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Based on the standard Fitzhugh–Nagumo model for myocardial cell excitations and electrical activities, the effect 
of electromagnetic induction is considered and through which mixed frequencies magnetic radiation is imposed 
to detect the mode transition. Indeed, time-varying electromagnetic field can be induced when myocardial cell 
is exposed or surrounded by electromagnetic field and thus the effect of electromagnetic induction should be 
considered. From the analyzes of sampled series for membrane potentials, the improved model holds many 
bifurcation parameters and the mode of excitations and electric activities can be detected and observed in 
larger parameter zones. It is found that apart from exciting a myocardial cell, the mixed frequencies magnetic 
radiation can promote mode transition to bursting type behavior as the frequency is increased as well as suppress 
the electrical activities to quiescent state under high intensities magnetic radiations, which are consistent with 
biological experiments.
1. Introduction

The assessment of electrical and oscillatory activities of myocar-
dial cell is highly relevant in understanding its functional and new 
characteristic states [1, 2, 3, 4, 5]. These characteristic states include 
quiescent, spiking, bursting and chaotic states, are closely linked with 
normal activities. Consequently, abnormal characteristic states could 
be linked with diseased states, resulting in abnormal heart rhythms, 
especially when the cardiac system is invaded or injured [6, 7, 8]. 
However, many cardiac arrythmia mechanisms leading in death remain 
unclear [9, 10]. In this light, many research studies have been devoted 
both experimentally and theoretically in understanding the mechanism 
of pace-making rhythms of the heart. Experimentally, spike, spike-burst 
and burst phase synchronization of various oscillatory patterns of in-
tracellular calcium ion concentration were recorded in cultured cardiac 
myocytes [11]. Clusters of myocardial cells produce spontaneous oscil-
lations and capable of responding to external stimulus, which modifies 
heart rhythms [12]. Due to the complex electrophysiological nature in-
volves in heart beat, a detailed analyzes of these processes requires 
an elaborated and reliable mathematical model. The Hodgkin-Huxley 
equations [13] and it reduced form including the FitzHugh-Nagumo or 

* Corresponding author at: Department of Electrical and Electronic Engineering, College of Technology, University of Buea I, P.O. Box 63, Buea, Cameroon.
E-mail address: takembo.ntahkie@ubuea.cm (C. Ntahkie Takembo).

Van der Pol equations [14, 15, 16, 17] can exhibit the natural expres-
sion of a myocardial electrical and oscillatory activities. Using these 
various models, many researchers have investigated mode selection and 
synchronous transition in cardiac tissue under some internal or external 
factors. Ji et al. [18], investigated bifurcation events in intracellular cal-
cium ions oscillations using a modified mathematical model. Takembo 
et al. [19], reported localized modulated wave pattern in cardiac tis-
sue by modulational instability under thermal effect. Lan et al. [20], 
reported noise-induced synchronous oscillations cardiac tissue. Hamadi 
et al. [21], studied stochastic synchronization in the beating of cou-
pled cardiac cells. Zhang et al. [22], investigated the dynamics of spiral 
waves in cardiac tissue with inhomogeneity. Indeed, the electrocardio-
gram (ECG) usually used by cardiologists during initial medical con-
sultation reveals oscillations with diverse spatial and temporal scales 
closely related to normal physiological or pathological states.

