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Abstract: This study reports the first application of a next generation sequencing (NGS) analysis.
The analysis was designed to monitor the effect of the management of microbial resources associated
with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of
16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g.,
malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage
microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC),
Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially
inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially
inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the
bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our
findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with
MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with
controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic
acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic
acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition,
for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces
(T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect
to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the
connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings
of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively.
In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni
and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study
suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic
fermentation on the spontaneous malolactic consortium, in relation to wine.
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1. Introduction

Wine is a complex hydro-alcoholic chemical mixture obtained via microbial-based bio-conversions
of grape juice. A heterogeneous microbiota including, yeasts, bacteria, and filamentous fungi
evolve from grape crushing up to the bottle, throughout oenological fermentations and processes [1].
Among the different microorganism, yeast has a predominant role in the metabolism of grape juice,
which leads to the production of ethanol, and of other metabolites susceptible to influencing wine
acceptance and quality, during the ‘alcoholic fermentation’ (AF) phase [2,3]. After the efficient
development of yeasts, grape juice is converted to wine. A secondary desired microbial-driven process,
the ‘malolactic fermentation’ (MLF), can take place in the must-wine system and mainly consists of
the decarboxylation of malic acid in lactic acid performed by lactic acid bacteria (LAB) [4]. Also in
this case, the microbial development is connected with the release of other metabolites, which are
able to affect wine quality [5]. The model microorganisms for alcoholic and malolactic fermentation
are, Saccharomyces cerevisiae, and Oenococcus oeni, respectively. The strains belonging to these two
species have been selected to design starter cultures, which are useful for promoting AF and MLF in
the wine sector [6–8]. However, a spontaneous consortium of microorganism is also associated with
the matrix (grapes, must, and wine), and has been recently explored and characterized, in order to
investigate their positive and negative roles, relating to specific oenological production [9–12]. With
this concern in mind, in the last years, an increased interest has been raised in selecting species/strains
belonging to the so-called non-Saccharomyces yeast species [13–16]. This attentiveness is attributable
to the potential application of these resources to improve quality and/or safety of wine, and to the
renovated interest in the study of microbial diversity connected with productions of specific terroir and
susceptible to the influence peculiar organoleptic traits of regional wines [17–19]. A certain number
of non-Saccharomyces strains have been already characterized and used to formulate commercial
microbial preparations [8]. These starter cultures are often used in association with classical starter
cultures to induce AF (i.e., S. cerevisiae) thereby diversifying wine production. Non-Saccharomyces
species/strains are generally less adapted than S. cerevisiae to perform alcoholic fermentation, thus
the management of these resources in enology foresee the use of a) co-inoculation with an increased
concentration of the non-Saccharomyces or, b) a sequential inoculation with a preliminary inoculation of
non-Saccharomyces [18,20,21]. While the reciprocal interactions among S. cerevisiae and the different
non-Saccharomyces species/strains are explored [1,22,23], as well as the relationship among S. cerevisiae
and the different bacteria connected to MLF [1,24,25], little is known about the impact of the use
of non-Saccharomyces on the bacterial diversity belonging to the malolactic consortium and on the
efficacy of malolactic fermentation [26–29]. Newly-developed sequencing strategies, usually known
as next generation sequencing (NGS) techniques, involve versatile applications in the field of food
microbiology, providing interesting insights in the study of microbiota related to food fermentation [30].
Among the other interesting application, NGS technique allowed advances into the description of
bacterial diversity connected with wine-related environments [29,31]. In the last eight years, several
investigations delved into prokaryotic diversity associated with grapes, grape musts, and/or grape
wines (Table 1).

Table 1. List of studies on bacterial diversity associated with grapes and/or musts and/or wines.

Year Subject References

2011 Study of bacterial communities associated with the leaf and
berry surfaces of ‘Chardonnay’ grape [32]

2012 Study of bacterial communities associated with botrytized wine
fermentations (sampling time compatible with MLF) [33]

2014 Grape-associated microbial biogeography from different regions
of California [34]
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Table 1. Cont.

