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With over 9000 species, squamates, which include lizards and snakes, are the

largest group of reptiles and second-largest order of vertebrates, spanning a

vast array of appendicular skeletal morphology. As such, they provide a

promising system for examining developmental and molecular processes

underlying limb morphology. Using the central bearded dragon (Pogona vit-
ticeps) as the primary study model, we examined limb morphometry

throughout embryonic development and characterized the expression of

three known developmental genes (GHR, Pitx1 and Shh) from early embryo-

nic stage through to hatchling stage via reverse transcription quantitative

polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC).

In this study, all genes were found to be transcribed in both the forelimbs

and hindlimbs of P. vitticeps. While the highest level of GHR expression

occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier

during embryogenesis, which coincides with the onset of the differentiation

between forelimb and hindlimb length. We compared our finding of Pitx1
expression—a hindlimb-determining gene—in the forelimbs of P. vitticeps
to that in a closely related Australian agamid lizard, Ctenophorus pictus,

where we found Pitx1 expression to be more highly expressed in the hind-

limb compared with the forelimb during early and late morphogenesis—a

result consistent with that found across other tetrapods. Expression of

Pitx1 in forelimbs has only rarely been documented, including via in situ
hybridization in a chicken and a frog. Our findings from both RT-qPCR

and IHC indicate that further research across a wider range of tetrapods is

needed to more fully understand evolutionary variation in molecular

processes underlying limb morphology.
1. Background
The integration of the fields of evolution and developmental biology is leading

to significant advances in our understanding of the molecular basis of morpho-

logical evolution. However, there has been a historical reliance on model

organisms in developmental biology, with most studies focusing on relatively

few and evolutionarily distant species that are suitable for embryological and

genetic manipulation [1], such as mice, chickens, frogs and zebrafish. A case

in point is research on the molecular basis of variation in tetrapod limb mor-

phology. Many molecular aspects of limb development have been studied

extensively in model tetrapods, mainly chicken and mouse [2]. However, this

represents only a small fraction of tetrapod limb diversity and evolution. One

group for which very limited research into the developmental and molecular

processes underlying limb morphology has been conducted are reptiles. Rep-

tiles form a key evolutionary group in terrestrial vertebrates, both in terms of

morphological diversity and the evolution of the tetrapod limb.
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Squamates, which include lizards and snakes, are the

most speciose group of reptiles, and provide a promising

system for examining developmental and molecular pro-

cesses underlying limb morphology. Limb morphology

and especially hindlimb length are known to influence

the ecology of many lizard species [3]. Within lizards, the

relationship between limb length and ecology is largely a

result of increased hindlimb length, which is associated

with increased running speed [4–6]. Recent work on Anolis
lizards has shown that variation in limb length results from

changes occurring very early in embryonic development,

prior to formation of the cartilaginous long bone anlagen

[7]. Anolis lizards serve as an emerging model system for

the study of limb development and evolution [7,8], because

it is a highly speciose genus that has been well studied,

both ecologically and morphologically. Additionally, the

Anolis carolinensis genome was the first squamate genome

to be sequenced [9]. However, understanding the genetic

mechanisms of limb development across a variety of organ-

isms can help elucidate the evolutionary processes that lead

to morphological diversity, which ultimately allows terres-

trial vertebrates to occupy a vast array of ecological niches

[10]. Thus, expanding limb developmental research to other

squamate lineages has the potential to provide a particularly

powerful system to investigate the developmental and

molecular basis underlying tetrapod limb diversity.

Australian agamid lizards (Agamidae: Amphibolurinae)

form an ideal study system to examine developmental and mol-

ecular processes underlying limb morphology. They are a

speciose lineage (more than 72 species) with a wide diversity

in limb morphology, and agamids have been shown to exhibit

convergent morphological and ecological evolution with the

clade incorporating pleurodont iguanians [11], which includes

the Anolis lizards. Moreover, the genome of the Australian

agamid Pogona vitticeps has recently been sequenced [12]. Aga-

mids, in particular P. vitticeps, constitute ideal laboratory

animals, because they are oviparous with medium to large

clutches, with a well-established history of captive breeding,

and they are readily commercially available. Consequently,

Australian agamids provide an exciting new avenue for research

into the developmental and molecular processes underlying the

evolution and diversity in tetrapod limb morphology.

We integrated a morphological study of limb deve-

lopment during embryogenesis in P. vitticeps with the

molecular investigation of gene expression during embryonic

limb development. Our study covered stages of limb

development from oviposition (egg laying) to 21 days post-

hatching, and thus all stages at which variation in limb

length may originate. Although variation in limb length

occurs very early during embryogenesis in Anolis [7], there

are four main developmental phases in which variation

could occur: limb-bud initiation, limb-bud outgrowth and

patterning, morphogenesis (which is the differentiation and

development of limb structures) and growth [13]. We

sought to characterize limb development during embryogen-

esis in Australian agamids and to determine at which stage

limb length variation occurs. We then undertook the molecu-

lar component of this study to investigate gene expression

during embryogenesis.

We selected three genes that are known to be involved at

different stages of limb development in model organisms,

such as mouse and chicken (see the brief review below).

We quantified gene transcription in the forelimbs and
hindlimbs of P. vitticeps for the paired-like homeodomain

transcription factor 1 (Pitx1), sonic hedgehog (Shh) and

growth hormone receptor (GHR). We hypothesized, based

on previous research in vertebrates, that these genes would

each show a peak in transcription levels at different phases

of embryonic limb development (i.e. Pitx1 during limb-bud

outgrowth and patterning, SHH during morphogenesis and

GHR during the growth phase). We tested this hypothesis

using RT-qPCR for each gene in both forelimbs and hind-

limbs across nine developmental stages in P. vitticeps. We

then examined Pitx1 expression in forelimbs and hindlimbs

using immunohistochemistry (IHC). To determine whether

the pattern of Pitx1 expression in P. vitticeps is representative

of Australian agamid lizards, we investigated Pitx1 transcrip-

tion and expression during morphogenesis in a closely

related Australian agamid lizard, Ctenophorus pictus.

