.50, p = 0.006. Without specific a priori
predictions regarding the block-by-block evolution, we used
post hoc tests with glht and mes functions to uncover the exact
evolution of the task-unrelated MW frequency. Tukey’s tests
revealed that task-unrelated MW frequencies were significantly
higher in Block 5 compared to Block 1, p = 0.006, d = 0.55, Block
2, p = 0.013, d = 0.51, and Block 3, p = 0.047, d = 0.43. This
demonstrates a significant increase in the task-unrelated MW
frequency toward the end of each session, which is consistent with
the existing literature (Krimsky et al., 2017). On the contrary,
task-unrelated MW did not show any influence by the condition
on its levels, nor on its timely evolution. Given that conditions
varied with regard to reliability, thus eliciting different levels
of trust (see the following analysis of trust ratings), this result
argues against any influence of trust on task-unrelated MW
levels.

FIGURE 4 | Task-related MW frequency evolution for each condition (error
bars show the 95% confidence intervals based on bootstrap).
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FIGURE 5 | Task-unrelated MW frequency evolution for each condition (error
bars show the 95% confidence intervals based on bootstrap).

TABLE 3 | Summary of statistics regarding the influence of trust and perceived
mental demand over task-unrelated MW frequency.

Effect added Degrees of freedom χ2 p-value

Trust 1 0.017 0.895

Mental demand 2 2.48 0.115

We continued our analysis by looking at correlations between
task-unrelated MW rates, trust and perceived mental demand
for each subject. We used the lme function to perform a linear
mixed-effect analysis, despite a different number of reports
between attentional states. We defined a random intercept
using “Subjects” and a random slope using “Condition.” Visual
inspection of residual plots did not reveal any obvious deviations
from normality or homoscedasticity. Each model, starting from
the baseline without any predictor, added one predictor or
interaction to the preceding model, until the complete model was
reached. P-values were obtained by likelihood ratio tests, using
ANOVA on nested models. All results are gathered in Table 3,
bold values being significant.

Overall, the analysis of the task-unrelated MW frequency
showed that there was no significant interaction between
trust ratings nor perceived mental demand ratings with
task-unrelated MW frequency. However, task-unrelated MW
frequency increased significantly at the end of the session for both
conditions.

Trust
Trust ratings varied substantially between subjects (ranging from
2.12 to 4.58, M = 3.38, SD = 1.15). We continued to investigate
our first hypothesis (influence of trust over MW rates) by
looking at the trust evolution between conditions and attentional
states. We used the lme function to perform a linear mixed-
effect analysis, despite a different number of reports between
attentional states (see Figure 6). We defined a random intercept
using “Subjects” and a random slope using “Condition.” Visual
inspection of residual plots did not reveal any obvious deviations
from normality or homoscedasticity. Each model, starting from
the baseline without any predictor, added one predictor or

FIGURE 6 | Trust for each condition and attentional state (error bars show the
95% confidence intervals based on bootstrap).

interaction to the preceding model, until the complete model was
reached. P-values were obtained by likelihood ratio tests, using
ANOVA on nested models. All results are gathered in Table 4,
bold values being significant.

The difference in system reliability significantly impacted
trust, since trust ratings reported during the “Risky” condition
(M = 2.93, SD = 1.13) were significantly lower than during
the “Safe” condition (M = 3.82, SD = 0.99), b = −0.95,
t(766) = 4.75, p < 0.001. On the contrary, attentional states
did not significantly influence trust, χ2 = 4.47, p = 0.512.
In order to determine whether the absence of difference was
due to a lack of power, we computed the Type II error using
the pwr function (Champely, 2017) and lmer function (Bates
et al., 2017, 4) given that the lme function did not provide
the necessary information. Computation yielded a Type II error
p < 0.001, which indicated a very low risk of accepting the null
hypothesis, even though there was a significant effect [however,
see the critics of a posteriori power analysis using the data by
Hoenig and Heisey (2001)]. As expected, manipulating system
reliability modified trust in the system capabilities. On the
contrary, attentional states demonstrated no influence on trust
ratings.

