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ABSTRACT
In the present study, we sequenced and assembled the complete chloroplast genome of Fagopyrum
leptopodum (Diels) Hedberg. The chloroplast genome of F. leptopodum was composed of 85 protein-
coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. The F. leptopodum chloroplast
genome is 159,375bp in length, with a GC content of 37.81%. Phylogenetic analysis based on the
combined chloroplast gene dataset indicated that the F. leptopodum exhibited a close relationship with
Fagopyrum luojishanense.
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The genus Fagopyrum is a gluten-free pseudocereal that
belongs to the Polygonaceae family. Some Fagopyrum spe-
cies are highly nutritional food components, which show a
variety of nutritional and medicinal value, including anti-
inflammatory, plasma cholesterol level reduction, antioxidant,
anticancer, neuroprotection, and antidiabetic effects (Ohsawa
et al. 2020; Song et al. 2020; Zhou et al. 2020). Because of
the high nutritional value of Fagopyrum species, scholars pay
more and more attention to the cultivation and nutrition of
Fagopyrum species (Song et al. 2016; Xiang et al. 2016; Xiang,
Ma, et al. 2019; Xiang, Song, et al. 2019; Xiang et al. 2020).
The genus Fagopyrum comprises nearly 30 species, mostly
endemic to southern China (Ohsako and Li 2020). The genus
Fagopyrum has high genetic diversity and contains rich gen-
etic resources. Accurate classification and phylogenetic ana-
lysis of the genus Fagopyrum will promote the genetic
breeding of Fagopyrum species. Organelle genomes have
been widely used in the study of taxonomy, evolution, and
genetics (Li et al. 2019; Yang et al. 2019; Li, He, et al. 2020; Li
et al. 2021). However, no complete chloroplast genome of
Fagopyrum leptopodum was reported to date.

The specimen (F. leptopodum) sequenced in the present
study was collected from Sichuan, China (101.31E; 27.56N). A
specimen was deposited at the Collection Center of Chengdu
University (Dabing Xiang, xiangdabing@cdu.edu.cn) under
the voucher number XYQ_B1. We assembled the F. leptopo-
dum chloroplast genome according to previously described
methods (Li et al. 2021). First, the total genomic DNA of F.
leptopodum was extracted using a Plant DNA Kit (D3485-00,
Omega Bio-Tek, Norcross, GA, USA). And then we purified the
extracted genomic DNA using a Gel Extraction Kit (Omega

Bio-Tek, Norcross, GA, USA). The purified DNA was stored in
Chengdu University (No. DNA_ XYQ_B1). We constructed
sequencing libraries of F. leptopodum using a NEBNextVR

UltraTM II DNA Library Prep Kit (NEB, Beijing, China). A-tailed
ligated to paired-end adaptors, and PCR amplified with a
350 bp insert was used for the library construction. Whole
genomic sequencing (WGS) of F. leptopodum was conducted
using the Illumina HiSeq 2500 Platform (Illumina, San Diego,
CA). The chloroplast genome of F. leptopodum was de novo
assembled using NOVOPlasty v4.3 (Dierckxsens et al. 2017).
We annotated the complete chloroplast genome of F. lepto-
podum using GeSeq (Tillich et al. 2017). The chloroplast gen-
ome of Fagopyrum luojishanense J. R. Shao (Wang et al. 2017)
was set as the reference genome for chloroplast genome
assembly and annotation of F. leptopodum.

The complete chloroplast genome of F. leptopodum is
159,375 bp in length. The base compositions of the F. lepto-
podum chloroplast genome were as follows: A (30.93%), T
(31.26%), G (18.59%), and C (19.22%). The complete chloro-
plast genome of F. leptopodum contains 85 protein-coding
genes, 8 ribosomal RNA genes, and 37 transfer RNA genes.
The F. leptopodum chloroplast genomes include a pair of IR
regions of 30,848 bp. It was separated by a large single-copy
(LSC) region of 84,454 bp and a small single-copy (SSC)
region of 13,226 bp. To investigate the phylogenetic status of
the chloroplast genome of F. leptopodum, we constructed a
phylogenetic tree for 21 species. The protein-coding region
of 63 genes conserved in the 21 species was used to con-
struct combined a chloroplast gene set (Wang, Wang, et al.
2020; Wu et al. 2021). We used the Bayesian (BI) analysis
method to construct the phylogenetic tree based on
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combined protein-coding genes of the chloroplast genome
as described by previous methods (Li, Yang, et al. 2020;
Cheng et al. 2021). First, we aligned individual protein-coding
genes of chloroplast genomes using MAFFT v7.037 (Katoh et
al. 2019) and then concatenated these alignments into a
combined gene dataset using SequenceMatrix v1.7.8 (Vaidya
et al. 2011). Potential phylogenetic conflicts between differ-
ent genes were detected by a partition homogeneity test
(Wang, Song, et al. 2020); PartitionFinder 2.1.1 (Lanfear et al.
2017) was used to determine best-fit models of evolution
and partitioning schemes. MrBayes v3.2.6 (Ronquist et al.
2012) was used to perform the BI analysis. Two independent
runs with four chains (three heated and one cold) each were
conducted simultaneously for 2� 106 generations. Each run
was sampled every 100 generations. We assumed that statio-
narity had been reached when the estimated sample size
(ESS) was greater than 100 and the potential scale reduction
factor (PSRF) approached 1.0. The first 25% of samples were
discarded as burn-in, and the remaining trees were used to
calculate Bayesian posterior probabilities (BPP) in a 50%
majority-rule consensus tree (Ye et al. 2020; Li, He, et al.
2020; Li, Ren et al. 2020). The 5 Fagopyrum species could be
divided into two groups (Figure 1), wherein the first could be
recovered as (F. esculentum þ (F. tataricum þ F. dibotrys)),
and the second group comprised two species, F. leptopodum
and F. luojishanense. According to the phylogenetic tree, the
F. leptopodum is a sister species to F. luojishanense (Wang et
al. 2017).
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Figure 1. Bayesian phylogenetic analysis of 21 species based on the combined protein-coding genes of chloroplast genome. Support values are Bayesian posterior
probabilities (BPP). Accession numbers of chloroplast sequences used in the phylogenetic analysis are listed in brackets after species.
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