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Pythagorean fuzzy soft set (PFSS) is themost powerful and effective extension of Pythagorean fuzzy sets (PFS) which deals with the
parametrized values of the alternatives. It is also a generalization of intuitionistic fuzzy soft set (IFSS) which provides us better and
precise information in the decision-making process comparative to IFSS. ,e core objective of this work is to construct some
algebraic operations for PFSS such as OR-operation, AND-operation, and necessity and possibility operations. Furthermore, some
fundamental properties have been established for PFSS utilizing the developed operations. Moreover, a decision-making
technique has been offered for PFSS based on a score matrix. To demonstrate the validity of the proposed approach, a numerical
example has been presented. Finally, to ensure the practicality of the established approach, a comprehensive comparative analysis
has been presented. ,e obtained results show that our developed approach is most effective and delivers better information
comparative to prevailing techniques.

1. Introduction

Zadeh [1] introduced the notion of the fuzzy set (FS), which
assigns to each object a membership value ranging between
zero and one. Generally, decision-makers consider a
membership and nonmembership value in the decision-
making procedure which cannot be handled by FS. Ata-
nassov [2] generalized the concept of the FS and presented
the concept of intuitionistic fuzzy set (IFS) to handle the
aforesaid limitation. Atanassov and Gargov [3] extended the
idea of IFS and developed the theory of interval-valued fuzzy
set (IVFS). Atanassov [2] presented some results for IFS and
developed two novel operators for IFS and studied their
basic properties. Kaur and Garg [4] developed several ag-
gregation operators (AOs) under the environment of

complex IFS and discussed their properties. De et al. [5]
expressed dilation, normalization, and concentration of IFS.
,ese concepts are valuable while dealing with different
linguistic hedges involved in the complications under the
IFS environment. Deschrijver and Kerre [6] defined the
relationship between several other extensions of FS and IFS
and also discuss the inter-relationship between IFS, soft set,
rough set, fuzzy rough set, probabilistic set, L-fuzzy set, and
type 2 fuzzy set. Xu [7] defined a new methodology for
deriving the correlation coefficient of IFS, which has several
benefits over current approaches. He also extended the
concept of interval-valued IFS theory and utilized in medical
diagnosis. Zulqarnain et al. [8] established the correlation
coefficient for interval-valued IFSS and utilized their de-
veloped correlation coefficient for the construction of the
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TOPSIS approach. Zulqarnain and Dayan [9] utilized the
intuitionistic fuzzy TOPSIS for the selection of an auto
company.

But the existing IFS has some limitations such that the
sum of membership grade (MG) and nonmembership grade
(NMG) cannot exceed 1. For example, on the condition that
we have MG� 0.7 and NMG� 0.7, then clearly, we have
MG + NMG> 1 and we can see that this is not handled by
the IFS because IFS only deal with the situations, where
MG + NMG≤ 1. Yager [10] protracted the idea of IFS to
Pythagorean fuzzy set (PFS) by upgrading the condition
MG + NMG≤ 1 to MG2 +NMG2 ≤ 1. As a generalized set of
IFS, PFS has a close relationship with IFS.,e PFS accurately
access the uncertain facts than IFS. Muhammad Zulqarnain
et al. [11] utilized the intuitionistic fuzzy soft matrices for
disease diagnosis. Xu and Yager [12] developed the geo-
metric aggregation operators for IFS. Wei et al. [13] planned
several operators for picture fuzzy sets and offered a mul-
tiattribute group decision-making (MAGDM) approach.
Wang and Li [14] proposed Bonferroni mean AOs for PFS
and constructed the multiattribute decision-making
(MADM) approach based on their developed operators. Ma
and Xu [15] established some novel aggregation operators
for PFS and established the multicriteria decision-making
approach based on developed operators. Garg et al. [16]
extended the TOPSIS method to solve MADM problems
under hesitant fuzzy information. Peng and Yang [17]
discussed some desirable operations and properties for PFS.
Wang et al. [18] introduced the novel dice similarity mea-
sures for PFS and developed a MAGDM approach based on
their proposed similarity measures. Wang et al. [19] pre-
sented interactive Hamacher power AOs for Pythagorean
fuzzy numbers and developed a decision-making method-
ology based on their developed operators. Muhammad
Zulqarnain et al. [20] extended the notion of the IFSS to an
intuitionistic fuzzy hypersoft set and introduced the TOPSIS
approach based on the correlation coefficient. Garg and
Arora [21] proposed the generalized AOs for the intui-
tionistic fuzzy soft set. Zhang and Xu [22] extended the
TOPSIS method for PFS and used it for the multicriteria
decision-making (MCDM) problem.

,e concept of soft set (SS) was established byMolodtsov
[23], which deals with parametrized values of the alternative.
Maji et al. [24] investigated the SS views on decision-making
(DM) issues and defined some important concepts for SS
with their properties. Chen et al. [25] developed parame-
terization reduction of SS with its application. Maji et al. [26]
offered the notion of the fuzzy soft set (FSS) by merging two
existing notions FS and SS. Kong et al. [27] established a
theoretic decision-making approach for FSS theory. Maji
et al. [28] prolonged the concept of IFSS, which is a gen-
eralization of FSS, and defined new operations on IFSS.
Rajarajeswari and Dhanalakshmi [29] developed an intui-
tionistic fuzzy soft matrix (IFSM) and also describe their
application on IFSM. Many researchers expanded SS theory
by utilizing the fundamental definition of FSS. Peng et al.
[30] protracted the idea of IFSS to PFSS by upgrading the
condition MG + NMG≤ 1 to MG2 +NMG2 ≤ 1. As a gen-
eralized set of IFSS, PFSS has a close relationship with IFSS.

Athira et al. [31] proposed the entropy measure based on
Hamming distance and Euclidean distance of PFSS. Athira
et al. [32] also introduced the distance-based entropy
measures and developed a decision-making methodology to
solve decision-making complications. Naeem et al. [33]
constructed the TOPSIS and VIKOR approaches under
linguistic PFSS environs and proposed some fundamental
operations with their properties. Riaz et al. [34] extended the
notion of PFSS to m-polar PFSS and presented the TOPSIS
method for m-polar PFSS to solve multicriteria group de-
cision-making (MCGDM) issues. Riaz et al. [35] proposed
the similarity measures for PFSS and established a decision-
making approach based on developed similarity measures.
Zulqarnain et al. [36] developed the AOs for PFSS and
proposed a decision-making methodology based on their
established operators. Zulqarnain et al. [37] extended the
TOPSIS technique for PFSS based on CC and utilized their
established technique forMADM complications. Zulqarnain
et al. [38] proposed the interactive AOs for PFSS and
constructed an MCDM approach using their developed
interactive AOs. It has been observed that fuzzy numbers can
only measure uncertainty and intuitionistic fuzzy numbers
can measure true and false membership values such as the
sum of true and false membership values must be less than 1.
But, in our developed methodology, we can measure the
values of truth and false membership by modifying the
intuitionistic fuzzy numbers condition such as the sum of
the square of true and false values must be less than or equal
to 1. ,e main objective of this paper is to develop some
logical operators with their properties for PFSS. ,e rest of
this research is ordered as follows: some basic concepts have
been discussed in Section 2. In Section 3, we defined some
logical operators for PFSS with their fundamental properties.
We developed decision making based on the Pythagorean
fuzzy soft matrix in Section 4. In Section 5, a brief com-
parison has been presented with some existing methodol-
ogies. In Section 6, the conclusion is given.

