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2 Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Instituto Argentino de Nivologı́a,

Glaciologı́a y Ciencias Ambientales, Centro Cientı́fico y Tecnológico, Mendoza, Argentina
3 Department of Geology, Naturalis Biodiversity Center, Leiden, The Netherlands
4 Department of Historical Geology and Palaeontology, National and Kapodistrian University of

Athens, Zografou, Greece
5 Osaka Museum of Natural History, Osaka, Japan

ABSTRACT
The interest in mammalian palaeohistology has increased dramatically in the last
two decades. Starting in 1849 via descriptive approaches, it has been demonstrated
that bone tissue and vascularisation types correlate with several biological variables
such as ontogenetic stage, growth rate, and ecology. Mammalian bone displays a
large variety of bone tissues and vascularisation patterns reaching from lamellar
or parallel-fibred to fibrolamellar or woven-fibred bone, depending on taxon and
individual age. Here we systematically review the knowledge and methods on cyn-
odont and mammalian bone microstructure as well as palaeohistology and discuss
potential future research fields and techniques. We present new data on the bone
microstructure of two extant marsupial species and of several extinct continental and
island placental mammals. Extant marsupials display mainly parallel-fibred primary
bone with radial and oblique but mainly longitudinal vascular canals. Three juvenile
specimens of the dwarf island hippopotamid Hippopotamus minor from the Late
Pleistocene of Cyprus show reticular to plexiform fibrolamellar bone. The island
murid Mikrotia magna from the Late Miocene of Gargano, Italy displays parallel-
fibred primary bone with reticular vascularisation and strong remodelling in the
middle part of the cortex. Leithia sp., the dormouse from the Pleistocene of Sicily,
is characterised by a primary bone cortex consisting of lamellar bone and a high
amount of compact coarse cancellous bone. The bone cortex of the fossil continental
lagomorph Prolagus oeningensis and three fossil species of insular Prolagus displays
mainly parallel-fibred primary bone and reticular, radial as well as longitudinal vas-
cularisation. Typical for large mammals, secondary bone in the giant rhinocerotoid
Paraceratherium sp. from the Late Oligocene of Turkey is represented by dense Haver-
sian bone. The skeletochronological features of Sinomegaceros yabei, a large-sized
deer from the Pleistocene of Japan closely related to Megaloceros, indicate a high
growth rate. These examples and the synthesis of existing data show the potential of
bone microstructure to reveal essential information on life history evolution. The
bone tissue and the skeletochronological data of the sampled island species suggest

How to cite this article Kolb et al. (2015), Mammalian bone palaeohistology: a survey and new data with emphasis on island forms.
PeerJ 3:e1358; DOI 10.7717/peerj.1358

mailto:christian.kolb@pim.uzh.ch
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.1358
http://dx.doi.org/10.7717/peerj.1358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.1358


the presence of various modes of bone histological modification and mammalian life
history evolution on islands to depend on factors of island evolution such as island
size, distance from mainland, climate, phylogeny, and time of evolution.

Subjects Evolutionary Studies, Paleontology, Histology
Keywords Mammals, Palaeohistology, Island evolution, Bone tissue, Mikrotia, Paraceratherium,
Hippopotamus minor, Leithia, Sinomegaceros, Prolagus

INTRODUCTION
Histology of fossil bones (e.g., Ricqlès, 1976a; Padian, 2011) provides data to investigate

life history variables such as age, sexual maturity, growth patterns, and reproductive cycles.

Research on fossil vertebrate hard tissues dates back to the 19th century, when it was

recognised that bones and teeth are commonly very well preserved at the histological

level (Quekett, 1849a; Quekett, 1849b). Since then, several descriptive surveys of different

tetrapod taxa, including mammals, have been published (e.g., Schaffer, 1890; Enlow &

Brown, 1958; Ricqlès, 1976a; Ricqlès, 1976b; Klevezal, 1996; Maŕın-Moratalla et al., 2014;

Prondvai et al., 2014). The study of the microstructure of highly mineralised components

such as blood vessel arrangement (De Boef & Larsson, 2007) and tissue types in bones

as well as teeth (e.g., Kolb et al., 2015) provides information on growth patterns and

remodelling processes of hard tissues in extinct vertebrates (see also Scheyer, Klein &

Sander, 2010; Chinsamy-Turan, 2012a; Padian & Lamm, 2013 for summaries).

Mammals are a well-known group of vertebrates with a well-documented fossil record.

However, until recent years and apart from a few seminal papers (Gross, 1934; Enlow

& Brown, 1958; Warren, 1963; Klevezal, 1996), mammalian bone histology received

little attention by biologists and palaeontologists alike compared to dinosaurs and

non-mammalian synapsids (e.g., Horner, Ricqlès & Padian, 1999; Sander et al., 2004;

Chinsamy-Turan, 2012a; see also Padian, 2013 for a review on Chinsamy-Turan, 2012a).

The present contribution summarises the main aspects about the current state of

knowledge on mammalian palaeohistology without omitting some of the relevant

non-mammalian contributions, presents new finds on several extant and extinct species

from diverse clades, and discusses perspectives in this field of research. Bone histological

traits of extinct island mammals sampled for the present study are described and

implications for island evolution are discussed. Literature dealing with pathologies in

mammalian bone is omitted since this goes beyond the scope of this synthesis.

Bone tissue types
In synapsids, three main types of bone matrix are distinguished. Woven-fibred bone shows

highly disorganised collagen fibres of different sizes being loosely and randomly arranged.

Parallel-fibred bone consists of tightly packed collagen fibrils arranged in parallel. Lamellar

bone shows the highest spatial organisation. It consists of thin layers (lamellae) of closely

packed collagen fibres. Both parallel-fibred and lamellar bone are indicative of relatively
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low growth rates (Francillon-Vieillot et al., 1990; Huttenlocker, Woodward & Hall, 2013).

Bromage et al. (2009) confirmed that lamellar bone is an incremental tissue, with one

lamella formed in the species-specific time dependency of the formation of long-period

increments (striae of Retzius) in enamel. The authors also showed a negative correlation

between osteocyte density in bone and body mass and thus suggested a central autonomic

regulatory control mechanism to the coordination of organismal life history and body

mass. This demonstrates the relevance of bone histology for understanding physiological

mechanisms in extant and extinct vertebrates.