Year Subject References

2015
Study of bacterial communities associated with spontaneous

wine fermentations (from six Portuguese wine appellations) in
the initial musts, start and end of alcoholic fermentation

[35]

2015 Influence of the use of sulfur dioxide (in winemaking) on
bacterial diversity [36]

2015
Study of the evolution of bacterial communities during the
alcoholic fermentation of organically and conventionally

produced wines
[37]

2016 Study of the bacterial communities associated with the main
wine fermentation stages including malolactic fermentation [38]

2016 Study of the bacterial communities in berries, musts, and wines,
including malolactic fermentation [39]

2016
Study of the bacterial communities associated with Corvina
berries at the end of the withering process performed in two

different conditions
[40]

2018 Correlation between soil- and grape-associated bacterial
communities in vineyards [41]

2018
Study of bacterial diversity associated with healthy, rotten,

botrytized grapes and with the derived musts and wine (up to
the alcoholic fermentation)

[42]

2018 Study of the epiphytic bacterial community of vine bark and its
relationships with grape bacterial diversity [43]

2019 Study of bacterial diversity associated with the grape surface of
samples collected from different wine regions in Xinjiang, China [44]

2019

Bacterial communities associated with alcoholic fermentation,
including the variation between musts that successfully

complete alcoholic fermentation and those that become ‘stuck’
in the process

[45]

The widest part of these dealt with bacterial diversity on grapevines (Table 1) [32,34,40,41,43,
44]. Some studies followed the evolution of bacterial communities up to the end of alcoholic
fermentation [35–37,42,45]. Few works investigated the prokaryotic microbiota, associated with malolactic
fermentation of wine [33,38,39] using NGS analysis, the biotechnological phase of the major positive impact
of bacteria on wine quality [4]. Only in one case, in botrytized wine, the effect of spontaneous versus
inoculated (S. cerevisiae biomass) alcoholic fermentation on the malolactic consortium was evaluated [33].

In this short communication, for the first time, we propose NGS analysis as a tool to monitor the
effect of the varying ways to manage microbial resources associated with alcoholic fermentation on the
spontaneous malolactic consortium, an issue that has attracted significant interest to ensure the quality
and safety of wine fermentation. For the assessment of the performance, and of the bacterial diversity
associated with the spontaneous malolactic consortium, we monitored the principal parameters of MLF
(e.g., malic acid concentration, pH); and performed a phylogenetic analysis, based on 16S rRNA genes
from the metagenome. Together with the simplest inoculated trial (S. cerevisiae biomass), we tested
two cases of exploitations of indigenous yeast consortia corresponding to uninoculated must and on
the practice of ‘pied-de-cuve’ in order to understand the influence of the different uses of microbial
resources on malolactic fermentation. Considering the increasing interest in the use of selected
non-Saccharomyces strains, our focus was on the use of non-Saccharomyces (Metschnikowia pulcherrima
and Torulaspora delbrueckii) coupled with S. cerevisiae yeasts, using two different inoculation times
(co-inoculation and sequential inoculation within one day). Finally, as a sort of further control trial,
we compared these trials with the effect of adding starter cultures for MLF (i.e., Oenococcus oeni,
Lactobacillus plantarum) at the end of alcohol fermentation.
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2. Results

This paper reports the original findings of metagenomic-based approaches for the characterization
of bacterial diversity associated with spontaneous malolactic fermentation in wine, integrated with
some information about the classical monitoring of malolactic fermentation. The monitoring of
the spontaneous malolactic consortium has been evaluated in relation to different uses of microbial
resources, associated with the development of alcoholic fermentation in wine. In saying that, we also
tested the use of bacterial starter cultures, that have been tailored to promote malolactic fermentation.

2.1. Experimental Modes and Monitoring of Malolactic Fermentation

The proposed experimental plan investigated the different ways to manage microbial resources
associated with the alcoholic fermentation (Table 2; PdC, UM, SC, SCMPco, SCTDco, SCMPsq,
and SCTDsq). The basic un-inoculation of the grape must (that means to rely on the spontaneous
presence of indigenous yeasts) was compared with the practice of pied-de-cuve. Pied-de-cuve consists
of the inoculation with a small amount of must, that was already undergoing spontaneous alcoholic
fermentation [46] in a sort of microbial pre-enrichment practice. Hence, the fermentative process
relies on the spontaneous presence of indigenous ‘enriched’ yeast. In all of the other experimental
trials, the biomass of a single isolate from a commercial starter culture of S. cerevisiae was inoculated.
In two experimental modes, this strain was combined with the biomass of a single isolate from a
commercial starter culture of M. pulcherrima, using a co-inoculation and a sequential inoculation
approach. In two other similar experimental modes, the S. cerevisiae strain was combined with the
biomass of a single isolate from a commercial starter culture of T. delbrueckii, using co-inoculation and
sequential inoculation methods. Finally, after S. cerevisiae development, in two trials, the biomass
of single isolates from commercial starter cultures of O. oeni and of L. plantarum were inoculated
separately, at the end of alcoholic fermentation (Table 2; SCOO, SCLP).

Table 2. List of the experimental modes tested in our experimental plan. Each microbial management
explored has been tested in three independent biological replicates.