2. Preliminaries

In this section, we will present several fundamental defi-
nitions which help us to develop the construction of the
following work such as SS, PFS, IFSS, and PFSS.

Definition 1 (see [23]). Let X be a universal set and N � P1,􏼈

P2, P3, . . . , Pm} be the set of attributes, then a pair (Ω,N) is
called a SS over X where Ω: N⟶ KX is a mapping and KX

is known as a collection of all subsets of universal set X.

Definition 2 (see [28]). Let X be a universal set and N be set
of attributes, then a pair (Ω,N) is called an IFSS over X

where Ω: N⟶ IKX is a mapping and IKX is known as a
collection of all IFS subsets of universal set X.

(Ω, A) � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉, (1)

where ′ΥA(P), ϑA(P): A⟶ [0, 1] are of membership
grade and nonmembership functions respectively with
0≤ ′ΥA (P) + ϑA(P)≤ 1 and A ⊂ N.
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Definition 3 (see [8]). Let X be a collection of objects, then a
PFS A over X is defined as

A � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ X􏼈 􏼉, (2)

where ′ΥA(P), ϑA(P): X⟶ [0, 1] are membership and
nonmembership grade functions, respectively. Furthermore,
0≤ ′ΥA(P)2 + ϑA(P)2 ≤ 1 and I � 1 − ′Υ(P)2 − ϑA(P)2 is
called degree of indeterminacy.

We can see from the above definitions that the only
difference is in the conditions, i.e., in IFS, we deal with the
condition 0≤ΥA(P) + ϑA(P)≤ 1 and I � 1 − ′ΥA(P) −

ϑA(P), whereas in PFS, we have condition 0≤ ′ΥA(P)2 +

ϑA(P)2 ≤ 1 and I � 1 − ′ΥA(P)2 − ϑA(P)2. We can say that a
PFS is the general case of IFS.

Definition 4 (see [30]). Let X be a universal set and N be set
of attributes, then a pair (Ω,N) is called a PFSS over X where
Ω: N⟶℘KX is a mapping and ℘KX is known as the
collection of all PFS subsets of universal set X.

(Ω, A) � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉, (3)

where ′ΥA(P), ϑA(P): A⟶ [0, 1] are of membership
grade and nonmembership functions respectively with
0≤ ′ΥA(P)2 + ϑA(P)2 ≤ 1, degree of indeterminacy

I �

������������������

1 − ′ΥA(P)2 − ϑA(P)2
􏽱

, and A ⊂ N.
For the sake of readers’ convenience, we express the

PFSN as Hij � 〈′Υij, ϑij〉. For calculating the ranking of
alternatives, Zulqarnain et al. [36] introduced the score and
accuracy functions for Hij as

S Hij􏼐 􏼑 � ′Υ2ij − ϑ2ij, (4)

where S(Hij) ∈ [−1, 1]. It is notified that the score function
is unable to differentiate the PFSNs in some cases. For
example, letH11 � 0.3162, 0.4472 andH12 � 0.5477, 0.6324,
then according to the definition of score function, we have
S(H11) � −0.1 and S(H12) � −0.1. So, in this case, it is
impossible to find the finest alternative utilizing the score
function. To handle this drawback, an accuracy function has
been developed in which the sum of squares of membership
and nonmembership such as

A Hij􏼐 􏼑 � ′Υ2ij + ϑ2ij, (5)

where A(Hij) ∈ [−1, 1].
,us, to compare two PFSNsHij andRij, the following

comparison laws are defined:

(1) If S(Hij)> S(Rij), then Hij >Rij

(2) If S(Hij) � S(Rij), then

(i) If A(Hij)>A(Rij), then Hij >Rij

(ii) If A(Hij) � A(Rij), then Hij � Rij

Matrices play a vital role in numerous areas of life such as
calculation strategies, managing the magnitude of several
engineering complications, medical science, and social
science.

Definition 5 (see [39]). If (FA, E) becomes a soft Pythag-
orean set softer than X, then subset X ∈ E is defined dif-
ferently by RA � (P, e), e ∈ a, P ∈ FA􏼈 􏼉. Let RA be identified
by its MG and NMG functions such as
′ΥRA

: X × E⟶ [0, 1] and ϑRA
: X × E⟶ [0, 1].

[M] � ′Υij􏽨 􏽩 m

α×β
� ′ΥM

ij , ϑM
ij􏼐 􏼑α×β �

′Υ11, ϑ11( 􏼁 ′Υ12, ϑ12( 􏼁 . . . . . . ′Υ1n, ϑ1n( 􏼁

′Υ21, ϑ21( 􏼁 ′Υ22, ϑ22( 􏼁 . . . . . . ′Υ2n, ϑ2n( 􏼁

⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮
′Υ, ϑm1( 􏼁 ′Υm2, ϑm2( 􏼁 . . . . . . ′Υmn, ϑmn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

which is called the Pythagorean fuzzy soft matrix (PFSM) of
α × β order.

Definition 6 (see [39]). If A � [′ΥA
ij − ϑA

ij] and B � [′ΥB
ij −

ϑB
ij] be two PFSMα×β. ,en, score matrix of PFSM of A is
given as

S � sij􏽨 􏽩 � ′ΥA
ij􏼐 􏼑

2
− ϑA

ij􏼐 􏼑
2

􏼒 􏼓􏼔 􏼕, for all i and j. (7)

Definition 7 (see [39]). If A � [′ΥA
ij − ϑA

ij] and B � [′ΥB
ij −

ϑB
ij] be two PFSMα×β. ,en, the utility matrix for PFSM of A
and B is given as
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U(A, B) � [S(A) − S(B)], for all i and j. (8)

3. Logical Operators for PFSS with Their
Fundamental Properties

In this section, we are going to develop some logical op-
erations such as OR-operation and AND-operation with
their desirable properties. Also, we will introduce the

necessity and possibility operations with their fundamental
characteristics.

Definition 8. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and
(L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS, where
′ΥA(P), ′ΥB(P), ϑA(P), ϑB(P) ∈ [0, 1]. ,en, OR-operation
between them is written as follows:

(K, A)∨(L, B) � P, max ′ΥA(P), ′ΥB(P)( 􏼁, min ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃. (9)

Definition 9. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and
(L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS, where

′ΥA(P), ′ΥB(P), ϑA(P), ϑB(P) ∈ [0, 1]. ,en, AND-opera-
tion between them is written as follows:

(K, A)∧(L, B) � P, min ′ΥA(P), ′ΥB(P)( 􏼁, max ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃. (10)

Proposition 1. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉,
(L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉, and (M, C) �

P, (′ΥC(P), ϑC(P)) | P ∈ C􏼈 􏼉 be three PFSS ′ΥA(P), ′ΥB(P),

′ΥC(P), ϑA(P), ϑB(P), ϑC(P) ∈ [0, 1].

(1) (K, A)∨(L, B) � (L, B)∨(K, A)

(2) (K, A)∨((L, B)∨(M, C)) � ((K, A)∨(L, B))∨(M, C)

Proof

(1) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and (L, B) �

P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS, where
′ΥA(P), ′ΥB(P), ϑA(P), ϑB(P) ∈ [0, 1]. ,en, utilizing Defi-
nition 8, we get

(K, A)∨(L, B) � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉,

(K, A)∨(L, B) � P, max ′ΥA(P), ′ΥB(P)( 􏼁, min ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃,

(K, A)∨(L, B) � P, max ′ΥB(P), ′ΥA(P)( 􏼁, min ϑB(P), ϑA(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃,

(K, A)∨(L, B) � P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉∨ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉,

(K, A)∨(L, B) � (L, B)∨(K, A).