A bone complex composed of a woven-fibred bone matrix in which osteonal lamellar

bone infills the space between woven bone and primary vascular canals, is defined as

fibrolamellar bone (Figs. 1B, 1C, 1E and 1F) (Ricqlès, 1974; Stein & Prondvai, 2014)

or fibrolamellar complex (FLC; Ricqlès, 1975; Ricqlès et al., 1991; Margerie, Cubo &

Castanet, 2002; Prondvai et al., 2014). According to its vascular orientation, three main

types of fibrolamellar bone are distinguished: Laminar bone shows an almost uniform

circumferential orientation of vascular canals. In case circumferential canals are connected

by radial ones forming a dense anastomosing network, the pattern is called plexiform (Figs.

1B, 1C, 1E and 1F). An anastomosing network showing random organisation with oblique

orientations is defined as reticular. Moreover, a radial arrangement of vascular canals is

called radiating or radial bone (Francillon-Vieillot et al., 1990; Chinsamy-Turan, 2012b;

Huttenlocker, Woodward & Hall, 2013).

Amprino identified for the first time a relationship between bone tissue type and growth

rate in vertebrates, what is now called “Amprino’s rule” (Amprino, 1947; see also Lee et

al., 2013). Stein & Prondvai (2014) found, by investigating longitudinal thin sections of

sauropod long bones, that the amount of woven bone in the primary complex has been

largely overestimated (e.g., Klein & Sander, 2008), questioning former arguments on the

biology and life history of sauropod dinosaurs. Similarly, Kolb et al. (2015) showed, via

longitudinal thin sections, that in the giant deer Megaloceros giganteus the amount of

woven-fibred bone within the fibrolamellar complex (FLC) is easily overestimated as well.

Growth marks and skeletochronology
Different types of growth marks in the bone cortex are distinguished in the osteohis-

tological literature. They are deposited cyclically, usually occurring within lamellar or

parallel-fibred bone. All kinds of growth marks indicate a change in growth rate or a

complete arrest of growth.

In all groups of mammals thin, semitranslucent to opaque bands, termed lines of

arrested growth (LAGs, see also Huttenlocker, Woodward & Hall, 2013), occur (Morris,

1970; Frylestam & Schantz, 1977; Buffrénil, 1982; Chinsamy, Rich & Vickers-Rich, 1998;

Klevezal, 1996; Castanet et al., 2004; Köhler et al., 2012). It has repeatedly been confirmed

and is now widely accepted that LAGs are deposited annually (e.g., Castanet & Smirina,

1990; Buffrénil & Castanet, 2000; Castanet, 1994; Marangoni et al., 2009; Chinsamy-Turan,

2012b) and independently of metabolic rate and climatic background (Köhler et al., 2012;
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Figure 1 Typical mammalian bone tissue as observed in large mammals such as cervids. Red bars
indicate area and plane of sectioning. Histological images (B), (E), and (I) in linear polarised light, (C) in
crossed polarised light and with additional use of lambda compensator, and (F) in crossed polarised
light. (A) Life reconstruction of the cervid Megaloceros giganteus (“Knight Megaloceros” by Charles
R. Knight, courtesy of the American Museum of Natural History via Wikimedia Commons—http:
//commons.wikimedia.org). (B, C) Bone cortex of an adult tibia of Megaloceros giganteus specimen
NMING:F21306/14 displaying an endosteal lamellar layer (innermost part of the cortex) and reticular as
well as plexiform fibrolamellar primary bone with growth marks. Note that the primary bone is pervaded
by secondary Haversian systems in the inner third of the bone cortex. White arrows indicate lines of
arrested growth. Occurrence of LAGs indicated by black/white arrows and the outer circumferential layer
(OCL) by white brackets. (D) Photograph of Pudu puda (“Pudupuda hem 8 FdoVidal Villarr 08Abr06-
PhotoJimenez,” courtesy of Jaime E. Jimenez via Wikimedia Commons—http://commons.wikimedia.
org). (E, F) Bone cortex of an adult femur of Pudu puda specimen NMW 60135 displaying an endosteal
lamellar layer and mainly plexiform fibrolamellar bone. (G) Reconstruction of Paraceratherium (“Indri-
cotherium11,” Courtesy of Dmitry Bogdanov via Wikimedia Commons—http://commons.wikimedia.
org). (H) Cross-section of a rib of Paraceratherium sp. specimen MTA-TTM 2006-1209. Red rectangle
indicates area of dense Haversian bone magnified in (I).

Huttenlocker, Woodward & Hall, 2013) and therefore they can be used for age estimations,

estimates of age at sexual or skeletal maturity, and growth rate analysis.

Castanet et al. (2004) studied LAGs in long bones, mandibles, and tooth cementum (M2

and M3) of captive specimens of known aged mouse lemur, Microcebus murinus. The 43

male and 23 female specimens sampled ranged from juveniles to 11-year-old adults, for

which LAG counts and ages correlated best in the tibiae. In individuals older than seven

years the correlation decreased, leading to an age underestimation of three to four years
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and demonstrating limitations of skeletochronology in long bones (see also Klevezal, 1996;

Castanet, 2006). Additionally, animals exposed to an artificially accelerated photoperiodic

regimen (a 10-month cycle) show a higher number of LAGs than animals of the same

true age in which a yearly photoperiod is maintained. According to that, there is strong

evidence that photoperiodicity is an essential factor for the deposition of LAGs rather than

environmental factors (see also Woodward, Padian & Lee, 2013).

Köhler et al. (2012) additionally demonstrated that the annual formation of LAGs is

present throughout ruminants and that a cyclic arrest of growth in bone is mainly triggered

by hormonal cues rather than environmental stresses. By confirming seasonal deposition

of LAGs throughout ruminants, the general occurrence of LAGs in homeothermic

endotherms has been confirmed, precluding the use of lines of arrested growth as an

indicator of ectothermy (Köhler et al., 2012).

