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Abstract: Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis
and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied
flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies
the TGF-β/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing
the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin
exhibits poor water solubility and low absorption and bioavailability. This limitation was solved
by developing a nanoparticles formulation that improves the solubility and bioavailability of sev-
eral bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a
quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure
with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25,
50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed
biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles
versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses
of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on prevent-
ing kidney damage. This finding translates into less quercetin consumption reaching the desired
therapeutic effect.

Keywords: quercetin; nanoparticles; renal injury; renal fibrosis; adenine-induced model; chronic
kidney disease

1. Introduction

Chronic kidney diseases (CKD) are characterized by the progressive and irreversible
loss of kidney function with a gradual reduction of glomerular filtration rate (GFR) [1]. CKD
health, social and economic burden is a notably important issue in many public and private
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healthcare systems around the world, including the control of other clinical manifestations
of the disease, such as hyperglycemia, hypertension, and dyslipidemia, among others.
However, CKD is a “silent” disease without evident clinical symptomatology until all
clinical complications are irreversible. Renal fibrosis is the final stage of chronic kidney
injury, characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal
destruction [2]. In this pathophysiological scenario, the transforming growth factor β1
(TGF-β1) is one of the most critical molecules in fibrosis development. It participates in
tissue repair and induces the expression of extracellular matrix proteins such as collagen,
elastin, proteoglycans, integrins, and fibronectin [1–3]. Although the development of
renal fibrosis is well known, there are still no successful pharmacological therapies for
its treatment or prevention. Thus, targeting TGF-β1 signaling could be a promissory
therapeutic strategy for CKD [4]. In this respect, various bioactive natural compounds have
been used as a complementary treatment to prevent and reduce CKD severity. In this sense,
flavonoids have been reported to be the most promising [5,6]. The therapeutic action of
these compounds has been attributed to antioxidant, anti-inflammatory, antifibrogenic, and
antitumoral properties [5,6]. Especially, quercetin is reported as one of the most promising
flavonoids. Fruits and vegetables, mainly apples, grapes, tomatoes, and onions, contain
considerable concentrations.

Several studies, both in vitro and in vivo, have demonstrated quercetin’s anti-
inflammatory and antifibrogenic activity on many chronic health conditions, especially
fibrosis. Many biological aspects explain its anti-inflammatory effects, such as a decrease
in leukocyte infiltration, iron chelation, inhibition of complement activation, radical scav-
enging, and myeloperoxidation [6]. Besides, it has been demonstrated that its antifibrotic
effect comes from the capacity to act on the TGF-β/Smad and PI3k/Akt profibrogenic
pathways, decreasing the expression of proinflammatory molecules as IL-1, IL-6, TNF-α,
profibrogenic molecules as TGF-β1, α-SMA, Col1-α1, CTGF, Timp-1, Smad-3, Smad-4,
Twist1, Snail, and inducing the expression of antioxidant, anti-inflammatory, and antifibro-
genic molecules as IL-10, Smad-6, Smad-7, MMP-9, BMP-7, among others both profibrotic
and antifibrotic. Furthermore, quercetin substantially improves the function of the kidney
and prevents fibrosis [7–10]. Additionally, in animal models with hepatic, pulmonary, or
dermal fibrosis, quercetin significantly decreased the expression of TGF-β1 and fibroblast
activation [7,8,10–12].

Although quercetin exerts significant beneficial health effects, the poor water solubility
of the molecule limits them, which also impacts its bioavailability. In humans, quercetin
bioavailability has been reported at around 24% [13] and 16% in rats [14] if administered
orally. Nevertheless, these values depend on the characteristics of the quercetin vehicle or
pharmacological presentation [14]. When it is administered in capsules, the bioavailability
of quercetin in humans can be as scarce as 1% [15,16]. On the other hand, it has been demon-
strated in several bioorganic and inorganic compounds that their nanoparticles formulation
considerably increases their solubility and bioavailability [17–22]. The present study aims
to evaluate if the administration of quercetin nanoparticles improves its antifibrogenic and
anti-inflammatory effects compared to their original presentation (macroparticles), with
the promising implication of requiring lower doses than that reported in previous works to
obtain the same or even better effects.