1.1. Limb development genes: Pitx1, Shh and GHR
Pitx1 is a hindlimb-determining factor expressed early in

development [14,15], with Pitx1 deletion causing loss of skel-

etal hindlimb structures in mice [14,16]. Ectopic expression of

Pitx1 in the developing forelimb of mice and chicks generates

some bone and soft tissue features similar to that of the hind-

limb [16–18]. More recent work in mice has shown that Pitx1,

expressed in the hindlimb bud mesenchyme, is also necessary

for normal expression of Tbx4, a transcription factor required

for normal hindlimb development [19]. Pitx1 has been found

to be enriched on hindlimb cis-regulatory elements but is also

strongly associated with many functionally verified limb

enhancers [20]. These findings have led to the suggestion

that Pitx1 influences hindlimb morphology through the acti-

vation of hindlimb-specific enhancers as well as through the

hindlimb-specific modulation of enhancers that are active in

both sets of limbs [20]. Additionally, in mice, it has been

demonstrated that Pitx1 influences the patterning of different

tissue types of the limb [17], including influencing morpho-

genesis of cartilaginous precursors of bone, the organization

of myoblasts into muscle bundles, as well as attachment of

tendon cells between bone and muscles. This role in morpho-

genesis is believed to be complete by stage E14.5 in mice [17],

which is the stage at which toes and fingers are clearly separ-

ated and the distal-most elements of the fingers have formed.

The only study published on the role of Pitx1 in limb

development of lizards, which used a micromass culture

system, found that Pitx1 transcript levels were maintained

in micromasses derived from A. sagrei hindlimb cells com-

pared to those in forelimb cells [8]. While the authors

found that the core binding sites for PITX1 were not con-

served between Anolis and mammals, they did detect

upregulation of the conserved hindlimb transcription factor

hoxc11 through ectopic expression of PITX1 in A. sagrei fore-

limb cells. These recent results suggest that regulation of

hoxc11 transcription through PITX1 may be mediated through

binding sites that are not conserved between lizards and

mammals, providing motivation to further explore the role

of Pitx1 in the limb development of squamates.

Shh is known to be important in chicken and mouse

for limb outgrowth and extension, and determination of

digit identity and number. Shh is integrally involved in limb

development and is essential for maintenance of the apical

ectodermal ridge (AER), which is required for limb outgrowth

and extension [13]. Shh is also required to maintain the zone of
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polarizing activity (ZPA) [21] which is responsible for

anterior–posterior axis formation, thus ensuring that all limb

elements are developed in the correct orientation. One of the

few studies examining the role of Shh in limb development of

lizards investigated the skink genus Hermiergis [22]. Shapiro

and co-workers found that changes in the duration of Shh
expression during early development resulted in variation

in the number of digits. While it is assumed that the biologi-

cal role of limb development genes, such as Shh, is highly

conserved across species, few studies have looked at limb

development genes in non-model species.

GHR encodes a transmembrane receptor that binds to

growth hormone (GH) and is thought to stimulate growth,

cell reproduction and regeneration. It is also involved in regu-

lation of bone growth and is highly conserved across species

[23]. Although GH is obligatory for post-natal growth, early

embryonic growth has traditionally been viewed as a

‘growth without GH’ syndrome [24]. However, it has been

shown that GH may act as an autocrine/paracrine factor

during early chick embryogenesis [25]. GH coordinates the

growth of multiple target tissues during development,

including skeletal muscle [26], where it is highly expressed

and induces the synthesis of the insulin-like growth factor I

(IGF1) [27]. Both GH and IGF1 are important regulators of

longitudinal growth [28,29]. GHR has been described as a

Z-borne sex chromosome-linked gene in the chicken but an

autosomal gene mapped to a contiguous block of chromo-

some 2 in P. vitticeps [30]. To this date, research into GH
and GHR in reptiles is particularly limited, and their role in

reptile embryonic limb development remains to be explored.
2. Results
2.1. Post-oviposition limb development in Pogona

vitticeps
We determined embryonic limb development stages in P. vit-
ticeps according to the developmental stages described for

Lacerta vivipara [31]. In the following text, the corresponding

embryonic stages in A. sagrei are also provided [1]. As in

A. sagrei, early embryogenesis in P. vitticeps occurs within

the oviducts prior to oviposition, and eggs are laid at the

limb-bud outgrowth and patterning stages of development

(stage 28–30, Anolis stage 3–5). The seven limb development

stages included in our study are illustrated in figure 1 and

described in electronic supplementary material, S1. The first

sampling period included in our study was 9 days post-

oviposition, which we determined to be the late limb-bud

outgrowth and patterning stage 31 (Anolis stage 6). Morpho-

genesis in P. vitticeps occurred 12–29 days post-oviposition,

with our sampling period of 28–29 days post-oviposition

being defined as late stage morphogenesis, transitioning

into the growth phase of limb development (stage 37,

Anolis stage 12–13). At 44 days post-oviposition, limbs

were well developed and in the growth phase of develop-

ment (stage 38–39, Anolis stage 17). Hatching occurred after

59–67 days of incubation at 288C.

2.2. Post-oviposition limb growth in Pogona vitticeps
Our sampling regime in P. vitticeps allowed a detailed statistical

analysis of embryonic limb growth during embryogenesis. Limb
growth was measured across embryonic limb development

stages in P. vitticeps for the sampling periods included in our

study (table 1). A nested ANOVA comparing total length of

limb type (forelimb versus hindlimb) within sampling periods

showed that there is a significant difference between forelimb

and hindlimb lengths across sampling periods (F18,119 ¼

108.16, p , 0.001). Forelimb and hindlimb lengths were found

not to differ significantly during late outgrowth and patterning

(day 9 post-oviposition: F1,4 ¼ 6.84, p ¼ 0.06) and both were

shorter than head length (figure 2). Differentiation between fore-

limb and hindlimb lengths occurred during morphogenesis

(figure 2), where hindlimb length was found to be significantly

longer than forelimb length by the 12–13 d post-oviposition

time period (F1,12¼ 7.36, p ¼ 0.02). The increasing differen-

tiation of forelimb and hindlimb length continued through the

morphogenesis and embryonic growth phases.