(11)

□
Proof

(2) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉, (L, B) � P,{

(′ΥB(P), ϑB(P)) | P ∈ B}, and (M, C) � P, (′ΥC(P), ϑC􏼈

(P)) | P ∈ C} be three PFSS ′ΥA(P), ′ΥB(P), ϑA(P), ϑB(P)

∈ [0, 1].

(K, A)∨((L, B)∨(M, C)) � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉∨ P, ′ΥC(P), ϑC(P)( 􏼁 | P ∈ C􏼈 􏼉( 􏼁

� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, max ′ΥB(P), ′ΥC(P)( 􏼁, min ϑB(P), ϑC(P)( 􏼁 | P ∈ B, C􏼈 􏼉( 􏼁

� P, max ′ΥA(P), max ′ΥB(P), ′Υ(P)( 􏼁( 􏼁, min ϑA(P), min ϑB(P), tϑCn(P)( 􏼁( 􏼁 | P ∈ A, B, C􏼈 􏼉( 􏼁
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� P, max ′ΥA(P), ′ΥB(P), ′ΥC(P)( 􏼁( 􏼁, min ϑA(P), ϑB(P), tϑCn(P)( 􏼁( 􏼁 | P ∈ A, B, C􏼈 􏼉( 􏼁

� P, max ′ΥA(P), ′ΥB(P), ′ΥC(P)( 􏼁, min ϑA(P), ϑB(P), ϑC(P)( 􏼁 | P ∈ A, B, C􏼈 􏼉( 􏼁

� ((K, A)∨(L, B))∨(M, C)

� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉( 􏼁∨ P, ′ΥC(P), ϑC(P)( 􏼁 | P ∈ C􏼈 􏼉

� P, max ′ΥA(P), ′ΥB(P)( 􏼁, min ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁∨ P, ′ΥC(P), ϑC(P)( 􏼁 | P ∈ C􏼈 􏼉

� P, max max ′ΥA(P), ′ΥB(P)( 􏼁, ′ΥC(P)( 􏼁, min min ϑA(P), ϑB(P)( 􏼁, ϑC(P)( 􏼁 | P ∈ A, B, C􏼈 􏼉( 􏼁

� P, max ′ΥA(P), ′ΥB(P), ′ΥC(P)( 􏼁, min ϑA(P), ϑB(P), ϑC(P)( 􏼁 | P ∈ A, B, C􏼈 􏼉( 􏼁.

(12)

Hence,

(K, A)∨((L, B)∨(M, C)) � ((K, A)∨(L, B))∨(M, C).

(13)
□

Proposition 2. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉,
(L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉, and (M, C) �

P, (′ΥC(P), ϑC(P)) | P ∈ A􏼈 􏼉 be three PFSS
μA(P), μB(P), ϑA(P), ϑB(P) ∈ [0, 1].

(1) (K, A)∧(L, B) � (L, B)∧(K, A)

(2) (K, A)∧((L, B)∧(M, C)) � ((K, A)∧(L, B))∧(M, C)

Proof

(1) Let (K,A)� P,(′ΥA(P),ϑA(P)) |P ∈A􏼈 􏼉 and (L,B)� P,{

(′ΥB(P),ϑB(P)) |P ∈B} be two PFSS, where ′ΥA(P), ′ΥB

(P),ϑA(P),ϑB(P) ∈ [0,1]. ,en, using Definition 9, we get

(K, A)∧(L, B) � P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∧ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉,

(K, A)∧(L, B) � P, min ′ΥA(P), ′ΥB(P)( 􏼁, max ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃,

(K, A)∧(L, B) � P, min ′ΥB(P), ′ΥA(P)( 􏼁, max ϑB(P), ϑA(P)( 􏼁 | P ∈ A, B􏼈 􏼉􏼂 􏼃,

(K, A)∧(L, B) � P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉∧ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉,

(K, A)∧(L, B) � (L, B)∧(K, A).

(14)

□
Proof

(2) Let (K,A)� P,(′ΥA(P),ϑA(P)) |P ∈A􏼈 􏼉, (L,B)� P,{ (′ΥB

(P),ϑB(P)) |P ∈B}, and (M,C)� P,(′ΥC(P),ϑC(P))|P􏼈 ∈C}

be three PFSS ′ΥA(P),′ΥB(P), ′ΥC(P),ϑA(P),ϑB(P),ϑc(P)∈
[0,1]. ,en, same as the above utilizing Definition 9, we can
get the required result. □

Proposition 3. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉

and (L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS. -en,
De Morgan Laws are given as follows:

(1) ((K, A)∨(L, B))0 � (K, A)O∧(L, B)O

(2) ((K, A)∧(L, B))0 � (K, A)O∨(L, B)O

Proof

(1) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and (L, B) �

P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS. ,en,

((K, A)∨(L, B))
c

� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉( 􏼁
O

� P, max ′ΥA(P), ′ΥB(P)( 􏼁, min ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁
O

� P, min ϑA(P), ϑB(P)( 􏼁, max ′ΥA(P), ′ΥB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁,

(K, A)
O∧(L, B)

O
� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉

o∧ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉
o

� P, ϑA(P), ′ΥA(P)( 􏼁 | P ∈ A􏼈 􏼉∧ P, ϑB(P), ′ΥB(P)( 􏼁 | P ∈ B􏼈 􏼉

� P, min ϑA(P), ϑB(P)( 􏼁, max ′ΥA(P), ′ΥB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁.

(15)
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Hence proved.

((K, A)∨(L, B))
0

� (K, A)
O∧(L, B)

O
. (16)

Proof

(2) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and (L, B) �

P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS. ,en,

((K, A)∧(L, B))
0

� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉∧ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉( 􏼁
O

� P, min ′ΥA(P), ′ΥB(P)( 􏼁, max ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁
O

� P, max ϑA(P), ϑB(P)( 􏼁, min ′ΥA(P), ′ΥB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁,

(K, A)
O∨(L, B)

O
� P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉

o∨ P, ′ΥB(P), ϑB(P)( 􏼁 | P ∈ B􏼈 􏼉
o

� P, ϑA(P), ′ΥA(P)( 􏼁 | P ∈ A􏼈 􏼉∨ P, ϑB(P), ′ΥB(P)( 􏼁 | P ∈ B􏼈 􏼉

� P, max ϑA(P), ϑB(P)( 􏼁, min ′ΥA(P), ′ΥB(P)( 􏼁 | P ∈ A, B􏼈 􏼉( 􏼁.

(17)

Hence proved.

((K, A)∧(L, B))
0

� (K, A)
O∨(L, B)

O
. (18)

Definition 10. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be

a PFSS. ,en, the necessity operation on PFSS is denoted by
⊕ (K, A) and defined as follows:

⊕ (K, A) � ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼚 􏼛. (19)

Definition 11. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be

a PFSS, then the possibility operation on PFSS is denoted by
⊗(K, A) and written as follows:

⊗ (K, A) �

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P)􏼚 􏼛. (20)

Proposition 4. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be
a PFSS. -en, the following properties are satisfied.