Codes Tested Management of The Microbial Resources

PdC ‘Pied-de-cuve’ practice
UM Uninoculated must
SC S. cerevisiae

SCMPco S. cerevisiae + M. pulcherrima (co)
SCTDco S. cerevisiae + T. delbrueckii (co)
SCOO S. cerevisiae + O. oeni
SCLP S. cerevisiae + L. plantarum

SCMPsq S. cerevisiae + M. pulcherrima (sq)
SCTDsq S. cerevisiae + T. delbrueckii (sq)

co: co-inoculated; sq: sequentially inoculated.

In all the trials, total yeast counts were generally similar during alcoholic fermentation (Figure 1).
The reduction of viable yeasts coincides with the third week after starting AF. Although, a more rapid
decrease was noted in the samples where the malolactic fermentation started quickly.

The LAB count highlighted a considerable presence of malolactic bacteria associated with the
samples, where a rapid malolactic fermentation was observed (SC, SCOO) (Figure 2). After inoculation
of L. plantarum cells, viable bacteria was shown to slow down about ten-fold, and then raised to a
concentration slightly higher than the inoculated one. The inoculation of M. pulcherrima led to a delay
in the growth of LAB; in fact, only at the last sampling point (56th day), we found a concentration
higher than 1 × 107 CFU/mL, after a long latency at a concentration around 1 × 104 CFU/mL and 1 × 103

CFU/mL in the case of co-inoculation (SCMPco), and of sequential inoculation (SCMPsq), respectively.
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In the remaining fermentation trials (PdC, UM, SCTDco, SCTDsq), the LAB population decreased to
less than 1 × 102 CFU/mL after 38 days of incubation.
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Figure 1. Variations of viable yeast during the vinification process in the different explored experimental
modes: PdC: ‘Pied-de-cuve’; UM: Uninoculated must; SC: S. cerevisiae; SCMPco: S. cerevisiae +

M. pulcherrima (co-inoculated); SCTDco: S. cerevisiae + T. delbrueckii (co-inoculated); SCOO: S. cerevisiae
+ O. oeni; SCLP: S. cerevisiae + L. plantarum; SCMPsq: S. cerevisiae + M. pulcherrima (sequentially
inoculated); SCTDsq: S. cerevisiae + T. delbrueckii (sequentially inoculated). After 12 days of yeasts
inoculation, biomass of O. oeni and L. plantarum has been added for the induction of malolactic
fermentation in the trials SCOO and SCLP, respectively. The data shown are an average of three
independent experiments.
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Figure 2. Variations of viable lactic acid bacteria during the vinification process in the different
explored experimental modes: PdC: ‘Pied-de-cuve’; UM: Uninoculated must; SC: S. cerevisiae; SCMPco:
S. cerevisiae + M. pulcherrima (co-inoculated); SCTDco: S. cerevisiae + T. delbrueckii (co-inoculated);
SCOO: S. cerevisiae + O. oeni; SCLP: S. cerevisiae + L. plantarum; SCMPsq: S. cerevisiae + M. pulcherrima
(sequentially inoculated); SCTDsq: S. cerevisiae + T. delbrueckii (sequentially inoculated). After 12 days
of yeasts inoculation, biomass of O. oeni and L. plantarum was added for the induction of malolactic
fermentation in the trials SCOO, and SCLP, respectively. The data shown are an average of three
independent experiments.

Our findings highlighted complete malolactic fermentation after about three weeks (less than 2
weeks after the inoculation) when samples were inoculated with O. oeni after alcoholic fermentation
(Figure 3). Moreover, the simple inoculation with S. cerevisiae alone led to a good performance
of MLF (closed in little bit more than 2 weeks after the end of AF), while, the combination SCLP



Int. J. Mol. Sci. 2019, 20, 3980 6 of 22

reduced the malic acid concentration to about 1 g/L in 2 weeks after inoculation. There was complete
malic acid degradation in about 6 weeks after the end of the AF. In the samples inoculated with
M. pulcherrima (i) MLF proceeded really slowly up to the fourth week after the end of AF, and (ii)
a late but complete malolactic fermentation was observed (about 6 weeks after the AF). In contrast,
an incomplete degradation of malic acid was observed in the remaining trials (UM, PdC, SCTDco,
SCTDsq).
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Figure 3. Malicacidconcentrationtrendsduringthevinificationprocess in thedifferentexploredexperimental
modes: PdC: ‘Pied-de-cuve’; UM: Uninoculated must; SC: S. cerevisiae; SCMPco: S. cerevisiae + M. pulcherrima
(co-inoculated); SCTDco: S. cerevisiae + T. delbrueckii (co-inoculated); SCOO: S. cerevisiae + O. oeni; SCLP:
S. cerevisiae + L. plantarum; SCMPsq: S. cerevisiae + M. pulcherrima (sequentially inoculated); SCTDsq:
S. cerevisiae + T. delbrueckii (sequentially inoculated). After 12 days of yeasts inoculation, biomass of O. oeni
and L. plantarum has been added for the induction of malolactic fermentation in the trials SCOO, and SCLP,
respectively. In all the other experimental modes wines undergo spontaneous malolactic fermentation.
The data shown are an average of three independent experiments.