A regression analysis of the relative length of limb

elements (proximal, distal and autopod), with the effects of

allometry removed, found that there were significant differ-

ences between forelimb and hindlimbs during embryonic

development (figure 3). A generalized linear model (GLM)

incorporating the effect of LIMB*TIME found that there was

a significant difference between forelimb and hindlimb

during embryonic development for all limb elements (proxi-

mal: F1,102 ¼ 6.86, p ¼ 0.01; distal: F1,102 ¼ 26.02, p , 0.001;

autopod: F1,102 ¼ 27.46, p , 0.001). A regression of each

limb element individually, with the effects of allometry

removed, found that the relative length of all hindlimb

elements increased significantly during embryonic develop-

ment (proximal: r ¼ 0.51, F1,51 ¼ 17.59, p , 0.001; distal: r ¼
0.67, F1,51¼ 41.65, p , 0.001; autopod: r ¼ 0.64, F1,51¼ 35.64,

p , 0.001), while there was no significant change in relative

length of forelimb elements (proximal: r ¼ 0. 10, F1,51 ¼

0.55, p ¼ 0.46; distal: r ¼ 0. 07, F1,51 ¼ 0.25, p ¼ 0.62; autopod:

r ¼ 0. 17, F1,51 ¼ 1.53, p ¼ 0.22). Regarding the length of hind-

limb elements in the first time period for which separate

elements could be measured (20 days post-oviposition), rela-

tive proximal length was greater than that of both distal and

autopod limb elements (figure 3). Then, during late morpho-

genesis and throughout the growth phase, the relative

lengths of distal and autopod elements exceeded that of the

proximal hindlimb element. In hatchling lizards, the autopod

is relatively longer than the distal and then proximal hind-

limb elements. A different pattern of relative growth was

observed in forelimbs (figure 3), where relative length of

the proximal element remained fairly constant throughout

development, while the relative lengths of distal and autopod

elements decreased.

We calculated the average percentage growth rate per day

from one sampling period to the next (table 1) and found that

growth rates in both forelimb and hindlimbs were greatest in

the 25 d (embryonic stage 36) to 28–29 d (embryonic stage 37)

post-oviposition period, which corresponds to the transition

from the morphogenesis to the growth phases of embryo-

nic development. We used a t-test to compare growth rates

to a null hypothesis (H0) of constant growth (forelimb ¼

13.2%/day; hindlimb ¼ 19.3%/day). For hindlimb, we

could significantly reject the H0 of a constant growth rate,

indicating that growth rates vary significantly during limb

development (t ¼ 22.44; d.f. ¼ 8; p ¼ 0.04), with the

28–29 d post-oviposition (embryonic stage 37) period being

a significant outlier (studentized residual ¼ 6.67). We were

unable to reject the H0 of a constant growth rate in forelimbs
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Figure 1. The limb development stages included in our study for Pogona vitticeps. Stages include (described in electronic supplementary material, S1): (a) stage 31,
late limb-bud outgrowth and patterning (9 days post-oviposition); (b) stage 33 – 34, morphogenesis, cartilaginous anlagen of the limb bones form (15 days post-
oviposition; qPCR time point T2); (c) stage 35, morphogenesis (20 days post-oviposition; qPCR time point T3); (d ) stage 36, morphogenesis (25 days post-oviposition;
qPCR time point T4); (e) stage 37, transition from morphogenesis to growth phase (28 – 29 days post-oviposition; qPCR time point T5); ( f ) stage 38 – 39, growth,
mediated from epiphyseal growth zones (44 days post-oviposition; qPCR time point T6); and (g) hatchling (21 days post-hatching; qPCR time point T9). Whole
embryos are shown (scales bars provided) and for stages 31 – 36 enlarged images of forelimb (F) and hindlimb (H) are provided (not to scale).
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(t ¼ 21.15; d.f. ¼ 8; p ¼ 0.28); however, the 28–29 d post-

oviposition (embryonic stage 37) period was identified as a

significant outlier (studentized residual ¼ 3.15).
2.3. Expression of Pitx1, Shh and GHR in Pogona
vitticeps

In P. vitticeps, all three genes are transcribed in all parts of the

limb at each of the stages of limb development examined, and
transcript levels relative to those at the earliest hindlimb

time point (12–13 days post-oviposition) were quantified

(figures 4 and 5).

Pitx1 showed highest transcript levels during morphogen-

esis in all hindlimb elements (figures 4 and 5) and in the distal

and proximal sections of the forelimb (figure 4), while transcript

levels in the forelimb autopods (figure 5) were low. A two-way

ANOVA for the results depicted in figure 4 (whole limb buds in

early embryogenesis and proximal and distal segments in later

stages) found that there was a significant difference in transcript
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levels of Pitx1 between time periods (F8,135 ¼ 6.84; p , 0.001),

and between forelimb and hindlimb elements (F1,135 ¼ 11.74;

p ¼ 0.001). In addition, we found a significant interaction

in transcript levels between limb type and time period

(F8,135 ¼ 4.19; p , 0.001). ATukey’s post hoc pairwise compari-

son test revealed a significant difference in transcript levels of

Pitx1 between forelimb and hindlimbs at 12–13 d (qPCR

time period T1; p , 0.001) and 20 d (qPCR time period T3;

p ¼ 0.04) post-oviposition, while in the hindlimb Pitx1 was

transcribed at a significantly higher level at 20 d post-

oviposition (qPCR time period T3) than at any other time

period ( p � 0.002). Similarly, a two-way ANOVA for the

results depicted in figure 5 (autopods) showed a significant

difference in Pitx1 transcript levels between time periods

(F4,50 ¼ 4.12; p ¼ 0.006) and between forelimb and hindlimb

elements (F1,50 ¼ 28.87; p , 0.001), as well as a significant

correlation between limb type and time period (F4,50¼ 4.54;

p ¼ 0.003). A Tukey’s post-hoc pairwise comparison test indi-

cated a significant difference in Pitx1 transcript levels between

forelimb and hindlimbs at 15–18 d post-oviposition (qPCR

time period T2; p , 0.001). These results indicate that highest

levels of Pitx1 transcription was in the hindlimbs at 20 d post-

oviposition (qPCR time period T3), while in other time periods

there was not a significant difference in Pitx1 t between forelimb

and hindlimbs. In the growth phase of embryogenesis and after

hatching, little to nil transcription was detected.