Perceived Mental Demand
Mental demand ratings varied between subjects (ranging from
1.02 to 3.39, M = 1.78, SD = 0.78). We investigated our
second hypothesis (decoupling hypothesis within automated
environments) by looking at perceived mental demand evolution
between conditions and attentional states. We used the lme
function to perform a linear mixed-effect analysis including
different number of reports between attentional states. We
defined a random intercept for subjects and a random slope for
condition. This allowed our model to suppress any deviation
caused by individual differences and reactions to conditions, thus
accounting for repeated measures variables. Visual inspection
of residual plots did not reveal any obvious deviations from
normality or homoscedasticity. Each model, starting from
the baseline without any predictor, added one predictor or
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TABLE 4 | Summary of statistics regarding the influence of predictors over trust
ratings.

Effect added Degrees of freedom χ2 p-value

Condition 1 14.18 <0.001

Attentional state 3 4.47 0.512

Condition:Attentional state 5 2.09 0.663

All values in bold are significant at p < 0.05.

TABLE 5 | Summary of statistics regarding the influence of predictors over
perceived mental demand ratings.

Effect added Degrees of freedom χ2 p-value

Condition 1 5.94 0.015

Attentional state 3 23.97 <0.001

Condition: Attentional state 5 0.89 0.827

All values in bold are significant at p < 0.05.

FIGURE 7 | Mental demand for each condition and attentional state (error
bars show the 95% confidence intervals based on bootstrap).

interaction to the preceding model, until the complete model was
reached. P-values were obtained by likelihood ratio tests using
ANOVA on nested models. All results are gathered in Table 5,
bold values being significant.

The difference in system reliability produced a significant
effect on perceived mental demand (see Figure 7).

Reported mental demand were significantly lower during
“Safe” Condition (M = 1.66, SD = 0.84) than during “Risky”
condition (M = 1.88, SD = 0.94), b = −0.23, t(766) = −2.32,
p = 0.021. Our protocol validate our hypothesis of decrease
mental demand when working with higher levels of automation.
In addition, we were interested in knowing if all attentional states
were different from each other. We used Tukey’s post hoc tests
to break down the effect. Mental demand reports when focused
were significantly higher than those associated with task-related
MW, p = 0.029, d = 0.25, and task-unrelated MW, p < 0.001,
d = 0.43. However, there was only a non-significant tendency for
mental demand reports associated with task-unrelated MW to
be lower than those associated with task-related MW, p = 0.073,
d = −0.19.

Oculometry
In order to investigate our second hypothesis (decoupling
hypothesis within automated environments) from the
physiological aspect, we looked at oculometric data through
attentional states. After looking at pupil diameter data, we took
the 10 s preceding each questionnaire for further analysis. We
used the lme function to compute a linear mixed-effect analysis
despite different number of reports between attentional states.
We considered Blocks as a categorical variable. We defined a
random intercept for subjects. No random slope was possible
because of the convergence problems due to the quantity of
data. Visual inspection of residual plots did not reveal any
obvious deviations from normality or homoscedasticity. Each
model, starting from the baseline without any predictor, added
one predictor or interaction to the preceding model, until
the complete model was reached. P-values were obtained by
likelihood ratio tests using ANOVA on nested models. All results
are gathered in Table 6, bold values being significant. Attentional
states showed a significant influence on pupil size, χ2(4) = 7.97,
p = 0.019 (see Figure 8). Without specific a priori predictions
on the evolution of pupil diameter through attentional states,
we conducted Tukey’s post hoc tests on the model. We saw
that pupil diameter when focused was significantly higher than
during task-related MW, p = 0.036, d = 0.08, and task-unrelated
MW, p = 0.005, d = 0.30. On the contrary, blink frequency
was significantly higher during task-unrelated MW than when
focused, p = 0.012, d = 0.11 (see Figure 9).

In other words, oculometric measures revealed that pupil
diameter decreased and blink rate increased when subjects’
thoughts were distant from the task. On the contrary, no
influence of attentional states was observed for saccade frequency
and mean fixation duration.