2. Results
2.1. Characterization of Quercetin Particles

Quercetin macroparticles (QMPs) presented irregular shapes with an average size
of 35.5 µm (Figure 1A). On the contrary, quercetin nanoparticles (QNPs) prepared by the
solvent/antisolvent precipitation method exhibited regular-shaped spheres with a crystal
structure with an average particle size of 140 nm. It has been shown that, applying the
solvent/antisolvent method, there is a decrease of the size of any particle up to nanome-
ters [23]. The particle size increases the contact surface between solute and solvent, favoring
the dissolution [17]. In this work, we were able to decrease the particle size 253 times.
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Nevertheless, both macroparticles and nanoparticles were diluted in 2% Tween 20 just
before administration to animals via oral gavage. With nanoparticles preparation, we
observed completed dissolution; in contrast, most of macroparticles were in suspension.
Furthermore, a relevant particle size difference of 253 was found between QMPs and QNPs
(Figure 1B). Additionally, when QNPs were put in water, they wholly dissolved and stayed
in the solution hours after; QMPs, on the other hand, precipitated and did not form a
stable solution. Also, QNPs dissolved in a 2% Tween-80 solution, while QMPs formed an
emulsion that precipitated minutes after (data not shown).
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Figure 1. Quercetin nanoparticles characterization, visualization, and comparison with macropar-
ticles. Visualization was made using an atomic force microscope (AFM) and measurement was
determined with the Naio software. The average length obtained after three measurements was
35.5 µm for QMPs (A) and 140 nm for QNPs (B), 253 times less than macroparticles.

2.2. Effect of Quercetin on Animal Body Weight

In the control group (Control), the animals gradually increased their body weight
from the first week until the fourth week. In contrast, animals intoxicated with adenine
(Ad) gained weight in the first week but suddenly decreased their weight until the fourth
week. Additionally, animals that received treatment in all doses of either QMPs or QNPs
with adenine, at the same time, decreased their weight in the first week, recovering it in
the third and fourth weeks. Nevertheless, they did not reach the average body weight
of the control group at the final time (Figure 2). Furthermore, the weight of kidneys did
not exhibit significant differences among the groups, and there were no differences in the
kidney/body weight ratio (data not shown).
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Figure 2. Effect of quercetin macroparticles and nanoparticles on the weight of mice during the 28 day
treatment. Bodyweight of mice was registered weekly until sacrifice. QMPs and QNPs treatments
prevented weight loss caused by adenine intoxication.

2.3. Biochemical Markers of Kidney Damage Are Diminished Using Quercetin

Blood urea nitrogen (BUN) and creatinine levels were determined in all serum samples.
BUN concentration of 23.94 mg/dL was obtained in the control group, while in the adenine
group the levels increased up to 131.81 mg/dL. In addition to this, in the groups treated
with QMPs, the levels found were 83.08 mg/dL, 38.29 mg/dL and 36.66 mg/dL for the
25 mg/kg (QMP25), 50 mg/kg (QMP50) and 100 mg/kg (QMP100) doses, respectively.
Meanwhile, animals treated with QNPs presented values of 47.69 mg/dL, 33.79 mg/dL
and 30.75 mg/dL for the 25 mg/kg (QNP25), 50 mg/kg (QNP50) and 100 mg/kg (QNP100)
doses, respectively (Figure 3A). In addition, creatinine serum concentration was 0.58 mg/dL
in the control group, and 1.53 mg/dL in the adenine intoxicated group. For the QMP25,
QMP50 and QMP100 groups, creatinine serum values were 1.22 mg/dL, 1.11 mg/dL and
0.72 mg/dL, respectively. In this regard, in the QNP25, QNP50 and QNP100 groups, the
values found were 0.94 mg/dL, 0.88 mg/dL and 0.71 mg/dL, respectively (Figure 3B).
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Figure 3. Effect of quercetin macroparticles and nanoparticles on renal markers of CKD. Blood sam-
ples from animals of all study groups were centrifuged and analyzed for BUN and SCr concentrations
in an automated clinical analyzer. BUN (A) and SCr (B) concentrations (mg/dL) decreases in both
QMPs and QNPs treatments in a dose-dependent manner. QNPs showed a better effect preventing
adenine-induced kidney damage than QMPs. Mean ± SD (n = 5); ## p < 0.01, ### p < 0.001 compared
to Control group; * p < 0.05, ** p < 0.01, **** p < 0.0001 compared to Ad group. BUN: blood urea
nitrogen, SCr: serum creatinine.
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2.4. Quercetin Inhibits Kidney Damage