A two-way ANOVA for the results shown in figure 4 (whole

limb buds in early embryogenesis and proximal and distal

segments in later stages) found that there was a significant

difference between transcript levels of GHR between time

periods (F8,135 ¼ 3.30; p ¼ 0.002), but no significant difference

between forelimbs and hindlimbs, and no correlation between
limb type and time period. A Tukey’s post hoc pairwise com-

parison test indicated a significantly higher level of GHR
transcripts in 21 d hatchlings compared with that in any other

time period (qPCR time period T9; p � 0.02). A two-way

ANOVA for the results depicted in figure 5 (autopods) found

no significant difference in transcript levels of GHR between

time periods or limb type. These results indicate that GHR
showed highest transcript levels after hatching in forelimb

and hindlimb elements (qPCR time period T9; figure 4), with

a similar trend of increasing transcript levels until after

hatching in the autopods (figure 5).

A two-way ANOVA for the results shown in figure 4

(whole limb buds in early embryogenesis and proximal and

distal segments in later stages) found that there was a signifi-

cant difference between transcript levels of Shh between time

periods (F8,135 ¼ 10.73; p , 0.001), but no significant difference

between forelimb and hindlimbs, and no correlation between

limb type and time period. A Tukey’s post hoc pairwise com-

parison test indicated that there was a significant higher level

of Shh transcript levels in 20 d post-oviposition (qPCR time

period T3) embryos compared with any other time period

( p , 0.001). Similarly, a two-way ANOVA for the results

shown in figure 5 (autopods) found revealed a significant

difference in transcript levels of Shh between time periods

(F4,50 ¼ 5.44; p ¼ 0.001), but not between forelimb and hind-

limb autopods, and no correlation between limb type and

time period. A Tukey’s post hoc pairwise comparison test indi-

cated that there was a significant higher level of Shh transcript

levels in the autopods of 28–29 d post-oviposition (qPCR

time period T5) embryos compared with later time periods

( p � 0.01). These results indicate that Shh transcript levels

peaked at 20 d post-oviposition during morphogenesis

in both forelimb and hindlimb elements (figure 4), and at

28–29 d post-oviposition in hindlimb autopods (figure 5).
2.4. Immunohistochemistry: Pitx1 expression in Pogona
vitticeps

We detected PITX1 in both the hindlimb and forelimb sections

of P. vitticeps (figures 6 and 7), which parallels Pitx1 transcript
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Figure 4. Transcript levels of three genes (Pitx1, GHR, SHH) in limb elements during development in Pogona vitticeps. Shown are results of quantitative reverse
transcription PCR. Expression is relative to the earliest hindlimb time point (T1; 12 – 13 days post-oviposition). Development stages (T1 – T9) on y-axis are detailed in
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levels (figure 4). Using IHC, we applied 3-diaminobenzidine

(DAB) as an easily detectable, brown chromogen (see

‘Material and methods’). At 18 days post-oviposition (qPCR

time period T2), Pitx1 is expressed in the forelimb and
hindlimb sections (figures 6a and 7a,b). Expression in the fore-

limb is not as extensive or strong as in the hindlimb, but a

comparison of the forelimb primary-antibody-positive sec-

tions with the negative control sections shows robust DAB
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staining (figure 7). DAB staining patterns are reminiscent of

cell nuclei, probably indicating localization of the transcrip-

tion factor PITX1. Expression in both the forelimbs and

hindlimbs is concentrated in mesenchyme tissue, particularly

along planes of cartilage condensation and at digital joint for-

mation (figure 6a). Likewise, Pitx1 is expressed in both

hindlimbs and forelimbs 28 days post-oviposition (qPCR

time period T5), with both distal segments and autopods

showing expression concentrated in mesenchyme tissue

(figure 6b,c). We also screened for Pitx1 expression using

IHC in forelimb and hindlimbs of 55-day post-oviposition

(qPCR time period T7) embryos and 7-day hatchlings

(qPCR time period T8). However, congruent with our results

obtained with RT-qPCR (figure 4), in these subsequent
developmental stages we did not detect Pitx1 expression

(data not shown).

The IHC results are consistent with our qPCR results

with regard to the proximal and distal limb segments,

where we observed a peak in Pitx1 transcript levels

during morphogenesis (figure 4), up until the 28–29-day

post-oviposition stage (qPCR time period T5), followed by

little discernible transcript levels during the growth phase

and post-hatching. Conversely, in autopods we detected

low levels of Pitx1 transcripts in the forelimbs and hind-

limbs of 55-day post-oviposition embryos (qPCR time

period T7) and 7-day hatchlings (qPCR time period T8),

and no expression was detected in our IHC screening in

the autopods (results not shown). Thus, absolute transcript
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levels of Pitx1 in the autopods at 55-day post-oviposition

(qPCR time period T7) and 7-day hatchling (qPCR time

period T8) stages may be very low and not give rise to a

detectable amount of expressed PITX1.
2.5. Pitx1 expression in Ctenophorus pictus
Developmental stages of C. pictus embryos at 16 and 30 days

post-oviposition (figure 8) were determined to be equivalent

to stage 7 and 12–13 of the Anolis staging series [1], stages

31–32 and 37 of L. vivipara [31], and 12–13 days and 28–29

days post-oviposition in P. vitticeps, respectively (electronic
supplementary material, S1). Limb measurements of these

embryonic stages are provided in table 2.

Ctenophorus pictus shows strongest transcription levels of

Pitx1 (RT-PCR, 30 cycles) in the hindlimb (figure 9), while

P. vitticeps expresses Pitx1 (RT-PCR, 30 cycles) strongly in

both the forelimbs and hindlimbs (electronic supplementary

material, figure S3). Using qPCR, we found that there

were high levels of Pitx1 transcripts in the hindlimbs of

C. pictus during morphogenesis, but low to nil expression

in the forelimbs. Transcription was significantly higher in

the hindlimb compared with the forelimb in the 16-day

post-oviposition embryo (t2 ¼ 11.7522, p ¼ 0.007). Similarly,

transcription was significantly higher in the hindlimb
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Figure 8. Embryonic stages in Ctenophorus pictus. Limb development stages included in our study for C. pictus include: (a) stage 33 – 34, morphogenesis, carti-
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autopod at 30 days post-oviposition compared with the fore-