Contraction of myocardial cells is accompanied by complex electro-
physiological activities with complex electrical activities. As such, elec-
tromagnetic induction is set up in cardiac tissue volume by the changes 
in distribution of ion concentration during the initiation and propaga-
tion of electric signal from the sinoatrial nodes. This effect of electro-
magnetic induction has been introduced into the research of myocardial 
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cells [23, 24, 25, 26]. For example Ma et al. [23, 24, 25], studied pat-
tern formation and mode selection in electrical activities of myocardial 
cell under electromagnetic induction exposed to electromagnetic radi-
ation. The authors further predicted two death mechanisms in cardiac 
tissue induced by the effects of electromagnetic induction and radiation. 
Modulated wave amplitude damping in cardiac tissue under electro-
magnetic radiation was equally reported in ref. [26]. Indeed, external 
electromagnetic radiation can change the excitability of cardiac tissue 
and neuronal networks. Many schemes have been proposed to elimi-
nate abnormal rhythms by controlling electrical activities [27, 28, 29, 
30]. Amongst the various methods produced, direct current stimulation 
(DCS) with high amplitude has gained prominence [30]. Despite the 
successes recorded, such method has adverse effects such as skin le-
sions from burns, mania or hypomania in patients with depression and 
many others. The effect of external electromagnetic radiation on the 
electrical activities of cardiac and neuronal cells as a controlling pa-
rameter could produce amazing results which can even beat the effects 
of DCS. In this paper, we study mode selection in the electrical activities 
of myocardial cell under electromagnetic induction exposed to high-low 
frequency electromagnetic radiation. This has remain unexplored on the 
myocardial cell electrical activities. Indeed, the experimental evidences 
of electromagnetic radiation on biological systems have been reported. 
Lisi et al. [31] reported the effect of electromagnetic radiations at a fre-
quency of 50 Hz on the development of newborn rat cerebellar granule 
neurons. Xu et al. [32] also investigated the oxidative damage to mi-
tochondrial DNA in primary cultured neurons exposed to 1, 800 MHz 
radio frequency radiation. High-low frequency electromagnetic radia-
tion, usually regarded as a two kinds periodic forcings is widely applied 
in nonlinear systems including commutation technologies, such that the 
high frequency modulates the signal while low frequency encodes the 
data. The application of this mixed frequencies radiation has revealed 
the improved model for myocardial cell holds more bifurcation param-
eters and the mode of electric activities can be selected in larger pa-
rameter region. In the next paragraph, we discuss the improved model 
setting.

2. Model setting and discussion

The simple mathematical two variables FitzHugh-Nagumo model 
[33] and other basic biological models [34, 35] can produce the main 
dynamical properties of myocardial excitation and electrical activi-
ties without considering electromagnetic induction. As earlier indicated 
above, the effect of electromagnetic induction on myocardial excitation 
and electrical activities should be considered [36]. This results from the 
fluctuation in the distribution and the density of magnetic flux across 
the membrane potential of cell as it is exposed to electromagnetic fields 
according to the physical law of electromagnetic induction. Thus using 
the additional magnetic variable and memristor, a new myocardial cell 
model under electromagnetic induction exposed to mixed frequencies 
magnetic radiation is defined as follows

�̇� =− 𝑘𝑥(𝑥− 𝑎)(𝑥− 1.0) − 𝑥𝑦− 𝑘0(𝛼 + 3𝛽𝜙2)𝑥+ 𝐼0 sin𝜔𝑡,

�̇� =(𝜀+
𝜇1𝑦

𝑥+ 𝜇2
)[−𝑦− 𝑘𝑥(𝑥− 𝑎− 1)],

�̇� =𝑘1𝑥− 𝑘2𝜙+𝐴 cos(2𝜋𝑓𝑡) +𝐵 cos(2𝜋𝑁𝑓𝑡),

(1)

with

𝐼 = 𝑑𝑄

𝑑𝑡
= 𝑑𝑄

𝑑𝜙

𝑑𝜙

𝑑𝑡
= 𝜌(𝜙)𝑑𝜙

𝑑𝑡
= 𝜌(𝜙)𝑉 = 𝑘0𝜌(𝜙)𝑥 = 𝑘0(𝛼 + 3𝛽𝜙2)𝑥. (2)

The variables 𝑥, 𝑦 and 𝜙 describe the membrane potential, slow vari-
able for current and magnetic flux across the membrane, respectively. 
𝐼0 sin𝜔𝑡 represents the transmembrane current mapped from periodic 
forcing for stimulation current, with amplitude 𝐼0 and angular fre-
quency 𝜔. −𝑘𝑥(𝑥 − 𝑎)(𝑥 − 1.0) − 𝑥𝑦 are nonlinear terms translating the 
ionic transmembrane current on space unit of the membrane patch. 
2