Performances
In the “Safe” condition, each subject acknowledged on average
133.00 actions of the system (SD = 1.32; average of 99% success
rate). They also detected on average 23.41 errors (SD = 2.74;
average of 87% success rate). However, they produced an average
of 2.06 false alarms (SD = 1.43). In the “Risky” condition, each
subject acknowledged on average 132.13 actions of the system
(SD = 1.77; average of 98% success rate). They also detected on
average 4.60 errors (SD = 0.63; average of 92% success rate) and
produced an average of 1.47 false alarms (SD = 2.77).

We investigated the relationship between attentional states
and errors. We isolated the attentional reports that included an
action of the participant at most 10 s before (6 for the “Risky”
condition, 7 for the “Safe” condition). None of these reports
included an error for the “Altitude change” command. Therefore,
we focused the analysis on the “Acknowledgment” command
misses. We used the lme function to compute a linear mixed-
effect analysis. We defined a random intercept for subjects and
a random slope for “Condition.” Visual inspection of residual
plots did not reveal any obvious deviations from normality
or homoscedasticity. Each model, starting from the baseline
without any predictor, added one predictor or interaction to
the preceding model, until the complete model was reached.
P-values were obtained by likelihood ratio tests using ANOVA on
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TABLE 6 | Summary of statistics regarding the influence of time and condition over oculometric markers.

Focus values Task-related MW values Task-unrelated MW values Attentional state (AS)

Parameter M SD M SD M SD χ2(2) p-value

Pupil size (mm) 3.93 0.69 3.88 0.62 3.75 0.58 7.48 0.024

Saccade frequency (sacc/s) 2.25 1.37 2.10 1.11 2.16 1.38 1.74 0.418

Mean fixation duration (s) 0.65 1.28 0.56 0.87 0.56 0.83 0.53 0.767

Blink frequency (blink/s) 0.08 0.09 0.09 0.12 0.11 0.16 7.77 0.021

All values in bold are significant at p < 0.05.

FIGURE 8 | Pupil diameter standardized for each attentional state (error bars
show the 95% confidence intervals based on bootstrap).

FIGURE 9 | Blink frequency for each attentional state (error bars show the
95% confidence intervals based on bootstrap).

nested models. Attentional states showed a significant influence
on errors, χ2(2) = 8.40, p = 0.015. Without specific a priori
predictions on the evolution of errors through attentional states,
we conducted Tukey’s post hoc tests on the model. We saw that
errors were significantly lower when people thought about task-
related matters compared to when they were focused, p = 0.013,

d = −0.61. All other comparisons were not significant. It is
possible that thinking too much about matters not directly
related to the present decisions (like their performance) makes
participants miss some actions. However, this is not compliant
with the absence of significant difference between focus and task-
unrelated MW. Another more likely possibility could be that
participants start thinking about their mistakes for a few seconds
after making it, leading them to report task-related MW.

Because the experimental protocol was not designed to answer
performance related hypothesis, we will not discuss further the
results obtained regarding this point. Instead, the performance
measures are given for reproducibility purpose.

DISCUSSION

We studied the impact of automation reliability on task-unrelated
MW frequency and the influence of the MW induced perceptual
decoupling on task engagement. Our protocol succeeded in
inducing significant differences in trust and perceived workload
ratings. Three main results have been shown: (1) task-unrelated
MW induced a decoupling from the task which lowered
engagement, (2) the perceptual decoupling extended to task-
related MW and (3) task-unrelated MW propensity was not
linked with trust in the system reliability. We discuss these results
below.

The first result is the behavioral and physiological evidence
supporting an impact of the task-unrelated MW induced
perceptual decoupling on the engagement of operator.