Different kinds of processes in the cortex potentially remove parts of the growth record

and may erase early LAGs. One of those processes is the substitution of primary bone

tissue by secondary bone tissue in areas where resorption previously occurred. Secondary

bone can appear as Haversian bone (Fig. 1I) consisting of clustered Haversian systems

responding to damage such as microcracks, or around the medullary cavity forming

endosteal lamellar bone in response to ontogenetic changes in bone shape, i.e., bone drift

(Enlow, 1962).

Several approaches to retrocalculate the lost information have been attempted and there

are two ways of retrocalculating missing years. First, in case an appropriate ontogenetic

growth series sampling is not available, it is possible to perform arithmetic estimates of the

missing intervals, applied first for dinosaurs (e.g., Sander & Tückmantel, 2003; Horner &

Padian, 2004; Erickson et al., 2004). The second approach is the superimposition of thin

sections of long bones of different ontogenetic stages, again applied first for dinosaurs

(e.g., Horner, Ricqlès & Padian, 2000; Bybee, Lee & Lamm, 2006; Lee & Werning, 2008;

Erickson, 2014; see also Woodward, Padian & Lee, 2013 for more methodological details).

Maŕın-Moratalla, Jordana & Köhler (2013) were the first to apply the superimposition

method to mammals using anteroposterior diameters of successive growth rings in

five antelope (Addax) femora of different ages. They found that the first LAG in adult

specimens fits the second growth cycle of juveniles, indicating that the first LAG is lost

by resorption throughout ontogeny. This allowed estimates of age at death by counting

all the rest lines in the bone cortex and increasing the LAG count by one. Additionally,

it was possible to estimate age at sexual maturity. When an animal reaches maturity it

is indicated by the deposition of a narrow layer of avascular lamellar bone, called the

outer circumferential layer (OCL, Ponton et al., 2004; Figs. 1B and 1C), and also referred

to as the external fundamental system (EFS, sensu Horner, Ricqlès & Padian, 1999; see

also Woodward, Padian & Lee, 2013). Given that Cormack (1987) uses the term “outer

circumferential lamellae” (p. 305), we follow Ponton et al. (2004) in using the term outer

circumferential layer (OCL) instead of EFS. Maŕın-Moratalla, Jordana & Köhler (2013) and

Jordana et al. (in press) interpreted the transition from the FLC to the OCL to represent

attainment of reproductive maturity in ruminants, since maturity estimates correlated
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well with individual tooth eruption and wear stages, as well as life history data. Therefore,

the authors could show that in ruminants it is possible to determine age at reproductive

maturity and death. Maturity estimates based on the occurrence of the OCL in a recent

study by Kolb et al. (2015) on extant cervids showed bone microstructure corresponding

well with the timing of the attainment of skeletal maturity.

MATERIAL AND METHODS
In order to contribute to a more complete picture of mammalian palaeohistology, long

bones of the following additional mammalian taxa, including several taxa of extinct

insular mammals, were sampled. Characteristics of bone histology of the following taxa

are either poorly or not at all documented in the literature (Table 1): the extant white-eared

opossum Didelphis albiventris and the thick-tailed opossum Lutreolina crassicautada, the

giant deer Megaloceros giganteus from the Late Pleistocene of Ireland, the Asian giant deer

Sinomegaceros yabei from the Late Pleistocene of Japan, the extant southern pudu Pudu

puda, the Cyprus dwarf hippopotamid Hippopotamus minor from the Late Pleistocene

of Cyprus, the dormouse Leithia sp. from the Pleistocene of Sicily, the giant hornless

rhinocerotoid Paraceratherium sp. from the Late Oligocene of Turkey, the continental pika

Prolagus oeningensis from the Middle Miocene of La Grive, France, and the Sardinian pika

Prolagus sardus from the Late Pleistocene. From the Late Miocene of Gargano, Italy, the

following material was sampled: the galericine insectivore Deinogalerix sp., the giant murid

Mikrotia magna, as well as the giant pikas Prolagus apricenicus and Prolagus imperialis.

Ontogenetic stages in long bones have been determined by the state of epiphyseal fusion

(Habermehl, 1985).

Following standard procedures, bones were coated and impregnated with epoxy resin

(Araldite or Technovit) prior to sawing and grinding. Long bones were transversely

sectioned at the mid-shaft where the growth record is most complete (e.g., Sander &

Andrassy, 2006; Kolb et al., 2015). A tibia of Megaloceros giganteus was also sampled by using

a diamond-studded core drill, with sampled cores being subsequently processed (Sander &

Andrassy, 2006; Stein & Sander, 2009). Sections were observed in normal transmitted and

cross-polarised light using a Leica DM 2500 M compound microscope equipped with Leica

DFC 420 C digital camera. Phylogeny was produced using Mesquite 3.02© (Maddison &

Maddison, 2015) and redrawn using Adobe Illustrator CS5©.

Approval information
We thank Naturalis Biodiversity Center, Leiden, the Netherlands, Loı̈c Costeur (Naturhis-

torisches Museum Basel, Switzerland), George Lyras (Museum of Paleontology and

Geology, University of Athens, Greece), Nigel Monaghan (National Museum of Ireland,

Natural History), Hiroyuki Taruno (Osaka Museum of Natural History, Japan), Frank

Zachos and Alexander Bibl (Naturhistorisches Museum Wien, Austria), Pierre-Olivier

Antoine (Institut des Sciences de l’Evolution-Montpellier, France), and Ebru Albayrak,

(MTA Natural History Museum, The General Directorate of Mineral Research and

Exploration, Ankara, Turkey) for approving sampling of specimens for histological study.
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Table 1 Material used in this study. Specimens sampled in this study with ontogenetic stage, geological age, locality of death/fossil site, and specimen
number.