(1) [⊕ (K, A)O]O �⊗(K, A)

(2) [⊗ (K, A)O]O � ⊕ (K, A)

(3) ⊕ [⊕ (K, A)] � ⊕ (K, A)

(4) ⊕ [⊗ (K, A)] �⊗(K, A)

(5) ⊗[⊕ (K, A)] � ⊕ (K, A)

(6) ⊗[⊗ (K, A)] �⊗(K, A)

Proof

(1) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be a PFSS.
,en,

⊕ (K, A)
O

􏽨 􏽩
O

� ⊕ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉
o

􏽨 􏽩
O

� ⊕ P, ϑA(P), ′ΥA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼈 􏼉􏼂 􏼃
o

� P, ϑA(P),

�������������

1 − ϑA(P)( 􏼁
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛
o

� P,

�������������

1 − ϑA(P)( 􏼁
2

􏼐 􏼑

􏽱

, ϑA(P)􏼒 􏼓 | P ∈ A􏼚 􏼛

� ⊗ (K, A).

(21)

Proof

(2) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be a PFSS.
,en,

⊗ (K, A)
O

􏽨 􏽩
O

� ⊗ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉
o

􏽨 􏽩
O

� ⊗ P, ϑA(P), ′ΥA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼈 􏼉􏼂 􏼃
o

� P,

������������

1 − ′ΥA(P)2􏼐 􏼑

􏽱

, ′ΥA(P)􏼒 􏼓 | P ∈ A􏼚 􏼛
o

� P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� ⊕ (K, A).

(22)

Proof

(3) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 be a PFSS.
,en,

⊕ [⊕ (K, A)] � ⊕ ⊕ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼂 􏼃

� ⊕ P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� ⊕ (K, A).

(23)
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Proof

(4) Let (K, A) � P,(′ΥA(P),ϑA(P)) |P ∈A􏼈 􏼉 be a PFSS. ,en,

⊕ [⊗ (K, A)] � ⊗ ⊗ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼂 􏼃

� ⊗ P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P) | P ∈ A􏼚 􏼛

� P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

,

�������������������

1 −

�����������

1 − ϑA(P)2􏼐 􏼑

􏽱

􏼒 􏼓
2

􏽳

⎛⎝ ⎞⎠ | P ∈ A⎡⎢⎢⎣ ⎤⎥⎥⎦

� P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

,

��������������

1 − 1 − ϑA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P) | P ∈ A􏼚 􏼛

� ⊗ (K, A).

(24)

Proof

(5) Let (K, A) � P,(′ΥA(P),ϑA(P)) |P ∈A􏼈 􏼉 be a PFSS. ,en,

⊗ [⊕ (K, A)] � ⊗ ⊕ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼂 􏼃

� ⊗ P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� P,

������������������

1 −

����������

1 − ′ΥA(P)2
􏽱

􏼒 􏼓
2

􏽳

,

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱
⎛⎝ ⎞⎠ | P ∈ A⎡⎢⎢⎣ ⎤⎥⎥⎦

� P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛

� ⊕ (K, A).

(25)

□
Proof

(6) Let (K, A) � P,(′ΥA(P),ϑA(P)) |P ∈A􏼈 􏼉 be a PFSS. ,en,
⊗ [⊗ (K, A)] � ⊗ ⊗ P, ′ΥA(P), ϑA(P)( 􏼁 | P ∈ A􏼈 􏼉􏼂 􏼃

� ⊗ P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P)􏼒 􏼓 | P ∈ A􏼚 􏼛

� P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P)􏼒 􏼓 | P ∈ A􏼚 􏼛

� ⊗ (K, A).

(26)

□

Proposition 5. Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉

and (L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS.-en,

(1) ⊕ [(K, A)∧(L, B)] � ⊕ (K, A)∧⊕ (L, B)

(2) ⊕ [(K, A)∨(L, B)] � ⊕ (K, A)∨⊕ (L, B)

Proof

(1) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and
(L, B) � P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS.

⊕ [(K, A)∧(L, B)] � ⊕ P, min ′ΥA(P), ′ΥB(P)( 􏼁, max ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼂 􏼃

� P, min ′ΥA(P), ′ΥB(P)( 􏼁,

�����������������������

1 − min ′ΥA(P)
2
, ′ΥB(P)

2
􏼐 􏼑

􏽱

􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P, min ′ΥA(P), ′ΥB(P)( 􏼁, max
������������������������

1 − ′ΥA(P)
2
, 1 − ′ΥB(P)

2
􏼐 􏼑 |

􏽱

􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛∧ P, ′ΥB(P),

������������

1 − ′ΥB(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A, B􏼚 􏼛

� ⊕ (K, A)∧⊕ (L, B).

(27)

□
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Proof

(2) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and (L, B) �

P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS.

⊕ [(K, A)∨(L, B)] � ⊕ P, max ′ΥA(P), ′ΥB(P)( 􏼁, min ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼂 􏼃

� P, max ′ΥA(P), ′ΥB(P)( 􏼁,

�����������������������

1 − max ′ΥA(P)
2
, ′ΥB(P)

2
􏼐 􏼑

􏽱

􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P, max ′ΥA(P), ′ΥB(P)( 􏼁, min
������������������������

1 − ′ΥA(P)
2
, 1 − ′ΥB(P)

2
􏼐 􏼑 |

􏽱

􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P, ′ΥA(P),

������������

1 − ′ΥA(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A􏼚 􏼛∨ P, ′ΥB(P),

������������

1 − ′ΥB(P)
2

􏼐 􏼑

􏽱

􏼒 􏼓 | P ∈ A, B􏼚 􏼛

� ⊕ (K, A)∨⊕ (L, B).

(28)

□
Proposition 6. Let (K, A)� P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉

and (L, B)� P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS. -en,

(1) ⊗[(K, A)∧(L, B)] � ⊗ (K, A)∧⊗ (L, B)

(2) ⊗[(K, A)∨(L, B)] � ⊗ (K, A)∨⊗ (L, B)

Proof

(1) Let (K, A) � P, (′ΥA(P), ϑA(P)) | P ∈ A􏼈 􏼉 and (L, B) �

P, (′ΥB(P), ϑB(P)) | P ∈ B􏼈 􏼉 be two PFSS.

⊗ [(K, A)∧(L, B)] � P, min ′ΥA(P), ′ΥB(P)( 􏼁, max ϑA(P), ϑB(P)( 􏼁 | P ∈ A, B􏼂 􏼃

� P,

���������������������

1 − max ϑA(P)
2
, ϑB(P)

2
􏼐 􏼑

􏽱

, max ϑA(P), ϑB(P)( 􏼁􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P, min
��������������������

1 − ϑA(P)
2
, 1 − ϑB(P)

2
􏼐 􏼑

􏽱

, max ϑA(P), ϑB(P)( 􏼁􏼚 􏼛 | P ∈ A, B􏼔 􏼕

� P,

�����������

1 − ϑA(P)
2

􏼐 􏼑

􏽱

, ϑA(P)􏼒 􏼓 | P ∈ A􏼚 􏼛∧ P,

��������

1 − ϑB(P)

􏽱

, ϑB(P)􏼒 􏼓 | P ∈ A, B􏼚 􏼛

� ⊗A∧⊗B.

(29)

□
Proof

(2) Similar to assertion 1. □

4. A Decision-Making Approach for
Pythagorean Fuzzy Soft Set Using
Score Matrix

In this section, a decision-making approach has been developed
to solve decision-making complications based on the score
matrix of PFSS. A numerical illustration has been presented to
ensure the practicality of our proposed approach.