After 28 days of treatment, animals were euthanized and samples of both kidneys were
taken. The control group showed normal morphology and color of kidney parenchyma
(Figure 4a). In contrast, the adenine group exhibited extensive areas of fibrotic tissue
(yellowish) (Figure 4b). On the other hand, kidney samples of animals treated with QMPs
showed minor areas of fibrotic tissue compared to the adenine group (Figure 4c,e,g).
However, the kidney samples treated with QNPs revealed almost a typical morphology of
the renal tissues compared with the adenine and QMPs groups (Figure 4d,f,h).
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Figure 4. Comparison of kidney damage induced by adenine after 28 days of treatment. Representa-
tive photographs of both kidneys were taken. Adenine-intoxicated kidneys show extensive areas of
fibrotic tissue (b) compared to the control healthy kidneys (a). QNPs (d,f,h) prevent the damage in
the renal parenchyma to a greater extent than QMPs (c,e,g). (a): Control, (b): Ad, (c): Ad + QMP25,
(d): Ad + QNP25, (e): Ad + QMP50, (f): Ad + QNP50, (g): Ad + QMP100, (h): Ad + QNP100.

Histological kidney sections from all animals were stained with hematoxylin-eosin
to analyze the presence and grade of necrosis and inflammation in the tissues after treat-
ments. The control group showed typical glomerular and tubular architecture without
necrosis and inflammation (Figure 5a). In contrast, kidney tissues of animals treated with
adenine showed dilatation of renal tubules, glomerular damage, and extensive areas of
inflammation and necrosis (Figure 5b). Furthermore, the samples treated with QMPs
exhibited a significant decrease in tubules dilatation, observing a similar tissue architecture
to normal tissue, especially in the QMP100 group, followed by the QMP50 and QMP25
groups (Figure 5c–e). As expected, the kidney damage caused by adenine was minor with
QNPs treatment, presenting the best protective effect in the QNP100 group, followed by
the QNP50 and QNP25 groups (Figure 5f–h).

2.5. Quercetin Prevents Kidney Fibrosis

Masson’s trichrome staining evaluated kidney fibrosis in all groups (n = 5) to calculate
the fibrosis index later. Histological evaluation of the control group displayed a typical
architecture with a small deposit of basal extracellular matrix (4.3%) (Figure 6A). The
adenine group showed an altered architecture with few nephrons, thick layers of both
tubular and glomerular collagen deposition, with 28.73% of fibrosis. On the contrary,
the presence of nephrons, thinner fibrosis cords, and a less extracellular matrix content
were observed in the quercetin-treated groups. Animals treated with QMPs presented a
fibrosis index of 27.9% for the QMP25 group, followed by 8.8% and 5.02% for the QMP50
and QMP100 groups. Likewise, animals treated with QNPs presented a fibrosis index of
12.7% for the QNP25 group, 5.7% for the QNP50 group, and 4.8% for the QNP100 group
(Figure 6B).
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Figure 5. Histopathology analysis of kidney tissue. Kidney samples stained with hematoxylin- eosin
were used to analyze inflammation and necrosis. Control kidney samples show normal morphology
(a), and severe inflammation and necrosis in kidney tissue were observed in adenine-intoxicated
animals (b). Quercetin treatment prevented the tissue damage induced by adenine where QNPs
(f–h) showed better effect than QMPs (c–e). (a): Control, (b): Ad, (c): Ad + QMP25, (d): Ad + QMP50,
(e): Ad + QMP100, (f): Ad + QNP25, (g): Ad + QNP50, (h): Ad + QNP100. Magnification of 200×.