Species Object Ontogenetic
stage

Geological age; locality Specimen number

Didelphis albiventris Femur adult La Plata, Argentina PIMUZ A/V 5279

” ” adult ” PIMUZ A/V 5277

” ” adult Ingeniero Mashwitzt, Argentina PIMUZ A/V 5276

” ” adult Ranchos, Argentina PIMUZ A/V 5278

Lutreolina crassicautada ” adult Mar de Ajo, Argentina PIMUZ A/V 5275

” ” adult La Plata, Argentina PIMUZ A/V 5274

Leithia sp. Tibia adult Pleistocene; Grotta di Maras, Sicily NMB G 2160

Mikrotia magna Femur adult Late Miocene; Sono Giovo, Gargano RGM.792083

” ” adult ” RGM.792084

” ” adult ” RGM.792085

” ” adult ” RGM.792086

Prolagus apricenicus Femur adult Late Miocene; San Giovannino, Gargano RGM.792087

” ” adult ” RGM.792088

” ” adult ” RGM.792089

” ” adult ” RGM.792090

” ” adult ” RGM.792091

” ” adult ” RGM.702092

” Humerus adult ” RGM.792093

” ” adult ” RGM.792094

” ” adult ” RGM.792095

Prolagus imperialis Femur adult ” RGM.792096

” ” adult ” RGM.792097

” ” adult ” RGM.792098

” ” adult ” RGM.792099

” ” adult ” RGM.792100

” ” adult ” RGM.792101

” Humerus juvenile ” RGM.792102

” ” adult ” RGM.792103

” ” adult ” RGM.792104

Prolagus sardus Femur juvenile Late Pleistocene; Monte San Giovanni, Sardinia NMB Ty. 4974

” ” adult ” NMB Ty. 4977

” ” adult Late Pleistocene; Grotta Nicolai, Sardinia NMB Ty.12656

” ” adult ” NMB Ty.12657

” ” adult Late Pleistocene; Isola di Tavolara, Sardinia NMB Ty.12658

” ” adult ” NMB Ty.12659

Prolagus oeningensis Femur juvenile Middle Miocene; La Grive, France PIMUZ A/V 4532

” adult PIMUZ A/V 4532

” ” adult ” PIMUZ A/V 4532

” Humerus adult ” PIMUZ A/V 4532

” ” adult ” PIMUZ A/V 4532

Megaloceros giganteus Tibia adult Late Pleistocene; Baunmore Townland, Rep. of Ireland NMING:F21306/14
(continued on next page)
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Table 1 (continued)
Species Object Ontogenetic

stage
Geological age; locality Specimen number

Sinomegaceros yabei Tibia juvenile Late Pleistocene; Kumaishi-do Cave, Miyama,
Hachiman-cho, Gujo City, Gifu Prefecture, Japan

OMNH QV-4067

” Tibia adult ” OMNH QV-4068

” Femur juvenile ” OMNH M-087

” Femur adult ” OMNH QV-4062

Pudu puda Femur adult Tiergarten Schönbrunn, Vienna, Austria NMW 60135

Hippopotamus minor ” juvenile Late Pleistocene; Kissonerga, Cyprus CKS 110/B

” ” juvenile ” CKS 122/B

” ” subadult ” CKS 117

” Tibia adult ” CKS 215

Paraceratherium sp. Rib adult Late Oligocene; Gözükizilli, Turkey MTA-TTM 2006-1209

Deinogalerix sp. Femur adult Late Miocene; Gervasio 1, Gargano, Italy RGM.178017

” Humerus adult Late Miocene; Chiro 20E, Foggia, Gargano, Italy RGM.425360

Notes.
Institutional Abbreviations: CKS, Cyprus Kissonerga collection of the University of Athens; MTA, Natural History Museum, The General Directorate of Mineral
Research and Exploration, Ankara, Turkey; NMB, Naturhistorisches Museum Basel, Switzerland; NMING, National Museum of Ireland—Natural History; NMW,
Naturhistorisches Museum Wien, Austria; OMNH, Osaka Museum of Natural History, Japan; PIMUZ, Paläontologisches Institut und Museum, Universität Zürich,
Switzerland; RGM, Rijksmuseum voor Geologie en Mineralogie (now Netherlands Centre for Biodiversity Leiden).

MAMMALIAN BONE HISTOLOGY—WORKS
BEFORE 1935
The initial contribution on the bone palaeohistology of mammals was performed by

Quekett (1849a), Quekett (1849b) and Quekett (1855) as part of comprehensive studies

dealing with the bone cortex of not only mammals but also fish, reptiles, and birds. He

described the tissue from mammalian long bones including an extinct rhinocerotid and

equid, the extinct giant deer Megaloceros giganteus, the extinct proboscidean Mastodon,

fossils of xenarthrans such as Megatherium, and humans. Quekett (1849a), Quekett (1849b)

and Quekett (1855) described in these taxa Haversian canals, bony laminae, bone-cells,

and canaliculi as well as a the typical three layered composition of cranial bones, ribs,

and scapulae displaying a diploe structure within two thin compact layers. Later, Aeby

(1878) concentrated on taphonomical effects and compared bone tissue of reptiles, birds,

and mammals. Then, Kiprijanoff (1881) illustrated the bone cortex of the sperm whale

(Physeter macrocephalus) in a comparative study of fossil material from Russia. Schaffer

(1890) described the bone tissue of several mammals, including sirenians from the Eocene,

Oligocene, and Miocene (Halitherium), a proboscidean from the Miocene (Mastodon),

an undetermined fossil cetacean, and artiodactyls (an undetermined artiodactyl referred

to an antelope and Hippopotamus, both from the Pliocene). Schaffer also investigated

Artiodactyla (Sus scrofa, Capreolus), Carnivora (Ursus spelaeus), Rodentia (Arvicola),

as well as undetermined long and skull bones, all from the Pleistocene. Foote (1911a)

and Foote (1911b) examined in a comprehensive study the femoral bone cortex of extant

amphibians, birds, and mammals including marsupials, rodents, lagomorphs, carnivorans,

‘ungulates’, and primates. Nopcsa & Heidsieck (1934) studied reptile bones and the ribs of
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sirenians (Halitherium). In his comparative work, Gross (1934) studied the bone cortex of

the proboscidean Mammuthus.

BONE HISTOLOGY OF EXTINCT AND EXTANT CYN-
ODONT CLADES
Non-mammalian cynodonts
Cynodonts represent the last major synapsid lineage to appear in Earth history with

mammals as living representatives. Many articles have been published on non-mammalian

cynodont histology in recent years (e.g., Ricqlès, 1969; Botha & Chinsamy, 2000; Botha

& Chinsamy, 2004; Botha & Chinsamy, 2005; Ray, Botha & Chinsamy, 2004; Chinsamy

& Abdala, 2008; Botha-Brink, Abdala & Chinsamy, 2012; Chinsamy-Turan, 2012b).