According to the decoupling hypothesis (Schooler et al.,
2011), our mind decouples attention from sensory information
to sustain prolonged MW. With minimum impact of external
information, it becomes dramatically more difficult for operators
to perceive and encode external information during task-
unrelated MW episodes. We highlighted the effects of this
perception decoupling on mental demand, pupil diameter
and blink frequency. Firstly, mental demand decreased when
participants reported task-unrelated MW. Participants may
have experienced a reduced sensitivity to the characteristics
of the task and not updated their perceived mental demand.
Another possibility is that they answered the probes with limited
attention, again relying on information gathered while they were
focused. Either way, participants did not spend more cognitive
resources on updating their mental model of the situation.
This could explain why task-unrelated MW has been shown
to disrupt online adjustment of behavior (Kam et al., 2012),
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since participants might have been operating with an out-of-
date model of the situation. Thoughts not directly linked to
current task decisions also decreased pupil diameter. This is in
line with studies investigating the trade-off between exploration-
exploitation (Jepma and Nieuwenhuis, 2011). Indeed, MW is
a characterized state of exploitation of information already
acquired – e.g., memories – and does not use sensory information
except for its ignition point (Seli et al., 2016). Moreover, the
literature on vigilance already linked a lower pupil baseline to
periods of lower sensibility to external stimuli (Nishiyama et al.,
2007; McIntire et al., 2014). It should be noted that some studies
highlighted a higher pupil baseline during task-unrelated MW
(Smallwood et al., 2011; Franklin et al., 2013). Nevertheless,
two recent studies by Unsworth and Robison (2016) and
Konishi et al. (2017) observed an inverse U-curve relationship
between the pupil diameter and performance. A smaller pupil
diameter was linked with a decrease in performances and MW
episodes as internally directed cognition. In contrast, a larger
pupil diameter was correlated with external distractions (e.g.,
conversation, noise, or itching) and was also accompanied with
a decrease in performance. These studies corroborate our results,
while explaining apparent contradictory results. Finally, blink
frequency increased during MW episodes. Blinks are known to
disrupt visual information processing on two levels: they occlude
the retina and they trigger cortical deactivation of the areas
responsible for visual information processing (Bristow et al.,
2005). Overall, these three measures support the decoupling
induced by task-unrelated MW, for both the behavioral and
physiological aspects. Far from being anecdotal, the perception of
task demands by operators disengaged from the task was found to
not be aligned with reality, and these might be unable to perform
efficiently. This could lead to automation issues, as described
by Parasuraman and Riley (1997). If they had the possibility of
performing some tasks or letting the automation handle it, their
inaccurate evaluation of the situation may lead them to either
choose to handle something manually even though they do not
have the cognitive resources for it (disuse), or let the automation
do it despite some previous errors (misuse).

Our second result is the extension of the decoupling evidence
to the task-related MW. Both mental demand and pupil diameter
were significantly lower when participants reported task-related
MW compared to being focused. All measures influenced by
attentional states – mental demand, pupil diameter and blink
frequency – showed the same linear pattern, placing measures
linked to task-related MW between those associated with being
focused and with task-unrelated MW. Such results are supported
by the three-state engagement model of MW (Cheyne et al.,
2009). This model proposes three states of MW corresponding to
three intensities of decoupling from the task. The model revealed
consistent temporal associations between performance and MW
levels. The model also revealed bidirectional effects between MW
and performance, suggesting that MW can lower performance
via the decoupling effect, but also that poor performance can
create task-related MW. However, one must remain cautious
about the extension of the decoupling hypothesis to MW that
includes thoughts related to the task. Blink frequency, which
was significantly different between the “Focus” and MW states,

was not significantly different between the “Focus” and “Around”
states. Further studies are needed to assess the range of thoughts
inducing perceptual decoupling, and whether MW episodes
indeed possess a depth-modulating perceptual decoupling.