Lactic acid productions was generally found symmetrical to the reported kinetics of malic acid
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Figure 4. Lactic acid concentration trends during the vinification process in the different explored
experimental modes: PdC: ‘Pied-de-cuve’; UM: Uninoculated must; SC: S. cerevisiae; SCMPco: S. cerevisiae +

M. pulcherrima (co-inoculated); SCTDco: S. cerevisiae + T. delbrueckii (co-inoculated); SCOO: S. cerevisiae +

O. oeni; SCLP: S. cerevisiae + L. plantarum; SCMPsq: S. cerevisiae + M. pulcherrima (sequentially inoculated);
SCTDsq: S. cerevisiae + T. delbrueckii (sequentially inoculated). After 12 days of yeasts inoculation, biomass of
O. oeni and L. plantarum has been added for the induction of malolactic fermentation in the trials SCOO,
and SCLP, respectively. The monitoring started with the beginning of malolactic fermentation. The data
shown are an average of three independent experiments.
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The comparison of the malic and lactic acid concentrations at the end-point (65 days, about 7
weeks after the end of AF) allowed us to highlight better the significant differences in the malolactic
performances associated with the tested uses of the microbial resources (Table 3). The inoculation of
S. cerevisiae is associated with an efficient consumption of malic acid. In contrast, the un-inoculated
experimental modes (PdC, UM) led to consistent residual concentrations of L-malic acid (0.830 g/L,
and 1.327 g/L respectively), even if we depicted a significantly better malic decarboxylation in the case
of PdC management. With regard to non-Saccharomyces employment, the use of M. pulcherrima was
found related with efficient malolactic fermentative performances, while inoculated T. delbrueckii cells
resulted in unsatisfying levels of L-malic contents. Furthermore, in the case of T. delbrueckii addition,
we can underline a slight, but significant difference between reached levels in L-malic content, in the
case of co-inoculation and sequential inoculation with S. cerevisiae (1.657 g/L and 1.863 g/L).

Table 3. L-malic acid and lactic acid concentration at the end of the vinification process (day 65) in the
different explored experimental modes. Results of ANOVA analysis are shown as letters (a–f) on the
corresponding data.

L-malic Acid (g/L) Lactic Acid (g/L)

PdC 0.830 ± 0.052 a 1.773 ± 0.064 a

UM 1.327 ± 0.127 b 1.400 ± 0.001 b

SC 0.030 ± 0.017 c 2.493 ± 0.105 c

SCMPco 0.062 ± 0.032 c 2.113 ± 0.102 d

SCTDco 1.657 ± 0.021 d 0.857 ± 0.093 e

SCOO 0.046 ± 0.020 c 2.160 ± 0.151 d

SCLP 0.013 ± 0.005 c 2.430 ± 0.206 cd

SCMPsq 0.300 ± 0.017 c 1.927 ± 0.127 ad

SCTDsq 1.863 ± 0.025 e 0.530 ± 0.005 f

We conducted the experiment using a must from the Apulian region (Southern Italy) characterized
by a pH of about 3.8. This high pH is typical of hot climate zones of the Mediterranean area, and it is
also representative of the possible chemical characteristics of grape must from other regions, related to
global warming [47]. Considering the experimental findings, a slight deacidification, corresponding
to a pH increase of about 0.2, was observed in the experimental modes SC, SCMPco, SCOO, SCLP,
and SCMPsq (Figure 5). In contrast, only minor changes were found in trials PdC, UM, SCTDco,
and SCTDsq. An increase of pH was firstly noted in the sample inoculated with O. oeni.

2.2. Malolactic Consortia Monitored using 16S High Throughput Sequencing

The analysis of 16S metagenomics was performed in all the experimental modes (Table 2) after 30
days of grape crushing, and the beginning of alcoholic fermentation during the MLF. Hence, the results
provide ‘snapshot’ of the malolactic consortia after 30 days. This time had been chosen on the basis of,
malic acid consumed, and lactic acid produced, as reported in Figures 2 and 3, respectively. Moreover,
the average time, reasonable for a spontaneous MLF in wineries, has been considered [48]. We waited a
few days after that the first spontaneous MLF consortium completed malic acid degradation, remaining
within the 3 weeks that are generally recognized as the average time for a spontaneous MLF in oenology.
The bacterial diversity, associated with the malolactic consortia of the different experimental modes,
was described by 16S rRNA gene metagenetic analysis. We obtained a total of 3,045,338 high-quality
sequences of 16S rRNA, with an average of 88,376 ± 32,615 reads per sample. The total number of
Operational Units (OTUs) was 17,540 with an average of 2573 ± 792 (Table S1).