Fibrolamellar bone is present to a varying degree in all cynodonts. Considerable variation

in vascular density and orientation and the presence/absence of growth marks such as

LAGs are evident. When observed within the phylogenetic context, there is an overall

increase in bone deposition rate. This is indicated by an increasing prevalence of highly

vascularised fibrolamellar bone in phylogenetically later cynodonts (Botha-Brink, Abdala

& Chinsamy, 2012). Several factors are proposed to influence the microstructure and

therefore responsible for the aforementioned variability: phylogeny, biomechanics,

ontogeny, body size, lifestyle preferences, and environmental influences (Cubo et al., 2005;

Kriloff et al., 2008; Botha-Brink, Abdala & Chinsamy, 2012). Padian (2013) emphasised that

the correlation between fibrolamellar bone and high growth rates, and endothermy is still

valid, although fibrolamellar bone is known to occur in rare cases in ectothermic reptiles

such as crocodiles and turtles.

Multituberculata and early mammals
Histological studies of multituberculates (see Fig. 2 for mammalian groups discussed

below) and in general stem mammals are scarce. Enlow & Brown (1958) described a

section of a mandible from Ptilodus. Its cortex consisted of lamellar bone with a central

region of indistinct and unorganised lamellae, in which lacunae and cell spaces as well as

radial vascular canals were present. Morphological studies have suggested different kinds

of locomotion within the group (saltatorial, fossorial, scansorial, and arboreal; Kielan-

Jaworowska, Cifelli & Luo, 2004), which might be reflected in the microstructure of the ap-

pendicular bones. Chinsamy & Hurum (2006) compared the bone tissue from long bones

and one rib of multituberculates, Morganucodon, and early mammals. They showed that

Morganucodon and multituberculates (Kryptobataar, Nemegtbataar) were characterised by

fibrolamellar/woven-fibred bone at early stages of ontogeny and later on by parallel-fibred

or lamellar bone. Their findings pointed towards relatively high growth rates compared

to the late Mesozoic eutherians Zalambdalestes and Barunlestes with periodic growth

pauses as indicated by the occurrence of LAGs. Comparisons of morganucodontid and

early mammalian bone microstructure with that of non-mammalian cynodonts, extant

monotremes, and placentals indicated significant differences in the rate of osteogenesis

in the various groups. The authors concluded multituberculates and Mesozoic eutherians
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Figure 2 Phylogeny of Cynodontia focussing on groups discussed, based on Luo & Wible (2005), Luo
(2011), Meredith et al. (2011) and O’Leary et al. (2013). Notoungulates and Pantodonta are not included
given their controversial systematic position.

to have had slower growth rates than modern monotremes and placentals and that the

sustained, uninterrupted bone formation among multituberculates may have been an

adaptive attribute prior to the K–Pg event, but that a flexible growth strategy implying

periodic growth pauses of the early eutherians was more advantageous thereafter.

Monotremata
Monotremes are represented today by three genera (Ornithorynchus, Tachyglossus, and

Zaglossus) each with specialized skeletal morphology. Their poor fossil record includes

material from Australia and South America (Pascual et al., 1992; Musser & Archer, 1998;

Musser, 2003). Accordingly, the bone histology of monotremes has been scarcely studied.
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Enlow & Brown (1958) were the first to describe sections of long bones and ribs of

Platypus and Echidna. Chinsamy & Hurum (2006) described the femoral bone tissue of

Ornithorhynchus as being a mixture of woven-fibred bone with lamellar bone deposits.

Additionally, large parts of the compacta consisted of compacted coarse cancellous bone.

The type of vascularisation and the orientation of the vascular channels varied from simple

blood vessels with longitudinal, circular and radial orientations to primary osteons with

longitudinal and reticular arrangements. Only isolated secondary osteons were present.

Marsupialia
Despite marsupials being the second most diverse group of living mammals, so far their

bone histology is poorly studied. Early contributions are those of Foote (1911a), Enlow &

Brown (1958) and Singh, Tonna & Gandel (1974) on the marsupial Didelphis. Our study

of new samples of the white-eared opossum Didelphis albiventris and the latrine opossum

Lutreolina crassicaudata (Table 1) essentially confirms their observations.

The bone cortex of long bones from Didelphis is characterised by a compacta

surrounding the medullary cavity. The bone matrix is dominated by parallel-fibred bone

(Figs. 3A–3C). Towards the inner part, the amount of woven-fibred bone increases (Fig.

3C). In most specimens remodelling is restricted to isolated secondary osteons as described

by Enlow & Brown (1958). Inner and outer circumferential layers are present. The inner cir-

cumferential layer consists of lamellar bone. The outer circumferential layer is dominated

by parallel-fibred bone. The thickness of this layer varies between specimens. Except in one

specimen with one LAG, no LAGs are present in the analysed specimens. The bone cortex

is well vascularised throughout (see also Enlow & Brown, 1958), with an irregular pattern,

i.e., radial, oblique, but mainly longitudinal primary vascular canals. Lutreolina shows

a primary bone matrix that is dominated by parallel-fibred bone with simple primary

longitudinal and radial to oblique vascular canals (Figs. 3D–3F). Remodelled areas are

characterised by partially oblique secondary osteons (Fig. 3F). The inner circumferential

layer is thin and formed by lamellar bone. The outer circumferential layer is, if present,

formed by parallel-fibred bone. LAGs are not developed. The vascularity is less dense than

in Didelphis. The combination of parallel-fibred bone with low vascularisation suggests

slow apposition rates (Chinsamy-Turan, 2012b; Huttenlocker, Woodward & Hall, 2013).