2.6. Quercetin Decreases Profibrogenic and Proinflammatory Cytokine Gene Expression and
Increases Antifibrogenic and Anti-Inflammatory Cytokines Gene Expression

Gene expression levels were determined using the RT-qPCR technique. Analysis of
the profibrogenic genes Col1α1, Tgfb1, Ctgf, Acta1, Smad4, and Timp1 showed a significant
increase in their expression in animals administered with adenine compared to the control
group. Interestingly, we observed a dose-dependent decrease in gene expression in all
groups treated both with QMPs and QNPs. The best reduction effect was carried out in the
group treated with the highest dose of QNPs (Figure 7A).

Regarding the antifibrogenic genes Smad2, Smad6, Smad7, Bmp7, and Mmp9, a de-
creased gene expression was observed when the animals were intoxicated with adenine.
Nevertheless, the expression was notably increased by the treatment with QMPs and QNPs,
having a better effect with QNPs (Figure 7B). Also, the proinflammatory cytokine Il6 re-
veals a decrease in its expression levels and the anti-inflammatory cytokine Il10 exhibits
an increase in Il10 expression with QMPs and QNPs treatments, particularly within the
QNP100 group (Figure 7C).
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Figure 6. Fibrosis index analysis of kidney tissue. Fibrosis index analysis of kidney tissue was deter-
mined by Masson’s trichrome staining. (A) Treatment with quercetin diminished the extracellular
deposition where QMPs (c–e) were not as effective as QNPs (f–h). (B) Quercetin diminished the
fibrosis index in a dose-dependent manner, showing better results with QNPs than with QMPs.
(a): Control, (b): Ad, (c): Ad + QMP25, (d): Ad + QMP50, (e): Ad + QMP100, (f): Ad + QNP25,
(g): Ad + QNP50, (h): Ad + QNP100. Mean ± SD (n = 5); #### p < 0.0001 compared to the Control
group; ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the Ad group. Magnification of 200×.
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Additionally, the Mmp9/Timp1 ratio was increased in the adenine group compared to
the control group and was reduced in the QMPs treatments with a more markable reduction
in the QNPs treatments (Figure 7D).

2.7. Quercetin Inhibits the Epithelial–Mesenchymal Transition (EMT) and the TGF-β/Smad
Fibrogenic Signaling Pathway

The expression of proteins was carried out by the Western blot technique. The levels
of the TWIST1 and SNAIL proteins involved in the epithelial–mesenchymal transition were
decreased in a dose-dependent manner in both QMPs and QNPs treatments. However,
QNPs in all doses exerted a higher inhibitory effect, especially at the 100 mg/kg dose.
In contrast, SMAD7, an inhibitory protein of the TGF-β/Smad signaling pathway, was
induced mainly by QNPs treatments, detecting a reduced expression when the animals
were treated with QMPs. Finally, SMAD3 levels in QMPs treatments increased in a dose-
dependent manner, but, surprisingly, in QNPs treatments did not exhibit such behavior
with a higher expression with the 50 mg/kg dose (Figure 8).
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of the TWIST1 and SNAIL proteins involved in the epithelial–mesenchymal transition 
were decreased in a dose-dependent manner in both QMPs and QNPs treatments. How-
ever, QNPs in all doses exerted a higher inhibitory effect, especially at the 100 mg/kg dose. 

Figure 7. Effect of quercetin macroparticles and nanoparticles on the expression levels of profibro-
genic, proinflammatory, antifibrogenic, and anti-inflammatory genes. Expression levels of key genes
in the TGF-β/Smad and inflammatory signaling pathways were determined using RT-qPCR. QNPs
diminished profibrogenic (A) and proinflammatory (C) gene expression and induced antifibrogenic
(B) and anti-inflammatory (C) gene expression in a higher extent than QMPs. The MMP-9/TIMP-1
ratio (D) increased in the adenine group, while in the groups treated with both QMPs and QNPs, it
decreased. Mean ± SD (n = 5); ## p < 0.01, #### p < 0.0001 compared to the Control group; * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the Ad group.
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involved in the EMT process and the TGF-β/Smad signaling pathway. Expression levels of proteins
were determined by Western blotting. Twist1 and Snail decrease their expression in the groups
treated with QMPs and especially in the groups treated with QNPs in a dose-dependent manner,
while Smad7 increases its expression in the higher dose of QMPs and in all doses of QNPs. EMT:
Epithelial–Mesenchymal Transition. Mean ± SD (n = 3); ### p < 0.001, #### p < 0.0001 compared to
the Control group; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the Ad group.