Chao1 and Shannon indices (Figures 6 and 7) were calculated for all the metagenomic malolactic
consortia associated with the tested management of the microbial resources (Table 1). On the one hand,
we report the calculation of the non-parametric richness estimator Chao1. On the other, we propose
the values of Shannon’s diversity index that provide a measure of both richness and dominance.
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Figure 5. pH changes associated with the vinification process in the different explored experimental
modes: PdC: ‘Pied-de-cuve’; UM: Uninoculated must; SC: S. cerevisiae; SCMPco: S. cerevisiae + M. pulcherrima
(co-inoculated); SCTDco: S. cerevisiae + T. delbrueckii (co-inoculated); SCOO: S. cerevisiae + O. oeni; SCLP:
S. cerevisiae + L. plantarum; SCMPsq: S. cerevisiae + M. pulcherrima (sequentially inoculated); SCTDsq:
S. cerevisiae + T. delbrueckii (sequentially inoculated). After 12 days of yeasts inoculation, biomass of O. oeni
and L. plantarum were added for the induction of malolactic fermentation in the trials SCOO, and SCLP,
respectively. In all the other experimental modes, wine underwent spontaneous malolactic fermentation.
The data shown are an average of three independent experiments.
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Even if some trends appeared clear, poor significance in term of richness (Chao1 index), has been
depicted (Figure 6). Only the combination of S. cerevisiae + M. pulcherrima sequentially inoculated
to induce alcoholic fermentation led to a significantly richer malolactic bacterial consortium. On the
opposite, richness and dominance (Shannon index) (Figure 7) were similarly highest for trials PdC,
UM, SCMPco, SCTDco, SCMPsq, followed by the experimental modes, SCTDsq and SCLP. Finally,
richness and diversity were significantly lower for samples inoculated with S. cerevisiae alone, and with
S. cerevisiae and O. oeni.

Another downstream output, generated from NGS data, is beta-diversity. Ordination plot in
Figure 8, providing different cluster affinities, offers a measure of differences in bacterial community
composition for the different malolactic consortia. PCoA demonstrated a clear separation of
experimental mode clusters (Figure 8). The significance in the highlighted separation was proved
by PERMANOVA tests among samples (p < 0.001). In particular, the three samples (PdC, SCTDco,
and SCMPco) formed a separated thigh cluster. Two couples of samples, (i) inoculated with S. cerevisiae
and with S. cerevisiae + O. oeni, and (ii) inoculated with S. cerevisiae + T. delbrueckii (sq) and S. cerevisiae
+ L. plantarum, respectively co-clustered. While uninoculated must, and samples inoculated with
S. cerevisiae + M. pulcherrima (sq), formed separate congregations.

Considering the taxonomic composition of bacterial communities of the malolactic consortia,
associated with the tested management of the microbial resources, Firmicutes were the dominant
phylum in the experimental modes SC, SCTDsq, SCOO, and SCLP (Figure 9). This dominance was less
pronounced in the samples SCMPsq and SCMPco. On the opposite, the increased relative abundance
of Proteobacteria led to their dominance in the trials PdC, UM, and SCTDco (Figure 9). It is important
to underline that, the presence of Cyanobacteria among the Phyla depicted would be ascribable to the
amplification/sequencing of the 16S rRNA gene present in the DNA of Vitis vinifera chloroplasts [49]
(a hypothesis strengthened by the evidence that it was not possible to assign with reasonable confidence
Cyanobacteria OTUs at a finer than level Phylum). Diversity, at the genus level (Figure 10), was clearly
in accordance with the diversity measured with α- and β-diversity (Figures 6–8), providing information
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that can help explain the observed variability. It is possible to depict a certain correspondence between
microbial consortium composition in terms of malolactic bacteria (genera Oenoccoccus, Lactobacillus,
Lactococcus) (Figure 10) and the malolactic performances. This relation becomes clear in the case of
dominance of Oenococcus genus.
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In Figures 11–15, we report the 16S rRNA gene metagenomics data with the abundance of the
number of reads for the principal bacterial genera with a pro-technological relevance [i.e., Oenococcus
(Figure 11), Lactobacillus (Figure 12), Lactococcus (Figure 13)], and spoilage potential [i.e., Acetobacter
(Figure 14), Gluconobacter (Figure 15)] in enology. In general, if we consider the more basic management
of microbial resources related to alcoholic fermentation, ‘pied-de-cuve’ practice, un-inoculated must
and inoculation of a selected strain of S. cerevisiae, we found that the genera of pro-technological
significance were more abundant in the sample with a controlled alcoholic fermentation, followed
by the uninoculated must, and by the ‘pied-de-cuve’ samples. In contrast, spoilage bacteria were
more concentrated in the ‘pied-de-cuve’ sample, followed by the uninoculated trial. Comparing the
experimental modes SC with the inoculation, in combination with a selected non-Saccharomyces
strain, we found that inoculation with T. delbrueckii/M. pulcherrima, not only radically affects the
composition of malolactic consortium, but we also found it to be associated with the prevalence of
specific genera of oenological significance. In addition, it was also evident that the time of inoculation
had an influence on the non-Saccharomyces commercial yeast. Specifically, within the pro-technological
consortia, Oenococcus genus dominated the experimental mode SC and, to a lesser extent, by the
‘un-inoculated must’. Lactobacillus was detected as prevailing malolactic genus in the trial SCTDsq
and SCMPsq, thus in the cases where the non-Saccharomyces strains were sequentially inoculated, with
respect of the S. cerevisiae strain. In contrast, in the case of co-inoculation, the most representative LAB
genus was Lactococcus, more so for sample SCMPco than in SCTDco. Lactococcus was also find to be
significantly present in the sample where alcoholic fermentation was performed through the practice of
‘pied-de-cuve’. Considering spoilage bacteria of oenological significance, Acetobacter and Gluconobacter
genera were found highly associated with uncontrolled alcoholic fermentations (UM and PdC), and to
the experimental mode SCMPco, SCMPsq, and SCTDco (Figures 14 and 15). Finally, we monitored the
consortia associated with the inoculation of commercially available LAB, namely Oenococcus oeni and
Lactobacillus plantarum, to promote malolactic fermentation. In both cases, we detected a considerable
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preponderance of the corresponding genus (Oenococcus in the sample SCOO and Lactobacillus, in sample
SCLP), which suggests that the protechnological strains implanted well. Interestingly, in association
with inoculation of the commercial L. plantarum strain, we were able to observe a significant presence
of Oenoccocus genus.
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3. Discussion