Xenarthra
Early contributions on xenarthran bone histology are Quekett (1849a), Quekett (1855)and

Enlow & Brown (1958). Because dermal armour is an outstanding feature of xenarthrans,

several studies focussed on the histology of osteoderms (e.g., Wolf, 2007; Wolf, 2008;

Chávez-Aponte et al., 2008; Hill, 2006; Vickaryous & Hall, 2006; Krmpotic et al., 2009;

Vickaryous & Sire, 2009; Wolf, Kalthoff & Martin Sander, 2012; Da Costa Pereira et al., 2012).

These data, shed light on soft tissue structures of extinct xenarthrans, their phylogenetic

relationships, and their functional morphology. The most detailed study up to date dealing

with xenarthran long bone histology was performed by Straehl et al. (2013) (but see

also Ricqlès, Taquet & Buffrénil, 2009). Straehl and colleagues sampled 67 long bones of

19 genera and 22 xenarthran species and studied bone microstructure as well as bone
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Figure 3 Femoral bone cortex of marsupials. Histological images (A) and (D) in linear polarised light
and (B), (C), (E), and (F) in crossed polarised light. (A, B) Outer bone cortex of adult Didelphis albiventris
specimen PIMUZ A/V 5279. Note the occurrence of simple primary longitudinal vascular canals and pri-
mary osteons in mainly parallel-fibred bone tissue. (C) Inner bone cortex of the same specimen displaying
a distinct endosteal lamellar layer. (D, E) Bone cortex of adult Lutreolina crassicautada specimen PIMUZ
A/V 5275. (F) Inner cortex of same specimen. Note the occurrence of primary longitudinal vascular
canals and primary osteons as well as Haversian systems within the parallel-fibred bone.

compactness trends. Primary bone tissue consists of a mixture of woven, parallel-fibred,

and lamellar bone. Irregularly shaped vascular canals show longitudinal, reticular, or radial

orientation. Anteaters are the only sampled taxa showing laminar orientation. Armadillo

long bones are characterised by obliquely oriented secondary osteons in transverse

sections, reflecting their complex morphology. LAGs are common in xenarthrans although

being restricted to the outermost part of the bone cortex in armadillo long bones. More-

over, cingulates (armadillos and closely relative extinct taxa) show lower bone compactness

than pilosans (sloths) and an allometric relationship between humeral and femoral com-

pactness. Straehl and colleagues emphasise that remodelling is more developed in larger

taxa as indicated by dense Haversian bone in adult specimens and discuss increased loading

as a possible cause. Amson et al. (2014) assessed the timing of acquisition of osteosclerosis

(increase in bone compactness) and pachyostosis (increase in bone volume) in long bones

and ribs of the aquatic sloth Thalassocnus from the Neogene of Peru as the main osteohis-

tological modifications of terrestrial tetrapods returning to water. They showed that such

modifications can occur during a short geological time span, i.e., ca 4 Ma. Furthermore,

the strongly remodelled nature of xenarthran bone histology allowed the reassignment of a

rib previously ascribed to a sirenian to the aquatic sloth (Amson et al., 2015).

Afrotheria
Early contributions on the bone histology of afrotherians are Aeby (1878) and Schaffer

(1890) on sirenians and proboscideans, Nopcsa & Heidsieck (1934) on sirenians,

Vanderhoof (1937), Enlow & Brown (1958), Kaiser (1960), Mitchell (1963) and Mitchell
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(1964) on sirenians and desmostylians, and Ezra & Cook (1959) as well as Cook, Brooks &

Ezra-Cohn (1962) on elephantids. Ricqlès & Buffrénil (1995) described pachyosteosclerosis

in the sirenian Hydrodamalis gigas. Buffrénil et al. (2008) and Buffrénil et al. (2010) studied

the ribs of 15 extant and extinct sirenian species representing 13 genera, one desmostylian,

and 53 specimens of 42 extant species of terrestrial, aquatic, or amphibious mammals. In

those studies, primary bone tissue in young specimens is constituted by fibrolamellar bone,

whereas with increasing age, parallel-fibred bone tissue with longitudinal vascular canals

and frequent LAGs is deposited. The authors showed that pachyostosis is subsequently re-

gressed during evolution of the clade. In contrast, only by the end of the Eocene, osteoscle-

rosis was fully developed. Furthermore, Buffrénil et al. argued that variable degrees of

pachyostosis and osteosclerosis in extinct and extant sirenians were caused by similar het-

erochronic mechanisms bearing on the timing of osteoblast activity. Hayashi et al. (2013)

analysed the histology of long bones, ribs, and vertebrae of four genera of desmostylians

(usually considered as tethytherians, but see Cooper et al., 2014) and 108 specimens of

extant taxa (ribs: 19 taxa, humeri: 62 taxa, femora: 16 taxa, vertebrae: 11 taxa) with various

phylogenetic positions and ecologies by using thin sections and CT-scan data. Primary

bone tissue in desmostylians consisted of parallel-fibred bone with multiple LAGs. By

comparisons with extant mammals, they found that Behemetops and Palaeoparadoxia show

osteosclerosis, Ashoroa pachyosteosclerosis (i.e., a combination of increase in bone volume

and compactness), while Desmostylus shows an osteoporotic-like pattern (i.e., decrease in

bone compactness) instead. Since it is known from extant mammals that increasing bone

mass provides hydrostatic buoyancy and body trim control suitable for passive swimmers

and shallow divers, whereas spongy bones are associated with hydrodynamic buoyancy

control in active swimmers, they concluded that all desmostylians achieved an essentially

aquatic lifestyle. However, the basal taxa Behemotops, Paleoparadoxia, and Ashoroa could be

interpreted as shallow water swimmers hovering slowly or walking on the bottom, whereas

the more derived taxon Desmostylus was a more active swimmer. The study has therefore

shown that desmostylians are the second mammalian group after cetaceans to show a shift

from bone mass increase to decrease during their evolutionary history.

As several tethytherian taxa are aquatic, the question of the ancestral lifestyle of the

clade was raised. A femur and a humerus of the Eocene proboscidean Numidotherium were

sampled by Mahboubi et al. (2014). These authors recognised “large medullar cavities”

(p. 506), which were considered suggestive of terrestrial habits. However, the illustrations

provided by Mahboubi et al. (2014) show no opened medullary cavity, and trabecular bone

occupies most of the cross-sectional area (labelled “medullary bone” by Mahboubi et al.,

2014: Fig. 4).