3. Discussion

In the last years, CKD has increased its incidence in the world population due to
co-morbidities like type-2 diabetes, hypertension, and glomerulonephritis, among others.
Several in vivo and in vitro studies have described that quercetin exerts anti-inflammatory
and antifibrogenic properties in various organs such as the lung, liver, skin, and kidney. As
a well-known compound in natural medicine and a safe, natural product [24], quercetin
has been used to help in the treatment of many chronic diseases such as obesity and dia-
betes [25–28], neurodegenerative diseases such as Alzheimer’s and Parkinson [5,22,29,30],
cardiovascular diseases as atherosclerosis [31,32], cancer [33], and other diseases.

There are no available studies of quercetin nanoparticles being used to treat CKD,
but only one for acute kidney injury (AKI) [34]. Although, it has been reported in several
others, both in vivo and in vitro, that quercetin as macroparticles provides renoprotective,
anti-inflammatory, antiapoptotic, and antioxidative effects in the kidney when used to
treat diabetic nephropathy [11,27,35], acute kidney injury [36], chronic renal failure [37],
chemical toxicity [38], and COVID-19-related acute kidney damage [39]. However, its
poor water solubility hinders its low absorption and bioavailability, broadening its clinical
utility. Concerning this, works have demonstrated that particles at the nanoscale (10−9 m)
of different organic and inorganic compounds considerably increase their dissolution and
bioavailability [17,18,20,21]. Furthermore, some evidence demonstrated that the pharma-
ceutical re-formulation of some compounds with low bioavailability into nanoparticles
turns them into more bioactive chemical forms due to the increased interaction in the surface
area, improving their solubility [19,40]. Additionally, the crystal structure of nanoparticles
shows additional features such as increased speed of dissolution and augmented saturation
point [41]. Thus, the gain in the solubility and permeability of a drug enhances the oral
absorption rate, that is, its bioavailability [42].
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In this context, a significant improvement in curcumin bioavailability was reported
when nanoparticles were compared with macroparticles. Furthermore, the authors high-
lighted that curcumin nanoparticles increased the time of the molecule in circulation for up
to 18 h, while curcumin macroparticles were only detected for 8 h. Notably, a progressive
increase in plasma concentration of curcumin nanoparticles was also detected for up to 4 h,
which was not exhibited with macroparticles [21].

In the same way, other studies, including the anticancer compound 301029, showed
an increase in the bioavailability and the concentration in serum when its size was de-
creased into the nanoscale [17]. Likewise, other compounds, such as carbendazim, a novel
antineoplastic drug, also increased their concentration, permeability, and half-life when
was administered in the form of nanoparticles, requiring lower doses to obtain the same
therapeutic effect [18].

In the present work, we compared the effect of quercetin macroparticles versus
quercetin nanoparticles on the prevention of renal fibrosis in an animal model. We used
only male animals because it has been reported that fibrosis models in females are challeng-
ing to perform and not very reproducible due to female hormonal changes [43,44]. This
problem does not happen with males where the times and doses to cause damage are well
established and reproducible [45,46]. Specifically, in kidney injury, there are several reports
when male rodents are more susceptible to damage by chronic adenine intoxication than
females [47,48].