𝜌(𝜙) = 𝛼 + 3𝛽𝜙2 is a nonlinear function for the memductance of mem-
ristor, describing the modulation of time-varying electromagnetic field 
on membrane potential. 𝛼 and 𝛽 are constants dependent on the me-
dia. The term −𝑘0𝜌(𝜙)𝑥 is a negative feedback term describing the 
induced current from the electromagnetic induction set up in cell. 𝑘0
is the memristor coupling that bridges the membrane potential with 
the magnetic flux. 𝑘1 describes the modulational effect of electromag-
netic induction resulting from ionic transportation. 𝑘2 is a feedback 
gain dependent on the media which calculates the level of polarization 
and magnetization created by the mixed stimulus magnetic radiation 
𝐴 cos(2𝜋𝑓𝑡) + 𝐵 cos(2𝜋𝑁𝑓𝑡), having amplitudes 𝐴 and 𝐵, frequencies 𝑓
and 𝑁𝑓 , with 𝑁 being an integer that helps to discriminate low and 
high frequency. Indeed, the distribution and density of magnetic flux 
change when myocardial cell is exposed to continuous electromagnetic 
fields. In this work, magnetic radiation consisting of a linear combi-
nation of periodic forcings are imposed on the model for myocardial 
cell excitations and electric activities to detect mode transition. This 
could be very useful exploring the potential mechanism of myocar-
dial electric signal processing exposed to multiple stimulations. It could 
equally be very useful in understanding some potential mechanisms of 
heart related disease. The proposed model here undoubtedly increases 
the number of control parameters, making it an efficient model for 
the eventual control of cardiac tissue electrical and excitations behav-
iors. To be consistent with previous work, we set various parameters as 
𝑎 = 0.15, 𝜇1 = 0.20, 𝜇2 = 0.30, 𝑘 = 10, 𝑘1 = 0.30, 𝑘2 = 1.0 and 𝜀 = 0.0002.

3. Numerical simulation results and discussion

In the numerical studies, in order to calculate the time series for 
membrane potential we use the fourth order Runge-Kutta algorithm, 
time step is set as h=0.001. The initial values are selected quiescent 
state x=0.01, y=0.01 and 𝜙 = 0.9. Firstly in the absent of magnetic 
radiation, the amplitude of the external forcing current is set 𝐼0=0.6, 
and then different angular frequency 𝜔 is imposed to detect the mode 
selection in electrical activities and results plotted in Figs. 1(a)-(d).

The results in Figs. 1(a)-(d) confirmed that under the effect of elec-
tromagnetic induction, electrical activities are changed through peri-
odic like, spiking and even can develop into chaotic state by increasing 
the angular frequency 𝜔. Furthermore, by fixing the frequency of the 
external periodic stimulus at 𝜔=0.08, different amplitude 𝐼0 are im-
posed to detect the mode selection in electrical activities and results 
plotted in Figs. 2(a)-(b).

It is found in Figs. 2(a)-(b) that different electrical modes in elec-
trical activities could be observed with increasing the intensity of ex-
ternal periodic forcing. Indeed, periodic type oscillatory behaviors [in 
Fig. 2(a)] are modulated into spiking state [in Fig. 2(b)] by the increas-
ing of external stimulus current. Results from Fig. 1 and Fig. 2 confirm 
that different oscillatory and periodic type behaviors are found in the 
sample time series of membrane potential and are controlled by exter-
nal stimulus current. The controlled of electrical activities of excitable 
cells such as myocardial cells and neurons through the use of stimulus 
current forms the basis employing direct current stimulus (DCS) [37, 
38] in influencing the nervous and cardiac systems.

To discern the effect of magnetic radiation on pattern formation 
and possible mode transition in electrical and oscillatory behaviors, the 
magnetic radiation is included on the magnetic flux variable as exter-
nal stimuli and switched on at t=1000 time units. As earlier stated we 
have considered radiation of the form 𝐴 cos(2𝜋𝑓𝑡) +𝐵 cos(2𝜋𝑁𝑓𝑡), then 
different frequency disparity factor 𝑁 are applied to detect mode tran-
sition and dynamical response in the calculated sampled time series for 
transmembrane potential, with results presented in Figs. 3(a)-(d).