Sander & Andrassy (2006) described the bone tissue of long bones from Mammuthus

primigenius as laminar fibrolamellar bone. Due to poor preservation of the fossil bone

tissue, the authors were not able to definitely confirm the occurrence of LAGs. The valuable

study of Curtin et al. (2012) dealt with two aspects of bone histology. First, they described

for the first time the bone tissue of fifteen bones (femora and tibiae) of eleven specimens of

late-term-fetal, neonatal, and young juvenile extant and extinct elephantids representing
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Figure 4 Histological features of the femur of Deinogalerix sp. (A) Life reconstruction of Deinogalerix
koenigswaldi in comparison to the extant hedgehog Erinaceus (modified from Agust́ı & Antón, 2002).
(B) Adult right femur (specimen RGM.178017) in anterior view. Red bar indicates area and plane of
sectioning. (C) Lateral bone cortex in crossed polarised light showing parallel-fibred bone and 5 LAGs.
Occurrence of LAGs indicated by white arrows.

four species, including the insular dwarf mammoth Mammuthus exilis from the Late

Pleistocene of Santa Rosa Island of the Californian Channel Islands. The bone tissue

they found was predominantly laminar fibrolamellar bone. Remarkable was a distinct

change in tissue microstructure marking the boundary between prenatal and postnatal

bone deposition, i.e., a higher amount of large longitudinal vascular canals suggesting

slightly higher postnatal growth rates. Secondly, besides histological thin sections, Curtin

and colleagues employed synchrotron microtomography (SR-µCT) for noninvasively

obtaining high-resolution image-“slices.” They showed that, in comparison to histological

sectioning, the SR-µCT data lack shrinkage, distortion or loss of tissue, as is usually the

case in histological sections. However, they stated that the quality of histological detail

observable is by far superior in histological thin sections. The virtual microtomography

enabled the authors to rank specimens by ontogenetic stage and quantified vascular

patterns. They showed that bones of the Columbian mammoth, M. columbi had the

thickest and largest number of laminae, whereas the insular dwarf mammoth, M. exilis,

was characterised by its variability in that regard. The authors concluded that, qualitatively,

patterns of early bone growth in elephantids are similar to those of juveniles of other

tetrapods, including dinosaurs.

Notoungulata
Notoungulates are an extinct, largely diverse, endemic group of Cenozoic South American

mammals, ecologically similar to current hoofed ungulates. Only four taxa (Toxodon,

Nesodon, Mesotherium, and Paedotherium) were subject to histological studies (Ricqlès,

Taquet & Buffrénil, 2009; Forasiepi et al., 2015; Tomassini et al., 2014) from the more

than 150 species recognised in the group. The bone samples were characterised by a

well-vascularised compact cortex with mostly longitudinal vascular canals. Few irregularly

oriented canals could be found. Osteocyte lacunae were large and very abundant.
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Haversian bone was recorded in Toxodon, Nesodon, and Mesotherium. This is a common

feature in mammalian bone (Enlow & Brown, 1958), probably caused by increased loading

in large-bodied species as discussed by Straehl et al. (2013) for xenarthrans. Areas of

primary bone matrix were visible between secondary osteons, which displayed a mostly

parallel-fibred to lamellar organisation. Localized areas of woven bone characterised

by round osteocyte lacunae were also present. The most external layer of the cortex

consisted of parallel-fibred bone with very few secondary osteons and was in clear

contrast to the heavily remodelled inner cortex. The study of Tomassini et al. (2014) on

the palaeohistology of hemimandibles of Paedotherium bonaerense from the early Pliocene

of Argentina discussed the processes affecting fossil remains before and after burial.

Pantodonta
Pantodonts are an extinct group of mammals that comprised large-bodied, heavily built

omnivores and herbivores from the Paleocene and Eocene of Laurasia. Only one study

(Enlow & Brown, 1958) examined their bone histology. A rib of the Eocene pantodont

Coryphodon showed primary lamellar bone with longitudinal vascularisation.

Laurasiatheria—Eulipotyphla
The comprehensive work of Enlow & Brown (1958) was the first contribution on

eulipotyphlan bone histology. They described the primary bone tissue of a Talpa tibia

and a Sorex mandible as almost completely avascular lamellar bone. A humerus and

radius from a juvenile showed in their outer cortex a “disorganised” (Enlow & Brown,

1958: p. 190) structure called it, being accompanied by oblique, radial, circumferential or

longitudinal simple vascular canals). Klevezal (1996) discussed eulipotyphlan histology

by emphasising growth marks (LAGs) in the bone cortex of mandibles and their value for

skeletochronology. Meier et al. (2013) studied the bone compactness of humeri from eleven

extant and eight fossil talpid species and two non-talpid species. They could not detect

any pattern of global compactness related to biomechanical specialization, phylogeny, or

size and concluded that at this small size the overall morphology of the humerus plays a

predominant role in absorbing load. Morris (1970) evaluated the applicability of LAGs in

extant hedgehog mandibles and found high correlation between age and LAG count.

In the giant galericine “hedgehog” Deinogalerix from the palaeoisland of Gargano

(Table 1), Italy, the bone tissue at the inner layer of femur RGM.178017 and humerus

RGM.425360 is characterised by parallel-fibred bone, whereas the outer layer and the

trabecular bone is composed of lamellar bone (Figs. 4A–4C). In the bone cortex, simple

longitudinal vascular canals and primary osteons are present. Primary bone tissue is

partially replaced by secondary osteons. In a femur corresponding to an adult individual,

five LAGs can be distinguished (Fig. 4C) indicating a minimum age of five years.

Chiroptera
Enlow & Brown (1958) described the primary bone tissue in chiropterans as lamellar bone

surrounding a non-cancellous medullary cavity. Klevezal (1996) described the presence

of LAGs in chiropteran bone tissue. Herdina et al. (2010) described the bone tissue of the
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baculum from three Plecotus species as lamellar bone surrounding a small medullary cavity

similar to the arrangement of a Haversian system whereas the ends of the bone consisted of

woven-fibred bone.