We analyzed several parameters associated with renal damage, such as histological,
biochemical, and molecular analysis. In all of them, we could demonstrate a better effect on
preventing fibrosis using quercetin nanoparticles than using quercetin macroparticles at sim-
ilar doses. In this regard, quercetin nanoparticles more effectively inhibit the TGF-β/Smad
signaling pathway by promoting the expression of antifibrogenic genes such as Smad6 and
Smad7, while inhibiting the expression of profibrogenic genes such as Col1a1, Tgfβ1, Smad3,
and αSMA (Acta1). Additionally, quercetin nanoparticles increased the Mmp9/Timp1 ratio,
a critical factor in the remodeling and homeostasis of the renal tissue. Although there is
a controversy about the MMP-9 and Timp-1 relationship with kidney damage and CKD,
some studies showed a contribution to fibrosis by the higher expression of MMP-9 and
lower expression of Timp-1 [49,50], and others revealed contrary observations [51,52]. Our
findings align with those reported in several animal models of CKD, particularly regarding
tubulointerstitial fibrosis, where MMP-9 increases and TIMP-1 decreases their expressions
with quercetin treatments, both with macroparticles and nanoparticles [51,52].

Therefore, these results suggest that quercetin in the form of nanoparticles may im-
prove the absorption in the intestine and its concentration in circulation and bioavailability,
facilitating its entry into the cells and activating antifibrogenic and anti-inflammatory
signaling pathways. However, one limitation of this study was the impossibility of quan-
tifying the concentration of circulating quercetin due to the sample size and the amount
of serum obtained from the animals. Interestingly, complete solubilization of quercetin
nanoparticles was observed during the preparation of the quercetin working solution. In
contrast, quercetin macroparticles were scarcely dissolved, showing many particles in
suspension. Thus, to address the bioavailability question of quercetin nanoparticles, we are
performing a new study with the required assays in a rat model, which is a more suitable
animal model.

Interestingly, our findings agree with those published by Kakran et al. [20], who stated
that modifying the particles size to the nanoscale significantly increases the solubility of
organic compounds in aqueous solvents. Moreover, the data presented in our study are in
line with those reported by Tousif et al. [21], where the use of curcumin nanoparticles versus
macroparticles exhibited better results. Also, our data confirm the observations made by
Jia et al. [17–19] on the effects of nanonization in the increasing bioavailability properties
of poor solubility drugs. Therefore, we confirm that decreasing the size of quercetin
increases its therapeutic effect, requiring lower doses of it to obtain the same results.
In the same way, a lower dose of quercetin results in the capacity to put nanoparticles
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as a lyophilized product in capsules or raw powder to be used as a real nutraceutical
compound to effectively treat CKD since quercetin, as an isolated macroparticle compound,
requires to be taken orally in high doses to be clinically effective in humans due to its
scarce solubility properties [53]. Therefore, lower amounts of quercetin would avoid
the undesirable adverse effects that have been reported in its prolonged consumption in
high doses, such as nausea, headache, and tingling of limbs [54]. In addition to this, in
treating kidney damage and some comorbidities such as hypertension and diabetes, chronic
pharmacological administration is used for extended periods of time where quercetin
can work as an adjuvant, improving the therapeutic effect of these drugs, allowing the
recommended doses to be reduced. The doses of quercetin used in this work are based on
previous publications where quercetin was tested in different animal models, including
one previous report performed by our group (dose used = 100 mg/kg). For this work, we
decided to use this dose as the highest to evaluate whether the nanoparticles would have a
similar or better effect at a lower dose than a higher one of macroparticles. According to
Raegan-Shaw [55], the Food and Drug Administration has suggested that the extrapolation
of animal dose to human dose is correctly performed only through normalization to Body
Surface Area (BSA), that considers the weight, height, blood volume, plasma protein
concentration, oxygen consumption, average caloric expenditure, renal function, and basal
metabolism. With these parameters, a Km factor is calculated, 3 for mice and 37 for humans.
Then, applying the formula for dose translation, the suggested dose for humans in this
case is 567 mg/day, which coincides with that already used in several clinical protocols
involving quercetin treatment [24]. However, it has been reported that quercetin in high
concentrations could inhibit some drug-metabolizing enzymes such as cytochrome P450 3A
subfamily (CYP3A4) [56] and P-glycoprotein (P-gp) [57]. In that sense, its use in lower doses
would facilitate drug metabolism, and the global therapeutic effect of both compounds
would be more effective.