limb autopod (t3 ¼ 21.89, p , 0.001). Similarly, in the 30-day

post-oviposition hindlimb Pitx1 transcript levels were higher

than in the forelimb, but this was not significant (t2 ¼ 2.5715,

p ¼ 0.124). IHC results are consistent with our qPCR results

in C. pictus (figure 10). Unlike during late morphogenesis in

P. vitticeps (figure 6), C. pictus was found to have significant

differences in expression of Pitx1 in forelimb and hindlimb

sections. In the hindlimb sections of the autopods, PITX1

expression in C. pictus was similar to that in P. vitticeps,

with strong DAB staining in the mesenchyme around

the digital bones and developing claws, more limited

staining in the growth plates of the bone epiphysis,

and absence of staining in the chondrocytes of the bone

diaphysis (figure 6).
3. Discussion
3.1. Limb development during embryogenesis

in Pogona vitticeps
We identified eight morphological stages in P. vitticeps, corre-

sponding to distinct developmental stages in L. vivipara [31]

and A. sagrei [1]. In addition, we compared staging of

P. vitticeps with that of agamid embryonic series, Agama
imparlearis [32] and Calotes versicolor [33], although these

studies illustrated development of forelimbs rather than hind-

limbs. We found strong similarities between these published

staging series and development in P. vitticeps. Additionally,

in the oviparous P. vitticeps, we found that early embryo-

genesis occurs within the oviducts prior to oviposition, and

eggs are laid at the limb-bud outgrowth and patterning
stage of development (stage 28–30). It has been found that

multiple-clutching oviparous squamates, such as P. vitticeps,
retain eggs in their oviducts and lay them between embryonic

stage 20 and 35 depending on the species [34].

Although we were unable to find a published embryonic

staging series for P. vitticeps, there has been some compara-

tive work relating embryonic development in this species

to other squamates [35]. However, embryos were only

examined up to stage 36. Our study, examining limb devel-

opment past hatching, therefore provides an important

foundation to comparative studies in limb development

of agamid lizards. In Anolis, it has been shown that

post-hatching growth trajectories for trunk-ground versus

trunk-crown habitat specialists are consistently the result

of changes that occur prior to hatching [7], and differences

in limb length are apparent at hatching, with limb long

bones elongating in parallel relative to body size in different

species after hatching. As such, species-specific mor-

phologies are the result of changes that occur very early

in limb development, prior to formation of the cartilaginous

anlagen [7]. We found that the greatest phase of embryonic

limb growth in P. vitticeps, as a proportion over time, is

during the transition from morphogenesis to the growth

stage of limb development (stage 36–37) for both forelimbs

and hindlimbs. We also found that onset of differentiation

between forelimb and hindlimb length occurred at 20 days

post-oviposition, which corresponds to stage 35. At this stage

of development, we detected significantly elevated transcript

levels of Pitx1 and Shh. However, whether these pre-hatching

patterns of limb development in P. vitticeps define the time

point when interspecific variation in limb length arises in

agamid lizards isyet to be determined. Thus, our study provides

a foundation for future comparative work in Agamidae.



Table 2. Morphological measurements for the three developmental stages
of Ctenophorus pictus. Values presented are mean length (mm+ s.e.)
taken from the right limb. Images provided in figure 8.
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3.2. Gene expression
This study confirmed for the first time that key developmen-

tal genes are transcribed (Pitx1, GHR and Shh) and expressed

(Pitx1) in limbs of the embryos and hatchlings of P. vitticeps,

as would be expected based on previous studies on model

organisms. In addition, we here documented expression of

Pitx1, a hindlimb-specific transcription factor, in the forelimb

during morphogenesis. Transcript levels of Pitx1 in the fore-

limb of P. vitticeps were less abundant than in the hindlimb

during early morphogenesis, based on qPCR, and transcript

levels were generally less abundant in late morphogenesis

but did not differ between the forelimbs and hindlimbs.

Expression of Pitx1 during early morphogenesis was concen-

trated around mesenchymal condensation, and during late

morphogenesis in the mesenchyme around digital bones

and developing claws, with more limited staining in the

growth plates of the bone epiphysis. By contrast, we found

significantly lower or no transcription and expression of

Pitx1 in the forelimb when compared with the hindlimb of

the Australian agamid C. pictus, either in early- or late-stage

morphogenesis.

Pitx1 is structurally conserved between the chicken and

mouse, showing 92% similarity [14], and plays a fundamen-

tal role in limb identity in these model organisms.

Additionally, in mice, it has been demonstrated that Pitx1
influences the patterning of different tissue types of the

limb during morphogenesis [17], which is completed by

stage E14.5. Recently, research on the role of Pitx1 in limb

development of the iguanid lizard A. sagrei, using a micro-

mass culture system, found that transcript levels of Pitx1
were maintained in micromasses derived from hindlimb

cells compared with those from forelimb cells [8]. By con-

trast, we here report Pitx1 expression by qPCR and IHC in

the forelimb of P. vitticeps during morphogenesis. Expression

of Pitx1 in the forelimb has been seen in a whole-mount

in situ hybridization of a chick [16]. However, expression was

spatially restricted to a small area of the autopod and only

found in very early stages. Additionally, Pitx1 expression

has been detected at later morphogenic stages in the fore-

limb of the frog Eleutherodactylus coqui, but not at early

limb-bud stages [36]. Authors hypothesized that the
forelimb expression of Pitx1 was, in this case, a developmen-

tal process peculiar to an organism in which metamorphic

and embryonic stages are modified [36], as this species

bypasses the tadpole stage and develops limbs within its

eggs. With the addition of our results, with Pitx1 expression

in the forelimbs during morphogenesis in P. vitticeps, we

highlight the need for further research across a wider

range of tetrapods needed to more fully understand evol-

utionary variation in molecular processes underlying limb

morphology.

Although Shh and GHR transcript levels did not

differ between forelimbs and hindlimbs, we did find that

they varied at different stages during embryogenesis.