The results in Figs. 3(a)-(d) confirmed that electrical activities of 
myocardial cell can produce mode transition when exposed to high-low 
frequency electromagnetic radiation as the frequency disparity factor 
𝑁 is increased. From the results presented, it is observed that for tran-
sient period less than 1000 time units, the time series in the sampled 
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Fig. 1. Transition of electrical activities in an isolate myocardial cell in the absent of magnetic radiation and the amplitude of external forcing current set at 𝐼0=0.6, 
(a) 𝜔=0.02, (b) 𝜔=0.03, (c) 𝜔=0.05, (d) 𝜔=2.0. The feedback gains of electromagnetic induction are set at 𝑘0=1.0, 𝑘1=0.20 and 𝑘2=1.0.

Fig. 2. Transition of electrical activities in an isolate myocardial cell in the absent of magnetic radiation and the frequency of external forcing current set at 𝜔=0.08, 
(a) 𝐼0=0.05, (b) 𝐼0=0.06. The feedback gains of electromagnetic induction are set at 𝑘0=1.0, 𝑘1=0.20 and 𝑘2=1.0.

Fig. 3. Mode transition and dynamical response of electrical activities in an isolate myocardial cell approached by calculating the different membrane potentials as 
magnetic radiation is switched on at t=1000 time units, when different frequency disparity factor 𝑁 are applied. We set, 𝐼0=0.6, 𝜔=0.1, 𝑘0=1.0, A=2.5, B=2.5, 
f=0.0001 (a) N=1 (b) N=7 (c) N=11 (d) N=25.
membrane potential exhibit the dynamics. However, as magnetic radi-

ation is included, different dynamical responses are observed, showing 
the effect of the radiation. Indeed, the electrical activities can produce 
one, four, six bursting behaviors with increasing 𝑁 . To confirm the 
generality of the proposed model, we use another group of parameters; 
3

𝐼0 = 0.6, 𝜔 = 0.1, 𝑘0 = −1.0, 𝐴 = 1.7, 𝐵 = 0.7, 𝑓 = 0.0005 and with different 
values of 𝑁 selected, results are presented in Figs. 4(a)-(d).

It is confirmed that burst-like activities, with possible switch to 
chaotic behavior can be induced in the electrical activities under mag-

netic radiation. It confirmed that under negative feedback though 𝑘0, in-
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Fig. 4. Mode transition and dynamical response of electrical activities in an isolate myocardial cell approached by calculating the different membrane potentials as 
magnetic radiation is switched on at t=1000 time units, when different frequency disparity factor 𝑁 are applied 𝐼0=0.6, 𝜔=0.1, 𝑘0=1.0, A=1.7, B=0.7, f=0.0005 
(a) N=1 (b) N=3 (c) N=5 (d) N=7.

Fig. 5. Mode transition and dynamical response of electrical activities in an isolate myocardial cell approached by calculating the different membrane potentials as 
magnetic radiation is switched on at t=1000 time units, when different intensities are selected with 𝐼0=0.06, 𝜔=0.08, 𝑘0=1.0, f=0.0, N=1.0 (a) A=B=0.05, (b) 
A=B=0.055,(c) A=B=0.06, (d) A=B=2.0.
creasing 𝑁 changes excitability with the possible emergence of chaotic 
patterns as observed. Furthermore, the frequency is fixed while the 
intensity of the radiation is increased and results are presented in 
Figs. 5(a)-(d)

The results in Figs. 5(a)-(d) indicate that bursting state in electri-
cal activities can be suppressed under appropriate intensity of magnetic 
radiation. The potential mechanism is that when weak intensity elec-
tromagnetic field, the cell can select the suitable mode in electrical 
activities. However, as the intensity of the field is increased, polariza-
tion and magnetization take place on the cell thereby suppressing the 
electrical activities. Finally, the amplitude and intensity is fixed while 
the frequency is increased. Results are presented in Figs. 6(a)-(d).