Overall, our results contradict Head and Helton (2016). They
argued that participants may rationalize their poor performance
by reporting task-related MW; perceptual decoupling causing
poor performance would then cause a MW report, and not the
other way around, leading researchers to mistake the cause for
the consequence. They further strengthen their argument by
reporting the results of a GO/NOGO task with inserted words
before each stimulus. Their analysis did not show any link
between MW and word perception. As detailed in the method, we
took into account their results in different aspects of our protocol,
to ensure that our experiment would not be taxed with the same
flaw. First, the distribution of experience-sampling probes was
not correlated with events during the obstacle avoidance task,
in order to minimize performance influence over experience-
sampling reports. Second, we only kept in our analysis epochs
without actions (intervals where participants did not click on
any button). Third, we introduced among the attentional probe
answers the possibility of reporting “task-related MW,” which
we treated separately. Our results are in line with the literature,
supporting the decoupling hypothesis for both task-related and
task-unrelated MW. Moreover, although some paradigms may
indeed be biased by this phenomenological flaw [e.g., oddball
or GO/NOGO tasks (Robertson et al., 1997; Braboszcz and
Delorme, 2011; Forster and Lavie, 2014)] many others cannot
be criticized with the same arguments. Continuous metrics show
a similar negative influence of MW on performance (He et al.,
2011; Kam et al., 2012; Cowley, 2013; Yanko and Spalek, 2014;
Dündar, 2015); if participants were to realize that they did
wrong, they would directly correct their behavior. If performance
before MW probes were lower, it would mean that participants
were not aware of their poor performance. Similarly, many
studies highlighted a link between overall performance and the
propensity to MW by measuring MW propensity before or
after the task; for example, with questionnaires (Galera et al.,
2012; Mrazek et al., 2013; Berthié et al., 2015). Therefore,
participants could not rationalize their poor performance by
reporting MW reports. Nevertheless, all MW researchers should
consider this reflection when designing their protocol. Future
research should investigate a possible bidirectional link between
MW and performance.

Finally, our third result concerns the converging evidence that
task-unrelated MW frequency is not linked to trust. Correlation
tests did not show any association between task-unrelated MW
frequency and trust ratings. Multilevel regression showed no
influence of attentional states on trust ratings with significantly
low Type II error. Even though we cannot assert that trust
is not linked to attentional states, this result supports this
hypothesis. A first explanation could be that we failed to highlight
the influence of reliability over MW. Complacency may have
a dynamic necessitating more time to take place. Operators
generally are subjected to thousands of working hours when
supervising their system, whereas in this case we tested novices.
Investigating experts in similar settings could reveal different

Frontiers in Human Neuroscience | www.frontiersin.org 10 September 2018 | Volume 12 | Article 383

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00383 September 18, 2018 Time: 19:9 # 11

Gouraud et al. Mind Wandering, Reliability, Engagement

results. Another possibility, which could explain the increase
in MW frequency for novices when supervising automation
(Gouraud et al., 2017b), would be the impact of a loss of
agency. Agency is the feeling of control produced by the idea
that our actions are producing the observed effect. Obhi and
Hall (2011) highlighted a decrease in one’s feeling of agency
in automated environments, compared to the same task done
manually. Knowing that a decrease in the feeling of agency leads
to the operator’s disengagement from the task (Haggard, 2017),
human operators might disengage from the task and allocate
a lower amount of cognitive resources to the task. Resources
could then be used for task-unrelated MW maintenance. This
hypothesis is tightly linked with motivation and the Self-
Determination Theory (Ryan and Deci, 2000; Szalma, 2014).
Even though participants were volunteers, the task proposed
was purposely boring and did not produce much motivation.
The inability of the task to support autonomous behavior and
internalization of the goal may lower motivation and create an
externalization of task goals – i.e., a process by which operators
reject the intrinsic value of a goal. Ultimately, participants
could voluntarily redirect their attention and cognitive resources
whenever possible toward more personally interesting and useful
matters, increasing MW frequency. Task-unrelated MW would
act both as a way to cope with boredom (Cummings et al.,
2015) and a process to optimize time and resources (Gouraud
et al., 2017a). Further studies building on agency and task-
unrelated MW literatures should investigate this hypothetical
link.

In the near future, the massive use of automation within
many different fields will reinforce the problem of perceptual
decoupling induced by MW. Even though training can help
to mitigate this phenomenon, extensive research on better
automation and human-system interfaces in needed to cope
with this problem (Hancock, 2013). Adaptive automation has
been studied for a few decades and shows promising results
(Kaber and Endsley, 2004; Abbass et al., 2014; Berberian et al.,
2017). Adaptive automation adapts the level of automation
according to one or multiple physiological measures, in order to
mitigate OOTL effects. To integrate efficient adaptive automation
within safety-critical environments, system designers need to
understand the ways in which variables affect vigilance, trust,
mental demand and other abilities necessary for efficient control.
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