Shh showed greatest levels of transcripts at 20 days post-

oviposition in proximal and distal limb elements, which

equates to morphogenesis (electronic supplementary mate-

rial, S1). In this stage, the cartilaginous anlagen of the limb

bones form the distal tips of digits that are free from digital

webbing; digit 4 is notably longer than other digits, the limbs

are flexed 908 caudally at elbows, and the digit joints are not

yet obvious. This stage of development also corresponds

with the period when forelimbs and hindlimbs start to differ-

entiate in length (figure 2). Shh activity is required for the

maintenance of growth and patterning of intermediate and

distal limb structures. Mice that lack Shh have limbs

[37,38], but they are reduced and the skeletal pattern is

severely truncated. In the autopods of P. vittceps, Shh showed

a peak of transcription at 28–29 days post-oviposition,

which defines the transition from morphogenesis to growth

phase and is characterized by significant elongation of all

limb elements, including digits. It is known that Shh is

involved in autopod patterning [22,39], by acting as both a

morphogen as well as a mitogen [40,41]. However, digit

identity and patterning has already occurred by 28–29

days post-oviposition. It is possible that Shh is playing a

role in extension during this period of embryogenesis. Shh
has been shown to be involved in limb muscle formation,
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Figure 10. Detection of Pitx1 expressed in embryonic limb tissue of Ctenophorus pictus at 30 days post-oviposition, using immunohistochemistry (IHC). Shown are
autopods (equivalent position to figure 6c) for fore and hindlimb: (a) primary-antibody-positive sections (þ) at magnification 10� with a location box for the
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particularly to regulate directional muscle cell migration in

the distal limb elements [42].

In contrast with the other two genes examined, GHR tran-

scripts were most abundant in the limbs of hatchling lizards,

in proximal and distal segments. GH coordinates the growth

of multiple target tissues during development, including

skeletal muscle, and it is believed that GHR exerts specific
and direct effects on skeletal muscles [26]. GHR is highly

expressed in skeletal muscle, where it induces the synthesis

of IGF1 [27]. Both GH and IGF1 are important regulators

of longitudinal growth [28]. Our results suggest that post-

hatching is an important stage in limb growth, especially in

the more distal elements. A recent study on bone growth in

the brown bat Eptesicus fuscus also indicated that post-natal
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development was an important stage for growth [43].

These results indicate that the processes that mediate limb

growth could occur at a range of developmental stages and

that despite developmental biology focusing on early devel-

opment, in the case of the agamids, the molecular processes

mediating hindlimb length could also occur post-hatching.
ypublishing.org
Open

Biol.6:160252
3.3. Conclusion
In conclusion, ours is the first study to demonstrate the tran-

scription (Pitx1, GHR and Shh) and expression (Pitx1) of key

limb developmental genes in the agamids. Our study ana-

lysed different limb regions across developmental stages

and demonstrated that transcripts of the three genes are

detectable in both distal and proximal limb regions as well

as in the autopod across a wide time frame. Most studies

on limb development focus on early embryogenesis. We

extended our observations to include hatchlings and

showed that Pitx1, Shh and, in particular, GHR continue to

be transcribed, with their gene products presumably playing

a role in the developing limbs of hatchling lizards. The sig-

nificant increase in hindlimb length relative to body size

between the 25 and 28/29-day post-oviposition stage is

further evidence that these later stages of development

(embryogenesis) are very important in terms of hindlimb

developmental growth. Our results highlight the need for

further research in a wide range of tetrapods to fully under-

stand the role of key developmental genes in the evolution

of morphological diversity, such as the role of Pitx1 in

hindlimb determination and morphology. Our study on

P. vitticeps and C. pictus, combined with the recently pub-

lished P. vitticeps genome [12], illustrates that the Australian

agamids can be further used to examine gene expression

within and between species, and thus identify mechanisms

through which diversity in limb length and morphology

could have evolved.
4. Material and methods
4.1. Laboratory animal care
Pogona vitticeps (6 females and 3 males) and C. pictus
(10 males and 18 females) were collected at the start of the

mating season (September) from the Murray Sunset National

Park, Victoria (348500 S, 1418400 E), to produce eggs and

hatchlings for this study. Lizards were housed in appropriate

laboratory conditions outlined by Uller et al. [44,45]. A light

and heat/basking source was provided for each cage, includ-

ing a 50 W lamp (8.5 h photoperiod) and UV lights (12 h

photoperiod). Temperatures in each cage varied between

308C and 408C, which is consistent with spring/summer

temperatures in the Murray Sunset National Park. Lizards

were fed crickets ad libitum, dusted with calcium and vita-

min supplements (Repcal, Los Gatos, California), three

times per week. Lizards were sprayed daily with water, in

addition, provided with a water dish, and a moistened

sand patch was provided for egg laying. Cages were checked

daily for eggs, which were then transferred to individual con-

tainers half-filled with moist autoclaved vermiculite (1 : 7

autoclaved water: vermiculite). Containers were placed in a

Thermoline incubator (Coburg North, Victoria) at 288C.
4.2. Embryogenesis and gene expression in Pogona
vitticeps

4.2.1. Collection of embryonic and hatchling limb tissues

Limbs were collected from developing embryos and hatchl-

ing lizards to examine gene expression during limb

development. Embryos were killed using 0.01 ml of

11.1 mg ml21 sodium pentobarbitone injected into the egg

and hatchlings were killed with an IP injection of 0.1 ml of

32.5 mg ml21 sodium pentobarbitone. All embryos and

hatchlings were photographed with a digital 13-megapixel

Canon camera (EOSD5) operated by a computerized

system, using DIGITAL PHOTO PROFESSIONAL. Stages of embryo-

nic development were estimated using published embryonic

staging in L. vivipara [31] and A. sagrei [1]. In addition, we

compared staging of P. vitticeps with that of agamid

Ag. imparlearis [32]. Limb length was measured from the

digital photographs at each of the developmental stages

to quantify limb growth during development, using IMAGEJ

(v. 1.38, NIH, USA) to the nearest 0.001 cm. All statistical

analyses were undertaken using SYSTAT v. 13 (Cranes

Software International).

Tissues were collected differently for each developmental

stage due to variation in limb size: (i) 12–20-day post-

oviposition embryos—whole limb buds were removed in

one piece; (ii) 25–29-day post-oviposition embryos—limbs

were removed in two sections (autopods (foot/hand) and

limbs); and (iii) 44-day post-oviposition embryos to hatchling

lizards. Limbs were removed in three sections: proximal

(femur/humerus), distal (tibia and fibula/radius and ulna)

and autopods. Limbs were collected and placed immediately

on dry ice, then stored in 2808C.