During the vinification process, we can generally recognize three main stages of interest, involving
microorganisms: (1) Preliminary step of the AF associated with the dominance of the non-Saccharomyces
yeasts, (2) the main phase of AF associated with the growth of Saccharomyces yeasts, and (3) MLF
associated with the dominance of LAB. Wine quality strongly depends on the diversity of species
and strains, linked to the microbial consortium, which continuously evolves during the process
of winemaking [50]. The present work is one of the few studies dealing with the meta-taxonomic
characterization of malolactic consortia in wine [33,38,39]. It is also the first study that proposes the
application of NGS-based approaches, which explore the the different uses of eukaryotic resources,
which have been exploited to drive the AF on the indigenous prokaryotic diversity, connected to
malolactic fermentation. In addition, for the first time, we use a meta-taxonomic approach to monitor the
effect of the inoculation of malolactic starter cultures after alcoholic fermentation. In particular, among
the experimental modes, we tested different uses of microbial resources, commonly applied in wineries,
relying (i) on spontaneous yeast consortium (un-inoculated must and ‘pied-de-cuve’ practices), and (ii) on
the inoculation of selected pro-technological strains belonging to species, Saccharomyces cerevisiae [51,52],
Torulaspora delbrueckii [20], M. pulcherrima [53], O. oeni [54], and Lactobacillus plantarum [55]. In all the
explored experimental modes, malolactic fermentation, and the associated spontaneous consortium,
were monitored in order to understand the phenomena (the management of microbial resources), which
may be crucial to the quality of final wine [56]. In addition, the investigations of the autochthonous
microbiota, linked to wine fermentation, and the relationship within the microbial consortium, are
gaining increasing interest, even in light of the relevance of the so-called, ‘microbial terroir’ [19,34,38,57].

The classical analysis was performed to monitor malolactic fermentation, and it mainly looked
at pH, malic acid degradation, lactic acid production, and microbial counts, which were, in general,
coherent. Together with the direct proportion among malic acid degradation, lactic acid production,
and lactic acid bacteria level, even the slight deacidification of about 0.2 in terms of pH, clearly
indicate the occurrence of MLF [57]. Our data indicate no consistent malic acid degradation by the
non-Saccharomyces strains used (T. delbrueckii, M. pulcherrima). This was in accordance with recent
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evidence that, studying different non-Saccharomyces strains found only Schizosaccharomyces pombe and
the Candida zemplinina responsible for a mentionable degradation of this organic acid [28,58].