From the results, the sampled time series for membrane potential 
of myocardial cell under to a continuous magnetic field show that the 
mode in electrical activities can be changed. The calculated time se-
ries for membrane potential in electric activities show that multiple 
modes (spiking and bursting) can be induced. Indeed, the transition 
between different oscillation behaviors of the myocardial cell could 
correspond to a possible transition to an abnormal or irregular heart 
rhythm, including atrial and ventricular fibrillation as well as ventricu-
lar tachycardia, closely associated with the loss of rhythm [39]. Apart 
from the intrinsic system parameters, the memristor coupling 𝑘0 and the 
4

stimulus current with amplitude 𝐼0 and angular frequency 𝜔, myocar-
dial cell excitation and electrical activities could be effectively control 
using the different amplitudes and frequency of external electromag-
netic radiations 𝐴, 𝐵, 𝑁 and 𝑓 [40, 41].

In a summary, the proposed improved myocardial model holds more 
bifurcation parameters and the effect of high and low frequency mag-
netic radiation could be included. In the process, the effect of electro-
magnetic induction is considered in the improved FitzHugh-Nagumo 
model for myocardial cell via the third variable; the magnetic flux vari-
able. The high and low frequency magnetic radiation is considered as 
a linear combination of two continuous electromagnetic fields. From 
extensive numerical simulations, multiple modes in electrical activities 
could be detected and observed in myocardial cell by synchronously 
adjusting many bifurcation parameters. Based on the model presented, 
Fast Fourier Transform analysis may also be performed to detect the 
coexistence of multiple modes in electrical activities of neurons and 
neuronal networks [42, 43]. Using the same scheme, synchronization 
in cardiac issue and neuronal work under electromagnetic induction 
[44, 45, 46, 47] could be investigated driven mixed frequencies stimu-
lation. In that case, it could be useful to verify the shock of heart beat 
as a result of termination of heartbeat induced by turbulent-like be-
haviors exposed to high and low frequency magnetic radiation. Apart 
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Fig. 6. Mode transition and dynamical response of electrical activities in an isolate myocardial cell approached by calculating the different membrane potentials 
as magnetic radiation is switched on at t=1000 time units, when different frequency is selected with 𝐼0=0.06, 𝜔=0.08, 𝑘0=1.0, A=0.09, B=0.09, N=2.0 (a) 
f=0.0003, (b) f=0.0005,(c) f=0.0007, (d) f=0.0009.
from the high-low frequency electromagnetic radiation explored in our 
manuscript, future work could be dedicated towards possible stochas-
tic generalization by using non-deterministic external radiation sources 
like colored noise. Secondly it would also be interesting to investigate 
the effect of high-low frequency electromagnetic radiation in neuron 
and neuronal networks via Hodgkin-Huxley model [13, 48].

4. Conclusion

A new model for myocardial cell excitation and electrical activities 
is proposed from the standard two-variables FitzHugh-Nagumo model 
by detecting the effect of mixed frequencies magnetic radiation. The 
dynamical behaviors detected and observed become more diverse and 
very much interesting by introducing many bifurcation parameters. The 
standard two-variables model and many of the previous studied model 
produces only mode in electrical activities driven by external stimulus. 
Thus, multiple modes in electrical activities of myocardial cell can be 
reproduced by changing more than four bifurcation parameters as the 
case maybe. In this work, the authors have argued that the distribution 
and density of magnetic flux fluctuate when myocardial cell is exposed 
to continuous electromagnetic fields. As such, we used the magnet flux 
variable together with the memristor in the model in accordance with 
the consistence of physical units. From the improved model, mixed fre-
quencies magnetic radiation are included as external forcings on the 
magnetic flux variable and which is capable of generating a multiple 
of modes in electrical activities. This indicates that the excitations and 
electrical activities can be effectively controlled by magnetic radiation 
[49].
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