4.2.2. RNA extraction and cDNA synthesis

RNA was extracted from frozen tissue samples (20–100 mg),

homogenized in TRI Reagent (Ambion, Applied Biosystems,

Scoresby, VIC) according to the manufacturer’s instructions

with the Wig-L-Bug crescent shaker (Densply Rinn), with

minor modifications [46]. The resulting RNA pellets were

washed in 75% ethanol, air dried and resuspended in RNA-

Secure water (Ambion). RNA samples were then treated

with DNAse I (Ambion) at 378C for 20 min to remove

residual genomic DNA. RNA concentrations were measured

on the NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA; Biolab, Scoresby, VIC)

with an A260 : A280 ratio of more than 1.9. The presence of

18S and 28S ribosomal RNA was confirmed by gel electro-

phoresis on 1.2% TBE agarose gels. First strand cDNA

synthesis used 1 mg total RNA in 30 ml reactions, with Super-

script III reverse transcriptase (200 U ml21; Invitrogen) and

oligo d(T) (50 mmol, Applied Biosystems) according to the

manufacturer’s instructions. Samples were incubated at

258C for 10 min, 508C for 50 min, 858C for 5 min to terminate

the reaction and then stored at 2208C.

4.2.3. RT-PCR

We first established if Pitx1, GHR and Shh were transcribed in

the autopods, forelimbs and hindlimbs of P. vitticeps embryos

and hatchlings during development. Oligonucleotide primers

(electronic supplementary material, table S4) for the target
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genes were designed from published chicken sequences

(GenBank accession numbers: XM_414626.2, AB012236.1

and NM_204821.1). We sequenced the target genes for the

study species and a range of other lizards (in the case of

Pitx1 and SHH); alignment files are available in the Figshare

digital repository and can be accessed at https://figshare.

com/s/9e497ba0790fcb481d0b. RT-PCR was performed on

44-day post-oviposition embryos (n ¼ 2) and 7-day-old

hatchlings (n ¼ 2) in 20 ml reactions with GoTaq Flexi (Pro-

mega, Annandale, NSW), 25 mM MgCl2,100 ng ml21

forward and reverse oligonucleotide primers (Sigma Aldrich,

Castle Hills, NSW) and 1 ml cDNA. A negative control, using

water instead of cDNA, was included in each RT-PCR. The

RT-PCR programme used for all samples consisted of 808C
for 2 min, then 40 cycles of 958C for 30 s, 558C for 1 min

and 728C for 1 min, with a final extension step at 728C for

10 min. PCR products (12 ml) were visualized using gel elec-

trophoresis on 1.2% TBE agarose gels with 6 ml SYBR safe

stain. Hyperladder IV (Bioline Pty Ltd., Eveleigh, NSW)

was included on each gel to estimate size of RT-PCR pro-

ducts. Amplification of the correct gene was confirmed by

sequence analysis. The DNA was purified using ExoSAP

(GE Healthcare, Ryldamere, NSW), according to the manu-

facturer’s instructions, and sequenced by Macrogen (Korea).

A BLAST search (http://www.ncbi.nlm.nih.gov/blast/

Blast.cgi) confirmed that the correct gene had been amplified.

4.2.4. Real-time quantitative PCR (qPCR)

Quantification of Pitx1, GHR and Shh transcript levels in the

forelimb and hindlimb of P. vitticeps embryos and hatchlings

were measured at each of the developmental stages by qPCR.

TaqMan labelled fluorogenic probes with a quencher dye

TAMRA (6-carboxyl-tetramethyl-rhodamine) at the 30end

and a FAM (6-carboxy fluorescent) reporter dye at the 50

end (BioSearch Technologies Inc, CA) and primers were

designed from the sequenced PCR products above using

REALTIMEDESIGN software (BioSearch) (electronic supplemen-

tary material, table S4). Alignment files, including qPCR

primers and probes, are available in the Figshare

digital repository and can be accessed at https://figshare.

com/s/9e497ba0790fcb481d0b, demonstrating the 100%

specificity in the study species. Samples were analysed

using the relative comparative CT method according to the

Stratagene MxPro Protocol (http://www.scribd.com/doc/

60305516/84/Comparative-Quantitation-Data-Analysis). In

relative quantification, the qPCR data are presented relative

to another gene, often referred to as an internal control.

All qPCR reactions were carried out in triplicate using

96-well optical reaction plates (Bio-Rad Laboratories,

Gladesville, NSW) in 20 ml volumes consisting of 1 ml

cDNA, 2� SensiMix dU (Quantace, Alexandria, NSW),

0.8 ml primers (20 uM) and 0.4 ml probe (20 uM) using

the Mx3000P qPCR System from Stratagene (Agilent

Technologies, Mulgrave, Victoria).

The qPCR experiment was designed to quantify gene

expression between all limb elements and different embryo-

nic stages in the hindlimb and forelimb in two separate

experiments due to restrictions on plate size. Six individuals

(n ¼ 6) for each time stage were included in the experiments.

Experiment 1: whole forelimb and hindlimb buds for post-o-

viposition 12–13 d, 15–18 d, 20 d and 25 d forelimbs; whole

limb without autopod for 25 d hindlimbs and 28–29 d
forelimbs and hindlimbs; separate forelimb and hindlimb

proximal and distal sections (without autopods) for post-

oviposition 44 d, 53–55 d embryos; separate forelimb and

hindlimb proximal and distal sections (without autopods)

for hatchlings 7 dH and 21 dH. Each plate contained the

above listed series of hind and forelimb buds, proximal and

distal sections. Experiment 2: autopods from forelimb

(except 25 d) and hindlimbs of post-oviposition 28–29 d,

44 d, 53–55 d embryos and hatchlings 7 dH and 21 dH.

Each plate contained the above listed series of hind and fore-

limb autopods. The genes of interest (GOI) and the

endogenous reference gene or internal control (r28S) were

assessed in separate qPCR plates and the CT values of each

gene of interest were normalized to r28S CT values. The rela-

tive difference in expression was calculated using 12–13 d HL

(earliest time point) for experiment 1 and 25 d (earliest time

point) for experiment 2 as the calibrator. This means that the

relative quantity of the calibrator is automatically defined as

1.0 on the graph. The formula used to calculate fold change is

fold change ¼ 2
�DDCT,

where DDCT ¼ [(CT gene of interest 2 CT internal control)]

Sample A 2 [(CT gene of interest 2 CT internal control)]

Sample B, where Sample A is the respective embryonic time

point and Sample B is the calibrator. Standard deviations

were calculated by taking the mean of qPCR replicates fol-

lowed by the mean of the individual samples. Statistical

tests and standard deviations were calculated after the

2�DDCT transformation, as described [47].