Concerning malolactic performances, a first relevant observation deals with the efficiency of
spontaneous malolactic fermentation, connected to the inoculation of S. cerevisiae, when compared to
un-inoculated and ‘pied-de-cuve’ samples. Our evidence confirms that, what was found in common
wine corresponds with the finding related to botrytized wine by Bokulich et al. [33]: Comparing
the bacterial diversity between uninoculated and inoculated trials, it is possible to notice a selective
pressure exerted by Saccharomyces, mainly in the reduction of acetic acid bacteria. In addition, we found
that this reduction in the genera, Acetobacter and Gluconobacter is associated with an opposite trend
in the relative abundance of the genus Oenococcus. In this context, PdC sample showed behavior
that appeared intermediate between UM and SC samples, in terms of Acetobacter, Gluconobacter, and
Oenococcus relative abundance. The variations in malic consumption, followed the Oenococcus relative
abundance, confirmed the relevance of this genus in the wine environment, and its significance in
terms of MLF performances [59]. Taken together, our finding suggests that the control AF inoculating
S. cerevisiae can favor the dominance of Oenococcus, reducing acetic bacteria, and improving MLF [24].
We also clearly indicated the limitations in terms of MLF efficiency in the case of uninoculated must
and of ‘pied-de-cuve’, underlining the risks linked to vinification processes that rely on spontaneous
AF [60,61].

Regarding the impact of non-Saccharomyces yeast on the spontaneous malolactic consortium,
we report, for the first time, a potential inhibition/delaying of MLF when T. delbrueckii and M. pulcherrima
were inoculated. Although our study does not suggest any further information on the possible biological
mechanisms responsible for these findings (e.g., nitrogen source preferences, the release of medium
chain fatty acids) [26,62], evidence from the recent literature, underline that a possible solution relies
on the use of selected starter cultures for MLF. The use of selected resources to drive MLF in wine
allowed the possible evaluation of the compatibility of the selected malolactic bacteria, with specific
non-Saccharomyces, as recently reported for O. oeni strains, used in combination with T. delbrueckii,
M. pulcherrima and Hanseniaspora uvarum strains [28,63–65]. Intriguingly, we also show an effect of
the inoculation time of the non-Saccharomyces strains with respect to S. cerevisiae resources, which is a
fundamental aspect in the concrete winery practices [66].

Furthermore, the preponderance of the genera Oenococcus and Lactobacillus, in association with
inoculated and spontaneous MLF, was confirmed [67,68], as well as a potential role for the genus
Lactococcus [69,70].

All reported findings highlight the importance in applying optimal yeast management and
the MLF strategy to ensure correct completion of MLF and, consequently, to improve wine quality.
Furthermore, these preliminary findings suggest that massive sequencing could be a new useful tool
for the control malolactic fermentation, not only for the monitoring of AF in wine [71]. The findings
highlight the importance of selecting the appropriate sampling point for the NGS analysis, in order to
elucidate the composition of the microbial consortia, associated with malic acid degradation. In this
light, the monitoring of more time points represents a crucial issue among the future perspectives of
this study.

Considering fermented matrices as experimentally tractable microbial ecosystems [72], our study
corroborate the potential interest in wine as a model matrix. In fact, there are two temporarily separated
fermentative processes (AF and MLF), with the opportunity to study the effects of a perturbation of
the first microbial ecosystem (this associated with the alcoholic fermentation) on the second one (this
associated with the malolactic fermentation).
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4. Materials and Methods

4.1. Microorganisms

The following microorganisms were used for must inoculation: The commercially available
S. cerevisiae DV10 (Lallemand Inc., Montréal, QC, Canada) [73], the commercially available
non-Saccharomyces strains Metschnikowia pulcherrima, and Torulaspora delbrueckii. As lactic acid
bacteria (LAB), Oenococcus oeni and Lactobacillus plantarum were used in the fermentation. Starter
cultures have been purchased in active dried form. Rehydration procedures were carried out according
to suppliers’ instructions, and single isolates were selected on agarized YPD medium (2% glucose, 2%
Bacto peptone, 1% yeast extract) and in MRS (Sharlab, Barcelona, Spain) at 28 ◦C (incubated for 2 days;
5 days for O. oeni) for yeasts, and bacteria, respectively. The biomasses used as starter cultures were
prepared by growing up to the stationary state the yeasts strains separately in liquid YPD medium and
LAB in MRS (Sharlab, Barcelona, Spain) at 28 ◦C.

4.2. Vinifications

Starter cultures were prepared by growing strains in YPD or MRS medium, as described above,
and then inoculating the strains into 400 mL of grape must from the Apulian autochthonous grape
varieties ‘Uva di Troia’ (21◦ Babo; 7.2 g/L total acidity; 2.57 g/L malic acid; pH 3.78). Each fermentation
experiment was carried out by performing three simultaneous independent repetitions into sterile 1 l
bottles, with an air lock and fermented at 20 ◦C. Using the 3 yeasts (in a different inoculation mode)
and 2 LAB, a total of 9 different starter culture combinations were carried out (Table 2). In mixed
yeast starter cultures, S. cerevisiae was inoculated simultaneously with the non-Saccharomyces yeast in a
1:100 proportion (104 CFU/mL:106 CFU/mL) or sequentially at the same cell concentration 24 h later.
Lactic acid bacteria were inoculated (106 CFU/mL O. oeni; 107 CFU/mL L. plantarum) after 12 days of
yeasts inoculation, when AF was finishing. One uninoculated grape must sample and an inoculated
grape must sample, by a “pied de cuve”, were used as controls. The kinetics of the fermentation was
monitored for 40 days. During this time, L-malic acid, lactic acid and pH variation were determined
by enzymatic kits (Biogamma, Rome, Italy), and with a pH meter, respectively.