Moreover, quercetin nanoparticles can positively affect the bioavailability of other
drugs, like doxorubicin, a cytotoxic drug used in cancer treatment that has poor oral
solubility but increases its bioavailability when CYP3A4 and P-gp are inhibited [58]. In
that sense, doxorubicin and quercetin nanoparticles can exert a better anticancer effect
than doxorubicin alone. Additionally, the preparation of quercetin nanoparticles by the
solvent/antisolvent method, which reduces the size of the molecules to nanometers for
its administration, avoids the cytotoxicity effects that has been attributed to the contin-
uous intake of some types of nanoparticles that use delivery vectors as metals (silver,
gold, titanium, aluminum, zinc, copper and iron oxides) or non-metals (biopolymers and
liposomes) [24,59–61].

4. Materials and Methods
4.1. Reagents

Quercetin and Adenine were obtained from Sigma-Aldrich (St. Louis, MO, USA).
TaqMan® probes for real-time PCR were purchased from Applied Biosystems (Foster City,
CA, USA). Antibodies for Western blot were obtained from Invitrogen (Rockford, IL, USA).

4.2. Quercetin Nanoparticles Preparation

Quercetin nanoparticles were prepared using the method described by Kakran et al. [23].
First, a 5 mg/mL quercetin solution was added dropwise at an 8 mL/min rate to deionized
water in a ratio of 1:25 v/v with constant agitation of 1000 rpm stirrer speed. The quercetin
nanoparticles were then concentrated with an evaporator to obtain a 12.5 mg/mL working
solution administered later to each animal according to its weight.

4.3. Quercetin Particle Imaging and Length Measurement

Quercetin particle imaging was obtained using a NaioAFM atomic force microscope
(Nanosurf, Switzerland). We made three different measurements of its length using the
Naio software (Nanosurf, Switzerland) and calculated the average particle size.
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4.4. Animal Model

Forty male C57BL/6 mice with an average weight of 25 ± 2 g were randomly separated
in groups of 5 mice and used to develop the kidney fibrosis model. Animals were obtained
at five weeks of age from the animal facility of the Juriquilla Campus of the Universidad
Nacional Autónoma de México (UNAM) after approval from the Bioethics Council of
the University Center for Health Sciences at the Universidad de Guadalajara (Protocol
Number: 19–26) and maintained in its animal facilities with food and water ad libitum in a
humidity/temperature-controlled room.

Quercetin as either macroparticles or nanoparticles was suspended in 2% Tween 80
and administered to experimental groups at 25, 50, or 100 mg/kg doses two hours before
adenine administration. Induction of fibrosis in vivo was made by adenine intoxication,
employing 75% glycerin as a vehicle at a dose of 50 mg/kg daily for 28 days via oral
gavage using a modified protocol described by Rahman et al. [48]. The control group was
administered with vehicle (75% glycerin + 2% Tween 80).

4.5. Biochemical Assays

After 28 days of treatment, animals were anesthetized with Zoletil® (tiletamine and
zolazepam) (Virbac, Mexico) to obtain blood samples from the retro-orbital sinus at the
euthanasia time. Serum was obtained by centrifugation at 3000 rpm for 10 min. Blood levels
of urea nitrogen (BUN) and creatinine were measured by a wet method in an automated
clinical chemistry analyzer (Beckman Coulter Inc., Brea, CA, USA).

4.6. Histopathological Analysis

Both kidneys were obtained after 28 days of treatment, and one section of them was
reserved for histopathological analysis. Histological kidney sections of 5 µm thickness
were stained with hematoxylin-eosin (HE) and Masson’s trichrome to analyze necrosis
and inflammation and evaluate fibrosis percentage, respectively. Histological analysis
of necrosis and inflammation of HE slides was performed by a single-blinded certified
pathologist. The stained connective tissue/whole evaluated area ratio was calculated
in twenty randomly selected fields per slide of Masson’s trichrome slides taken with a
VE-B15 optical microscope (Velab Microscopes, Mexico) at a total magnification of 200X,
and image processing was made using the Future WinJoe v.1.6 camera control software
(Future Optics Sci. & Tech. Co., Hangzhou, China). The fibrosis index was evaluated using
the open-source image software CellProfiler™ v.3.1.9 (Broad Institute, USA) [62].