4.1.ProposedApproach. A group of decision-makers intends
to select a suitable alternative against α variety of substitutes.
,ey choose β attributes to select a more suitable alternative.
If someone has an additional subdivision of an attribute that
forms a relationship like PFSM, each decision-maker grants
his inclination individually, substitution as stated in sub-
divisions of the attributes considered in the PFSM form, and
order α × β gets by PFSM. With this PFSM, we compute
matrices values that help to derive the score matrix, along
with completely we compute total score regarding every last
one alternative by using score matrix. Score functions

remain matrix which corresponds to the entire characteristic
belonging to a real matrix. ,e utility matrix is also a real
matrix derived from the score function. Finally, using the
rank of the alternatives, build the total score matrix. ,e
above process can also be presented is as follows.

4.2. Algorithm for the Proposed Approach

Step 1: input PFSS and create a PFSM
Step 2: compute the score matrix S(A),
S(B), S(C), and S(D) by using Definition 6
Step 3: find a utility matrix by using Definition 7
Step 4: enumerate the total score matrix
Step 5: selection belonging to the most suitable
alternative
Step 6: ranking of the alternative builds its total score
matrix

4.3. Numerical Example. Let A and B be two PFSMs ob-
tained from PFSS (FA, E) and (GB, E), respectively. Let U �

(honda)g1, (pak hero)g2,􏼈 (united)g3, (sohrab)g4, (metro)

g5, (king hero)g6} be a set of bikes of different brands and
E � q1, q2, q3, q4, q5, q6􏼈 􏼉 be the set of attributes, where q1 �
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price q2 � environment friendly, q3 � mileage, q4 �

engine quality, q5 � structure quality, and q6 � resale value.
An investor constituted a committee of decision-makers

[A, B, C, D] to choose the best bike available in the market.
,en, PFSM can be written by using parameters as follows:

FA, E( 􏼁 �

F q1( 􏼁 � g1, 0.5, 0.7( 􏼁, g2, 0.8, 0.5( 􏼁, g3, 0.7, 0.4( 􏼁, g4, 0.7, 0.6( 􏼁, g5, 0.6, 0.6( 􏼁, g6, 0.5, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

F q2( 􏼁 � g1, 0.8, 0.2( 􏼁, g2, 0.5, 0.5( 􏼁, g3, 0.6, 0.7( 􏼁, g4, 0.5, 0.6( 􏼁, g5, 0.5, 0.5( 􏼁, g6, 0.5, 0.8( 􏼁􏼈 􏼉􏼈 􏼉

F q3( 􏼁 � g1, 0.8, 0.3( 􏼁, g2, 0.4, 0.5( 􏼁, g3, 0.6, 0.4( 􏼁, g4, 0.5, 0.5( 􏼁, g5, 0.5, 0.6( 􏼁, g6, 0.4, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

F q4( 􏼁 � g1, 0.9, 0.1( 􏼁, g2, 0.4, 0.7( 􏼁, g3, 0.6, 0.7( 􏼁, g4, 0.7, 0.6( 􏼁, g5, 0.5, 0.5( 􏼁, g6, 0.5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

F q5( 􏼁 � g1, 0.9, 0.3( 􏼁, g2, 0.6, 0.5( 􏼁, g3, 0.7, 0.4( 􏼁, g4, 0.5, 0.4( 􏼁, g5, 0.5, 0.4( 􏼁, g6, 0.6, 0.3( 􏼁􏼈 􏼉􏼈 􏼉

F q6( 􏼁 � g1, 0.8, 0.4( 􏼁, g2, 0.4, 0.7( 􏼁, g3, 0.6, 0.4( 􏼁, g4, 0.4, 0.5( 􏼁, g5, 0.5, 0.6( 􏼁, g6, 0.3, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

GB, E( 􏼁 �

G q1( 􏼁 � g1, 0.4, 0.8( 􏼁, g2, 0.8, 0.6( 􏼁, g3, 0.7, 0.3( 􏼁, g4, 0.6, 0.6( 􏼁, g5, 0.6, 0.6( 􏼁, g6, 0.7, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

G q2( 􏼁 � g1, 0.7, 0.2( 􏼁, g2, 0.5, 0.5( 􏼁, g3, 0.6, 0.7( 􏼁, g4, 0.5, 0.3( 􏼁, g5, 0.4, 0.7( 􏼁, g6, 0.4, 0.8( 􏼁􏼈 􏼉􏼈 􏼉

G q3( 􏼁 � g1, 0.8, 0.3( 􏼁, g2, 0.4, 0.7( 􏼁, g3, 0.5, 0.4( 􏼁, g4, 0.5, 0.5( 􏼁, g5, 0.4, 0.6( 􏼁, g6, 0.5, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

G q4( 􏼁 � g1, 0.8, 0.3( 􏼁, g2, 0.6, 0.7( 􏼁, g3, 0.7, 0.7( 􏼁, g4, 0.5, 0.6( 􏼁, g5, 0.5, 0.7( 􏼁, g6, 0.5, 0.4( 􏼁􏼈 􏼉􏼈 􏼉

G q5( 􏼁 � g1, 0.7, 0.3( 􏼁, g2, 0.6, 0.6( 􏼁, g3, 0.5, 0.4( 􏼁, g4, 0.5, 0.4( 􏼁, g5, 0.6, 0.4( 􏼁, g6, 0.5, 0.3( 􏼁􏼈 􏼉􏼈 􏼉

G q6( 􏼁 � g1, 0.8, 0.6( 􏼁, g2, 0.5, 0.7( 􏼁, g3, 0.6, 0.4( 􏼁, g4, 0.4, 0.5( 􏼁, g5, 0.4, 0.6( 􏼁, g6, 0.4, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

HC, E( 􏼁 �

H q1( 􏼁 � g1, 0.6, 0.6( 􏼁, g2, 0.7, 0.5( 􏼁, g3, 0.6, 0.4( 􏼁, g4, 0.4, 0.6( 􏼁, g5, 0.4, 0.6( 􏼁, g6, 0.5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

H q2( 􏼁 � g1, 0.7, 0.2( 􏼁, g2, 0.6, 0.5( 􏼁, g3, 0.3, 0.7( 􏼁, g4, 0.7, 0.6( 􏼁, g5, 0.7, 0.5( 􏼁, g6, 0.6, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

H q3( 􏼁 � g1, 0.8, 0.4( 􏼁, g2, 0.3, 0.5( 􏼁, g3, 0.7, 0.4( 􏼁, g4, 0.6, 0.5( 􏼁, g5, 0.6, 0.6( 􏼁, g6, 0.6, 0.2( 􏼁􏼈 􏼉􏼈 􏼉

H q4( 􏼁 � g1, 0.9, 0.1( 􏼁, g2, 0.6, 0.7( 􏼁, g3, 0.6, 0.2( 􏼁, g4, 0.6, 0.6( 􏼁, g5, 0.4, 0.5( 􏼁, g6, 0.7, 0.5( 􏼁􏼈 􏼉􏼈 􏼉

H q5( 􏼁 � g1, 0.8, 0.3( 􏼁, g2, 0.6, 0.4( 􏼁, g3, 0.4, 0.4( 􏼁, g4, 0.3, 0.4( 􏼁, g5, 0.6, 0.4( 􏼁, g6, 0.6, 0.4( 􏼁􏼈 􏼉􏼈 􏼉

H q6( 􏼁 � g1, 0.9, 0.2( 􏼁, g2, 0.6, 0.7( 􏼁, g3, 0.5, 0.4( 􏼁, g4, 0.5, 0.5( 􏼁, g5, 0.7, 0.6( 􏼁, g6, 0.3, 0.5( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

ID, E( 􏼁 �

I q1( 􏼁 � g1, 0.3, 0.7( 􏼁, g2, 0.7, 0.3( 􏼁, g3, 0.7, 0.4( 􏼁, g4, 0.6, 0.6( 􏼁, g5, 0.6, 0.4( 􏼁, g6, 0.5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