4.3. Determination of Microbial Population

The viable count of yeasts during the AF was enumerated on YPD agar medium (Sigma-Aldrich,
Saint Louis, MO, USA). Plates were incubated at 28 ◦C for 48 h. The viable count of LAB was done in
MRS (Sharlab) supplemented with 10 mg/L cycloheximide (Sigma-Aldrich, Saint Louis, MO, USA) and
incubated for 4–7 days at 28 ◦C.

4.4. Genomic DNA Extraction

Samples of 5 mL from the wine fermentations, incubated during 30 days, were centrifuged (10000
rpm, 5 min), washed with ultrapure water (1 vol), then with 1 vol of 10% TEN buffer (0.1M Tris-HCl
pH 7.5, 0.05 M EDTA, 0.8 M NaCl) supplemented with polyvidone 10 (PVP) (2% w/v) (Sigma-Aldrich,
Saint Louis, MO, USA), and then twice with ultrapure water (1 vol). The genomic DNA from the 5 mL
sample, after the washing steps, was extracted with the commercial extraction kit, known as PowerSoil
Microbial DNA Isolation Kit (Mo Bio, Carlsbad, CA, USA), according to the manufacturer’s instructions.

4.5. High Throughput Sequencing

Illumina libraries were prepared using a NEXTflex 16S V4 Amplicon-Seq Kit (Bioo Scientific,
Austin, TX, USA). Briefly, from 50 ng of DNA template for each sample, the bacterial V4 region of the
16S rRNA gene was amplified using the universal primers V3F (GTGCCAGCMGCCGCGGTAA) and
V4R (GGACTACHVGGGTWTCTAAT) tailed with Illumina barcoded adapters under the following
touchdown PCR conditions: A 20 µL mixture was prepared for each reaction and included a 1× reaction
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buffer (TAKARA), 2 mM Mg2+, 0.2 mM dNTP, 0.1 µM of each primer, 1 U HotStarTaq polymerase
(TAKARA) and 2 µL template DNA. The cycling programme was: 95 ◦C for 2 min; 35 cycles of 94 ◦C
for 20 s, 55 ◦C for 40 s, 72 ◦C for 1 min, 72 ◦C for 2 min. PCR products were purified using Agencourt
XP AmpureBeads (Beckman Coulter, Brea, CA, USA). The quality of the final products was assessed
using a Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, USA). After their quantification
with Qubit (Invitrogen, Carlsband, CA, USA), the samples were pooled in equal proportions and
sequenced paired-end in an Illumina MiSeq platform (San Diego, CA, USA) with 312 cycles (150 cycles
for each paired read and 12 cycles for the barcode sequence) at IGA Technology Services (Udine, Italy).
A tailored pipeline has been adopted in order to process raw sequencing data from 16S rRNA gene
amplicon sequence analysis. We used the software PEAR [74] to merge paired-end reads from each
library. We avoided including sequences with a quality score threshold, lower than 30 and shorter
than 200 bp, and we processed the assembled reads with QIIME v.1.8 software [75], inspecting for
chimeras with the Chimera VSEARCH package [76]. Subsequently, we taxonomically annotated the
SILVA reference database [77]. Operational Units (OTUs) were generated with 97% similarity cutoff

using demultiplexed sequences, removing singletons. The operational taxonomic units (OTUs) table
was generated using at 97% similarity. To normalize the variation in-read depth across samples, data
were rarefied to the minimum read depth of 45,747 sequences per sample.

4.6. Statistical Analysis and Estimation of Fungal Alpha and Beta Diversity

Statistical analysis has been performed using R software [78]. Alpha and Beta diversity analyses
were performed using the phyloseq and vegan packages [79,80]. Differences in Chao1, Richness,
and Shannon values among the samples were tested using ANOVA and Pairwise Tukey test. Principle
Coordinate Analysis (PCoA), based on Bray–Curtis, was used to displaying beta-diversity. The statistical
significance of the clustering pattern visualized via PCoA was tested using Permutational ANOVA
(PERMANOVA). Differences among the most important Genera (>1%) was investigated via ANOVA
and Pairwise Tukey test.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/16/
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