4.2.5. Immunohistochemistry

To detect Pitx1 expression in various stages of the developing

embryonic limbs, the following time points were collected

with n ¼ 5 per time point: 15–18-day post-oviposition fore-

limb and hindlimb buds; 28–29-day post-oviposition

forelimb and hindlimb limbs and autopods; 53–55-day

post-oviposition hind and forelimb proximal, distal and

autopod sections; and 7-day hatchling hind and forelimb

proximal, distal and autopod sections. The limbs and buds

were embedded in paraffin, and transverse sections were

cut and mounted on SuperFrost slides. Two sections from

the same individual were mounted on the same slide, one

for application of the primary antibody (Pitx1) and one as a

negative control. Slides were de-waxed with a series of histo-

lene, xylene and ethanol washes followed by antigen retrieval

using Tris/EDTA/EGTA (pH9.0). A peroxidase block (30%

hydrogen peroxide and 1�TBS) was used to block endogen-

ous peroxidase for an hour followed by two 1�TBS washes.

The sections on the slide were circled with a PAP pen

(Abcam), which provides a hydrophobic barrier around the

specimen. The sections were then blocked with a universal

background Sniper (Biocare Medical) for 30 min with the

excess blotted away. The primary polyclonal antibody Pitx1

(Bioworld Technologies) and a negative control (rabbit IgG)

were added onto the sections at a 1 : 300 dilution (in PBS

with BSA) each and incubated overnight at 48C in a humidi-

fying chamber. The secondary antibody, MACH4 Universal

HRP (Biocare Medical), was added on the following day

for 30 min after a series of TTBS washes. The slides were

blotted and incubated with DAB (Vector Laboratories) for

2–10 min. Slides were viewed to check for brown colour

development, then washed with distilled water. This was

https://figshare.com/s/9e497ba0790fcb481d0b
https://figshare.com/s/9e497ba0790fcb481d0b
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
https://figshare.com/s/9e497ba0790fcb481d0b
https://figshare.com/s/9e497ba0790fcb481d0b
https://figshare.com/s/9e497ba0790fcb481d0b
http://www.scribd.com/doc/60305516/84/Comparative-Quantitation-Data-Analysis
http://www.scribd.com/doc/60305516/84/Comparative-Quantitation-Data-Analysis
http://www.scribd.com/doc/60305516/84/Comparative-Quantitation-Data-Analysis
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immediately followed by a DAB enhancer step, and then each

slide was incubated for 10 min in 0.05 M sodium bicarbonate.

The slides were then washed with MilliQ water, stained

with haematoxylin, dehydrated through a series of ethanol

and histolene washes, and then mounted in Cytoseal

(ThemoScientific) and dried at 408C overnight.

4.3. Pitx1 expression in Ctenophorus pictus
To investigate whether the pattern of Pitx1 expression in

P. vitticeps is typical across Australian agamid lizards, we

selected a species, C. pictus, from a closely related genus of

agamids [48].

We compared Pitx1 transcription in the forelimbs and

hindlimbs of C. pictus and P. vitticeps embryos using

RT-PCR, which was undertaken at 16 days and 30 days

post-oviposition for C. pictus, and 20 days, 29 days and

44 days post-oviposition for P. vitticeps, using the same proto-

col detailed above. In addition, the RT-PCR was repeated

using 30 cycles to reduce the intensity of the PCR product.

We subsequently undertook qPCR of Pitx1 at develop-

ment stages of limb morphogenesis, one in early

morphogenesis (16 days post-oviposition) and one in late

morphogenesis (30 days post-oviposition), using the

methods, primers and probes detailed above for P. vitticeps.

All qPCR reactions were carried out in triplicate using

96-well optical reaction plates (Bio-Rad Laboratories, Glades-

ville, NSW). Four individuals (n ¼ 4) for each time stage were

included in the experiments. Samples were then analysed

using the relative CT standard curve method according to

the Applied Biosystems User Bulletin #2 (http://www3.

appliedbiosystems.com). A serial dilution, using distal

hatchling limb tissue, was used to generate standard curves

for Pitx1 (50 ng ml21, 10 ng ml21, 5 ng ml21, 1 ng ml21,

0.5 ng ml21) and the housekeeping gene (5 ng ml21,

1 ng ml21, 0.5 ng m 21, l 0.1 ng ml21, 0.05 ng ml21). The

known initial concentration of RNA was plotted against the

CT value: the cycle at which the intensity of fluorescence,

indicative of the amount of PCR product, crosses an arbitrary

threshold, on a logarithmic scale. 33 ng ml21 of cDNA was
used for the analysis of gene of interest and 2 ng ml21 for

the housekeeping gene, r28S. All PCR reactions were carried

out in triplicate using 96-well optical reaction plates (Bio-Rad

Laboratories, Gladesville, NSW) in 20ml volumes consisting

of 1 ml cDNA, 2� SensiMix dU (Quantace, Alexandria,

NSW), 0.8 ml primers (20 mM) and 0.4 ml probe (20 uM)

using the DNA Engine Opticon 2 System (MJ Research;

Bio-Rad Laboratories). The experimental design to quantify

differences in Pitx1 expression between the forelimb and

hindlimb contained tissue samples (16dHL, 16dFL, 30dHL,

30dFL, 30dHA and 30dFA) on one plate. Pitx1 and the

endogenous reference gene (r28S) were assessed in separate

PCRs and the gene of interest CT values were normalized

to r28S CT values. The relative difference in expression was

calculated using 30HL as the calibrator.

IHC assays in C. pictus were undertaken at the time point

(30 days post-oviposition), where there was least difference

in Pitx1 transcription between forelimbs and hindlimbs in

P. vitticeps. We used the sample protocols in C. pictus as

those in P. vitticeps, as detailed above, with n ¼ 4 individuals.
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