4.7. Real-Time Polymerase Chain Reaction (RT-qPCR) Assays

Total RNA was extracted from kidney tissue with Trizol reagent (Invitrogen, USA)
according to the modified technique of Chomzynsky and Sachi [63]. Reverse transcription
and Polymerase Chain Reaction (RT-PCR) were performed as previously reported [7].
Briefly, the retrotranscription was performed with 2 µg of total RNA in a final volume of
20 µL using the High-Capacity cDNA reverse transcription kit (Applied Biosystems, Foster
City, CA, USA). To perform the qPCR analysis 2 µL of cDNA was used. The thermocycler
employed was a QuantStudio™ 5 Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA). The cycle temperatures and numbers used were according as recommended by
the manufacturer. The conditions were the following: Hold 1: 2 min. at 50 ◦C, Hold 2: 5 min.
at 95 ◦C, Cycling: 45 cycles of 30 s at 95 ◦C and 40 s at 60 ◦C. The gene expression of collagen
1 (Col1a1), transforming growth factor b1 (Tgfb1), connective tissue growth factor (Ctgf ),
tissue inhibitor of metalloproteinases 1 (Timp1), interleukin 6 (Il6), interleukin 10 (Il10), bone
morphogenetic protein 7 (Bmp7), smooth muscle actin (Acta1), matrix metalloproteinase 9
(Mmp9), Smad2, Smad4, Smad6, and Smad7 were quantified with specific TaqMan® probes
using the QuantStudio™ 5 thermal-cycler (Applied Biosystems, Bedford, MA, USA). Gene
amplification was analyzed by duplicate using glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) as a housekeeping gene. Data were analyzed using the 2−∆∆CT method [64,65]. The
relative expression of every gene was shown as relative expression units.
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4.8. Western Blot Assays

Western blot analysis of kidney tissue homogenates was performed to analyze SNAIL1,
TWIST1, SMAD3, and SMAD7 protein expression (Invitrogen, Waltham, MA, USA). Ac-
cording to our previous real-time PCR analysis, GAPDH (Invitrogen, Waltham, MA, USA)
was also used as a housekeeping protein. Proteins were extracted from kidney tissue using
P-TER solution (Thermo Fisher Scientific, USA) and quantified by the BCA protein assay
kit (Thermo Fisher Scientific, USA). A quantity of 50 µg of total proteins were separated
by 10% polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions and
transferred to nitrocellulose membranes (Thermo Fisher Scientific, Waltham, MA, USA).
Blocking was performed using 5% non-fat dry milk in 1X TBST for 1h at 4 ◦C with constant
agitation. Membranes were incubated overnight at 4 ◦C with primary antibodies diluted
1:1000 (SNAIL1, TWIST1, SMAD3, and GAPDH) and 1:500 (SMAD7) in 1X TBST. Antibody
binding was revealed with an HRP-conjugated secondary anti-antibody diluted 1:5000 in
1X TBST using a BM Chemiluminescence kit (Roche Diagnostics, Indianapolis Ind, Indi-
anapolis, IN, USA). Densitometric analysis was performed with a UVP ChemiStudio image
analyzer (Analytik Jena, Jena, Germany) using the VisionWorks® software (Analytik Jena,
Germany). The semiquantitative analysis of every protein was shown as normalized levels.

4.9. Statistical Analysis

Statistical analysis was performed using the GraphPad v.5.0 software for Windows.
Shapiro–Wilk test was applied in all analyses to test if the data are normally distributed. Stu-
dent’s t-test was used for data comparison between two unpaired groups or Mann–Whitney
U for independent groups when appropriate. Data are presented as the mean ± SD. A
p-value < 0.05 was considered statistically significant.

5. Conclusions

Using the solvent/antisolvent method, we reduced the size of quercetin particles
253 times from the original quercetin macroparticles, obtaining nanoparticles of an average
length of 140 nm. As postulated in other studies, we confirmed an improved antifibrogenic
effect of quercetin with smaller doses of nanoparticles compared to those obtained with
macroparticles. This knowledge opens the gate to further research the promising clinical
utility and its integration for the therapeutic and prophylactic management of CKD.
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