I q2( 􏼁 � g1, 0.8, 0.4( 􏼁, g2, 0.4, 0.4( 􏼁, g3, 0.5, 0.7( 􏼁, g4, 0.5, 0.6( 􏼁, g5, 0.6, 0.5( 􏼁, g6, 0.7, 0.8( 􏼁􏼈 􏼉􏼈 􏼉

I q3( 􏼁 � g1, 0.7, 0.3( 􏼁, g2, 0.4, 0.3( 􏼁, g3, 0.5, 0.4( 􏼁, g4, 0.6, 0.5( 􏼁, g5, 0.7, 0.6( 􏼁, g6, 0.6, 0.7( 􏼁􏼈 􏼉􏼈 􏼉

I q4( 􏼁 � g1, 0.9, 0.1( 􏼁, g2, 0.6, 0.6( 􏼁, g3, 0.4, 0.7( 􏼁, g4, 0.7, 0.6( 􏼁, g5, 0.5, 0.5( 􏼁, g6, 0.4, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

I q5( 􏼁 � g1, 0.8, 0.3( 􏼁, g2, 0.5, 0.4( 􏼁, g3, 0.6, 0.6( 􏼁, g4, 0.7, 0.4( 􏼁, g5, 0.8, 0.6( 􏼁, g6, 0.6, 0.3( 􏼁􏼈 􏼉􏼈 􏼉

I q6( 􏼁 � g1, 0.6, 0.1( 􏼁, g2, 0.4, 0.7( 􏼁, g3, 0.6, 0.5( 􏼁, g4, 0.4, 0.8( 􏼁, g5, 0.5, 0.6( 􏼁, g6, 0.5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30)

,ese four PFSS are represented by the following PFSM,
respectively:

A �

(0.5, 0.7) (0.8, 0.2) (0.8, 0.3) (0.9, 0.1) (0.9, 0.3) (0.8, 0.4)

(0.8, 0.5) (0.5, 0.5) (0.4, 0.5) (0.4, 0.7) (0.6, 0.5) (0.4, 0.7)

(0.7, 0.4) (0.6, 0.7) (0.6, 0.4) (0.6, 0.7) (0.7, 0.4) (0.6, 0.4)

(0.7, 0.6) (0.5, 0.6) (0.5, 0.5) (0.7, 0.6) (0.5, 0.4) (0.4, 0.5)

(0.6, 0.6) (0.5, 0.5) (0.5, 0.6) (0.5, 0.5) (0.5, 0.4) (0.5, 0.6)

(0.5, 0.7) (0.5, 0.8) (0.4, 0.7) (0.5, 0.6) (0.6, 0.3) (0.3, 0.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B �

(0.4, 0.8) (0.7, 0.2) (0.8, 0.3) (0.8, 0.3) (0.7, 0.3) (0.8, 0.6)

(0.8, 0.6) (0.5, 0.5) (0.4, 0.7) (0.6, 0.7) (0.6, 0.6) (0.5, 0.7)

(0.7, 0.3) (0.6, 0.7) (0.5, 0.4) (0.7, 0.7) (0.5, 0.4) (0.6, 0.4)

(0.6, 0.6) (0.5, 0.3) (0.5, 0.5) (0.5, 0.6) (0.5, 0.4) (0.4, 0.5)

(0.6, 0.6) (0.4, 0.7) (0.4, 0.6) (0.5, 0.7) (0.6, 0.4) (0.4, 0.6)

(0.7, 0.7) (0.4, 0.8) (0.5, 0.7) (0.5, 0.4) (0.5, 0.3) (0.4, 0.7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

(0.6, 0.6) (0.7, 0.2) (0.8, 0.4) (0.9, 0.1) (0.8, 0.3) (0.9, 0.2)

(0.7, 0.5) (0.6, 0.5) (0.3, 0.5) (0.6, 0.7) (0.6, 0.4) (0.6, 0.7)

(0.6, 0.4) (0.3, 0.7) (0.7, 0.4) (0.6, 0.2) (0.4, 0.4) (0.5, 0.4)

(0.4, 0.6) (0.7, 0.6) (0.6, 0.5) (0.6, 0.6) (0.3, 0.4) (0.5, 0.5)

(0.4, 0.6) (0.7, 0.5) (0.6, 0.6) (0.4, 0.5) (0.6, 0.4) (0.7, 0.6)

(0.5, 0.6) (0.6, 0.1) (0.6, 0.2) (0.7, 0.5) (0.6, 0.4) (0.3, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

(0.3, 0.7) (0.8, 0.4) (0.7, 0.3) (0.9, 0.1) (0.8, 0.3) (0.6, 0.1)

(0.7, 0.3) (0.4, 0.4) (0.4, 0.3) (0.6, 0.6) (0.5, 0.4) (0.4, 0.7)

(0.7, 0.4) (0.5, 0.7) (0.5, 0.4) (0.4, 0.7) (0.6, 0.6) (0.6, 0.5)

(0.6, 0.6) (0.5, 0.6) (0.6, 0.5) (0.7, 0.6) (0.7, 0.4) (0.4, 0.8)

(0.6, 0.4) (0.6, 0.5) (0.7, 0.6) (0.5, 0.5) (0.8, 0.6) (0.5, 0.6)

(0.5, 0.6) (0.7, 0.8) (0.6, 0.7) (0.4, 0.6) (0.6, 0.3) (0.5, 0.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

By using score matrix definition,

SA �

−0.24 0.6 0.55 0.8 0.72 0.48

0.39 0 −0.09 −0.33 0.11 −0.33

0.33 −0.13 0.2 −0.13 0.33 0.2

0.13 −0.11 0 0.13 0.09 −0.09

0 0 −0.11 0 0.09 −0.11

−0.24 −0.39 −0.33 −0.11 0.27 −0.27

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

SB �

−0.48 0.45 0.55 0.55 0.4 0.28

0.28 0 −0.33 −0.13 0 −0.24

0.4 −0.13 0.09 0 0.09 0.2

0 0.16 0 −0.11 0.09 −0.09

0 −0.13 −0.2 −0.24 0.2 −0.2

0 −0.48 −0.24 0.09 0.16 −0.33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

SC �

0 0.45 0.48 0.8 0.55 0.77

0.24 0.11 −0.16 −0.13 0.2 −0.13

0.2 −0.4 0.33 0.32 0 0.09

−0.2 0.13 0.11 0 −0.07 0

0.2 0.24 0 −0.09 0.2 0.13

−0.11 0.35 0.32 0.24 0, 2 −0.16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

SD �

−0, 4 −0.48 0.4 0.8 0.55 0.35

0.4 0 0.07 0 0.09 −0.33

0.33 −0.24 0.09 −0.33 0 0.11

0 −0.11 0.11 0.13 0.33 −0.48

0.2 0.11 0.13 0 0.28 −0.11

−0.11 −0.15 −0.13 −0.2 0.27 −0.11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

By using the definition of utility matrix,

S(A,B,C,D) �

0.64 0.18 −0.88 −1.35 −0.78 −0.92

−0.53 −0.11 0.01 −0.7 −0.18 0.37

−0.6 0.64 −0.31 −0.12 0.24 −0.2

0.33 −0.29 −0.22 0.11 −0.26 0.48

−0.4 −0.22 −0.04 0.33 −0.59 0.07

−0.02 −0.11 −0.28 −0.24 −0.36 0.33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

Now,

total score �

g1

g2

g3

g4

g5

g6

3.11

1.21

0.35

0.15

0.85

0.68

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)
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From the above results x1, the 1st brand having maxi-
mum value, in this fashion, we conclude from the judgment
of four experts that Honda is the best brand for business.

Ranking of alternative g1 >g2 >g5 >g6 >g3 >g4.

5. Discussion and Comparative Studies

For comparative analysis, we made the comparison of our
proposed method with different methods by using their
algorithm. ,rough this process, we can easily show the
credibility of our proposed method.

5.1. Comparative Studies. Here, we use the method of
Rathika and Subramanian [40], in which firstly authors find
the complement matrices and apply the algebraic operation
to compute matrices values that help to derive the scoring
matrix, and after this, the authors compute total score matrix
belonging to individual alternative by using score matrix.
Score function remains a matrix that corresponds to all the
characteristics of a real matrix. Finally, using the rank of the
alternatives, build the total score matrix to choose the best
alternative. ,e above process can also be presented as
follows.

5.1.1. Algorithm (see [40])

Step 1: input IFSSs and obtain intuitionistic fuzzy soft
matrices (IFSM)
Step 2: take complement of IFSS and obtain comple-
ment IFSM from these sets
Step 3: find (A − B − C − D), (Ac − Bc − Cc − Dc), and
value matrix of these IFSMs
Step 4: compute the score of IFSMs and complement
IFSMs
Step 5: calculate the total score Si for xi in-universe
Step 6: we conclude that element xi of the total score
matrix Si has maximum value which is the best
alternative

If max Si has more values besides one value, then rerun
the development by revising the parameter.

Value matrix

V(A − B − C − D) �

−0.4 0, 3 0.3 0.5 0.4 0

0.4 −0.1 −0.4 −0.3 −0.1 −0.3

0.2 −0.4 0.1 −0.3 −0.2 0

−0.2 −0.1 0 −0.1 0.1 −0.4

−0.2 −0.3 −0.2 −0.3 −0.1 −0.2

−0.2 −0.4 −0.3 −0.2 0.1 −0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V A
C

− B
C

− C
C

− D
C

􏼐 􏼑 �

0 −0.6 −0.5 −0.8 −0.6 −0.8

−0.5 −0.2 −0.4 0 −0.2 0.1

−0.4 0.1 −0.3 −0.4 −0.3 −0.2

−0.1 −0.4 −0, 1 −0.5 −0.3 0

−0.2 −0.2 −0.1 −0.1 −0.4 −0.1

−0.1 −0.6 −0.4 −0.3 −0.3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Now, calculate the score matrix

S �

−0.4 0.9 0.8 1.3 1.0 0.8

0.9 0.1 0 −0.3 0.1 −0.4

0.6 −0.3 0.4 0.1 0.1 0.2

−0.1 0 0.2 0.4 0.4 −0.4

0 −0.1 −0.1 −0.2 0.3 −0.1

−0.1 0.2 0.1 0.1 0.4 −0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

total score �

g1

g2

g3

g4

g5

g6

4.4

0.4

1.1

0.5

0.2

0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

Ranking of alternative g1 >g3 >g4 >g2 >g6 >g5.
Now, we use the method of Rajarajeswari and Dhana-

lakshmi [29], in which firstly authors find the complement
matrices and apply the algebraic operation to compute
matrices values that help to derive the scoring matrix, and
after this, the authors compute total score belonging to
individually alternative by using score matrix. Score func-
tion remains a matrix that corresponds to all the charac-
teristics of a real matrix, finally using the rank of the
alternatives to build the total score matrix to choose the best
alternative. ,e above process can also be presented is as
follows.

5.1.2. Algorithm (see [29])

Step 1: input IFSSs and obtain IFSMs
Step 2: take complement of IFSS and obtain comple-
ment IFSM from these sets
Step 3: find (A + B + C + D), (Ac + Bc + Cc + Dc), and
value matrix of these IFSMs
Step 4: compute the score of IFSMs and complement
IFSMs
Step 5: calculate the total score Si for xi in-universe
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Step 6: we conclude that element xi of the total score
matrix Si has maximum value which is the best
alternative

If max Si has more values besides one value, then rerun
the development by revising the parameter.

Value matrix

V(A + B + C + D) �

0.0 0.6 0.5 0.8 0.6 0.8

0.5 0.2 0.1 0.0 0.2 −0.1

0.4 −0.1 0.3 0.5 0.3 0.2

0.1 0.4 0.1 0.1 0.3 0.2

0.2 0.2 0.1 0.0 0.4 0.1

0.1 0.6 0.4 0.3 0.3 0.0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V A
C

+ B
C

+ C
C

+ D
C

􏼐 􏼑 �

0.5 −0.3 −0.3 −0.5 −0.4 0.0

−0.1 0.1 0.4 0.3 0.1 0.3

0.0 0.4 −0.1 0.3 0.2 0.0

0.2 0.1 0.0 0.1 0.1 0.4

0.2 0.3 0.2 0.3 0.1 0.2

0.2 0.4 0.3 0.2 −0.1 0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Now, calculate the score matrix

S �

−0.5 0.9 0.8 1.3 1.0 0.8

0.6 0.1 −0.3 −0.3 0.1 −0.4

0.4 −0.5 0.4 0.2 0.1 0.2

−0.1 0.3 0.1 0.0 0.2 −0.2

0.0 −0.1 −0.1 −0.3 0.3 −0.1

−0.1 0.2 0.1 0.1 0.4 −0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

total score �

g1

g2

g3

g4

g5

g6

4.3

−0.2

0.8

0.3

−0.3

0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

Ranking of alternative g1 >g3 >g4 >g6 >g2 >g5.

Now, we use the method of Borah et al. [41], in
which firstly authors select the parameter and convert
them into matrices form. Secondly, apply the algebraic
operation to compute matrices values that help to derive
the optimum matrix, finally using the rank of the alter-
natives to build the optimum matrix to choose the best
alternative. ,e above process can also be presented as
follows.

5.1.3. Algorithm [41]

Step 1: select a set of parameters
Step 2: obtain fuzzy soft matrices (IFSS) from these sets
Step 3: evaluate the cross-product of FSM
Step 4: enumerate the optimum subscript matrix
Step 5: compute the best alternative that is having max
value

We have

A × B × C × D �

g1

g2

g3

g4

g5

g6

0.036 + 0.3136 + 0.3584 + 0.5832 + 0.4032 + 0.3456

0.3136 + 0.06 + 0.0192 + 0.0864 + 0.108 + 0.048

0.2058 + 0.054 + 0.105 + 0.1008 + 0.084 + 0.108

0.1008 + 0.0875 + 0.09 + 0.147 + 0.0525 + 0.032

0.0864 + 0.084 + 0.084 + 0.05 + 0.144 + 0.07

0.0875 + 0.084 + 0.072 + 0.07 + 0.108 + 0.018

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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A × B × C × D �

g1

g2

g3

g4

g5

g6

2.04

0.6352

0.6576

0.5098

0.5184

0.4395

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

Ranking of alternative g1 >g3 >g2 >g5 >g4 >g6.
Furthermore, we use the algorithm of Rathika et al. [42],

in which firstly authors find the complement matrices and
apply the algebraic operation to compute matrices values
that help to derive the scoring matrix, and after this, the
authors compute total score along with individually alter-
native by using score matrix. Score function remains a
matrix that corresponds to all the characteristics of a real
matrix, finally using the rank of alternatives to build the total
score matrix to choose the best alternative. ,e above
process can also be presented is as follows.

5.1.4. Algorithm (see [42])

Step 1: input IFSSs and obtain IFSMs
Step 2: take complement of IFSS and obtain comple-
ment IFSM from these sets
Step 3: find (A − B − C − D), (Ac − Bc − Cc − Dc), and
value matrix of these IFSMs
Step 4: compute the score of IFSMs and complement
IFSMs
Step 5: calculate the total score Si for xi in-universe
Step 6: we conclude that element xi of the total score
matrix Si has maximum value which is the best
alternative

If max Si has more values besides one value, then rerun
the development by repeating the parameter.

MV(A − B − C − D) �

0.3 0.7 0.7 0.8 0.7 0.6

0.7 0.4 0.3 0.4 0.5 0.4

0.6 0.3 0.5 0.4 0.4 0.5

0.4 0.5 0.5 0.5 0.3 0.4

0.4 0.4 0.4 0.4 0.5 0.4

0.5 0.4 0.4 0.4 0.5 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MV A
o

− B
o

− C
o

− D
o

( 􏼁 �

0.4 0.2 0.2 0.1 0.1 0.1
0.2 0.4 0.6 0.4 0.4 0.4
0.3 0.4 0.3 0.3 0.3 0.4
0.3 0.3 0.4 0.3 0.3 0.5
0.4 0.3 0.3 0.5 0.2 0.3
0.3 0.3 0.4 0.3 0.4 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S �

−0.1 0.5 0.5 0.7 0.6 0.5
0.5 0.0 −0.3 0.0 0.1 0.0
0.3 −0.1 0.2 0.1 0.1 0.1
0.1 0.2 0.1 0.2 0.0 −0.1
0.0 0.1 −0.1 −0.1 0.3 0.1
0.2 0.1 0.0 0.1 0.1 −0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

total score �

g1

g2

g3

g4

g5

g6

2.7
0.3
0.7
0.5
0.3
0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

Ranking of alternative g1 >g3 >g4 >g2 >g5 >g6.
Also, we use the technique of Chetia and Das [43], in

which firstly authors find the union matrices and apply the
algebraic operation to compute matrices values that help to
derive the weight matrix, finally using the rank of the al-
ternatives to build the weight matrix to choose the best
alternative. ,e above process can also be presented as
follows.

5.1.5. Algorithm (see [43])

Step 1: select the FSS set of parameters
Step 2: obtain FSMs from these sets
Step 3: find the union of these FSMs
Step 4: enumerate the weight along with the individual
item by taking rowwise sum membership values
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Step 5: compute the best alternative that is having max
value

A∪B∪C∪D �

(0.6, 0.6) (0.8, 0.2) (0.8, 0.3) (0.9, 0.1) (0.9, 0.3) (0.9, 0.1)

(0.8, 0.3) (0.6, 0.4) (0.4, 0.3) (0.6, 0.6) (0.6, 0.4) (0.6, 0.7)

(0.7, 0.3) (0.6, 0.7) (0.7, 0.4) (0.7, 0.2) (0.7, 0.4) (0.6, 0.4)

(0.7, 0.6) (0.7, 0.3) (0.6, 0.5) (0.7, 0.6) (0.7, 0.4) (0.7, 0.5)

(0.6, 0.4) (0.7, 0.5) (0.7, 0.6) (0.5, 0.5) (0.8, 0.4) (0.7, 0.6)

(0.7, 0.6) (0.7, 0.1) (0.6, 0.2) (0.7, 0.4) (0.6, 0.3) (0.5, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Now, weights matrix of the bikes of different brands,

W �

g1

g2

g3

g4

g5

g6

0.6 + 0.8 + 0.8 + 0.9 + 0.9 + 0.9

0.8 + 0.6 + 0.4 + 0.6 + 0.6 + 0.6

0.7 + 0.6 + 0.7 + 0.7 + 0.7 + 0.6

0.7 + 0.7 + 0.6 + 0.7 + 0.7 + 0.7

0.6 + 0.7 + 0.7 + 0.5 + 0.8 + 0.7

0.7 + 0.7 + 0.6 + 0.7 + 0.6 + 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W �

g1

g2

g3

g4

g5

g6

4.9

3.6

4.0

4.1

4.0

3.8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)

Ranking of alternative g1 >g4 >g3 � g5 >g6 >g2.
,e results obtained through existing methodologies

with the proposed technique with their score values are
given in Table 1.

5.2. Exploration by Comparison. With the ongoing research
and comparison, the results obtained by our proposed
method and existing procedures are in Table 1. However,
concerning available decision-making strategies, the leading
advantage along with this proposed mechanism is that it
contains extra details using MD, nonmembership, along
with the unreliability of a small number of features supposed
to briefing data unreliability. It is an important appliance for
resolving imprecise and inaccurate figures of decision-

making procedures. Consequently, the promotion of score
value associated with individual parameters should not
influence the additional parameters; for this reason, the
unpredictable mislaying of facts will take place in the pro-
cedure. ,e advantage of an organized approach and the
accompanying measures and current approaches is not only
that recognizes the level of prejudice, but the level of re-
semblance in themiddle of what is seen as negative factors. It
is most appropriate technique to integrate uncertain and
vague data in decision-making procedure. Analyze obtained
results along with the various other researchers’ work on the
score-matrix problem by using different operators; our
developed proposed method is fully rational with different
available approaches. It is compiled in Table 1 and refer-
ences. We made a comparative analysis by taking similar
data in the decision-making of all mentioned approaches. In
the future, our developed PFSM can be used for a variety of
purposes by its nature of group decision-making, data re-
vival, pattern perception, size contraction, and data drilling.

6. Conclusion

In this paper, we developed some logical operators such as
OR-operation and AND-operation for PFSS with their
fundamental characteristics. Also, some novel operations
such as necessity and possibility operations have been
presented with their fundamental properties. A decision-
making approach has been constructed for PFSM based on a
score matrix and utility matrix. To confirm the validity of
our established approach, a comprehensive numerical ex-
ample has been developed. To express the legitimacy, ef-
fectiveness, and efficiency of our proposed method, a logical
comparison between the current work and the proposed
approach is also provided. ,e obtained consequences show

Table 1: Comparative analysis with existing operators.

g1 g2 g3 g4 g5 g6 Alternatives ranking

Rathika and Subramanian [40] 4.4 0.4 1.1 0.5 0.2 0.3 g1 >g3 >g4 >g2 >g6 >g5
Rajarajeswari and Dhanalakshmi [29] 4.3 −0.2 0.8 0.3 −0.3 0.3 g1 > g3 > g4 � g6 >g2 >g5
Borah et al. [41] 2.04 0.64 0.66 0.51 0.52 0.44 g1 >g3 >g2 >g5 >g4 >g6
Rathika et al. [42] 2.7 0.3 0.7 0.5 0.3 0.3 g1 >g3 >g4 >g2 � g5 � g6
Chetia and Das [43] 4.9 3.6 4.0 4.1 4.0 3.8 g1 > g4 > g3 � g5 >g6 >g2
Proposed approach 3.11 1.21 0.35 0.15 0.85 0.68 g1 >g2 >g5 >g6 >g3 >g4
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that the developed technique is more reliable compared to
existing techniques. Future research will focus on offering
several other operators under the PFSS environment to
address decision-making issues. Many other structures such
as topological, algebra, and orderly structures can be de-
veloped and discussed in the environment under consid-
eration. ,e proposed idea can be applied to many issues in
real life, including the medical profession, pattern recog-
nition, and economics.
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