Perissodactyla
Enlow & Brown (1958), Sander & Andrassy (2006), Cuijpers (2006), and Hillier & Bell

(2007) described long bones and ribs of fossil and extant equids as being primarily

plexiform fibrolamellar with longitudinal vascular canals, accompanied by extensive

remodelling including the occurrence of dense Haversian bone. Zedda et al. (2008)

found much Haversian tissue in extant horses and cattle. Osteons of the horse were more

numerous and composed of a higher number of well-defined lamellae when compared

to those of cattle. Diameter, perimeter, and area of osteons and Haversian canals were

always higher in horses than in cattle and this pattern was related to their different

locomotor behaviour. However, Hillier & Bell (2007) found non-significant differences

between Haversian canals of horses and cattle. Enlow & Brown (1958) additionally

described a stratified, circumferential pattern of vascular canals in a mandible of a Miocene

chalicothere (Moropus), i.e., laminar fibrolamellar bone tissue sensu Francillon-Vieillot et

al. (1990). The authors demonstrated an identical pattern of bone tissues and vascular

canals in several ribs of fossil tapirs from the Eocene. Sander & Andrassy (2006) described

bone tissue of tibiae of Late Pleistocene woolly rhinocerotid (Coelodonta antiquitatis).

They found predominantly laminar fibrolamellar bone as primary bone type besides

a high amount of Haversian bone. Ricqlès, Taquet & Buffrénil (2009) described the

distribution of primary and secondary bone as well as vascularisation in thin sections

of several extant and extinct perissodactyls including chalicotheres. Cooper et al. (2014)

considered anthracobunids as stem-perissodactyls, and concluded osteosclerosis in limb

bones and ribs of anthracobunids to be consistent with the occupation of shallow-water

habitats. Martinez-Maza et al. (2014) analysed the bone tissue of humeri, femora, tibiae

and metapodials of the equid Hipparion concudense from the upper Miocene site of Los

Valles de Fuentidueña (Spain) and showed that the number of growth marks is similar

across the different limb bones. They distinguished four age groups and determined

that Hipparion concudense tended to reach skeletal maturity during its third year of life.

Martinez-Maza et al. (2014) identified ontogenetic changes in bone structure and growth

rate and distinguished three histological stages of ontogeny corresponding to immature,

subadult, and adult individuals. Nacarino-Meneses, Jordana & Köhler (in press) studied an

ontogenetic series of Equus hemionus (Asiatic wild ass). They analysed growth marks in

femora of different ontogenetic stages. Bone tissue types and vascular canal orientation

varied both during ontogeny and within a cross-section. Skeletochronology generally fitted

previous age estimates from dental eruption patterns. A wild adult female attained skeletal

maturity at the age of four, a wild male at five years of age.

A rib of the giant rhinocerotoid Paraceratherium sp. (Fig. 1G and Table 1) from the Late

Oligocene of Turkey displays dense Haversian bone (Fig. 1I), whereas the bone cortex is

heavily recrystallised and does not allow observations on primary bone.
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Cetartiodactyla
Enlow & Brown (1958) gave a comprehensive overview on the bone histology of artio-

dactyls. The Miocene artiodactyls Merycoidodon and Leptomeryx showed in mandibles,

maxillas, and ribs a reticular pattern of primary vascularisation next to secondary Haver-

sian tissue. Extant taxa showed essentially plexiform fibrolamellar bone in long bones and

reticular bone tissue in skull bones and mandibles. Singh, Tonna & Gandel (1974) studied

the long bone tissue of a mature specimen of the blue duiker Cephalophus manticola,

and two perinatal specimens of the Indian sambar Cervus unicolor and the reindeer

Rangifer tarandus. Whereas Cephalophus showed primary longitudinal vascularisation,

the perinatal cervids revealed a reticular pattern of vascular canals. Plexiform fibrolamellar

bone (Figs. 1B, 1C, 1E and 1F) was confirmed as primary bone tissue in artiodactyls in sub-

sequent publications (Klevezal, 1996; Horner, Ricqlès & Padian, 1999; Cuijpers, 2006; Sander

& Andrassy, 2006; Hillier & Bell, 2007; Köhler et al., 2012; Maŕın-Moratalla, Jordana &

Köhler, 2013; Kolb et al., 2015; Jordana et al., in press). Maŕın-Moratalla et al. (2014) identi-

fied the primary bone tissue in bovids as laminar to plexiform. They studied 51 femora rep-

resenting 27 ruminant species in order to determine the main intrinsic or extrinsic factors

shaping the vascular and cellular network of fibrolamellar bone. Specifically, the authors

examined the correlation of certain life history traits in bovids, i.e., body mass at birth

and adulthood as well as relative age at reproductive maturity. Quantification of vascular

orientation and vascular and cell densities revealed that there is no correlation with broad

climatic categories or life history. Instead, the authors found correlation with body mass

since larger bovids showed more circular canals and lower cell densities than did smaller

bovids. Mitchell & Sander (2014) suggested a three front model consisting of an apposition

front, a Haversian substitution front, and a resorption front, and applied this model

successfully to a humerus of red deer Cervus elaphus. They found moderate apposition and

remodelling as well as slow resorption in the red deer specimen. Hofmann, Stein & Sander

(2014) examined the lamina thickness in bone tissue (LD) in sauropodomorph dinosaurs

and 17 mammalian taxa, including artiodactyls and perissodactyls. They found that LD is

relatively constrained within the groups and that mean mammalian LD differs significantly

from mean sauropodomorph LD. In suids, LD was higher than in other mammals. The au-

thors therefore concluded that laminar vascular architecture is most likely determined by a

combination of structural, functional as well as vascular supply and physiological causes.

For the present study, the bone cortex of one small (CKS 110/B), one intermediate

(CKS 122/B), and one large juvenile (subadult; CKS 117) of the extinct Pleistocene

dwarf hippopotamid of Cyprus, Hippopotamus minor (also called Phanourios minor,

see Van der Geer et al., 2010), were examined (Table 1). In the juvenile femora the bone

tissue is characterised by reticular to plexiform fibrolamellar bone with an endosteal,

inner circumferential layer consisting of lamellar bone (Fig. 5). The bone is generally

highly vascularised with primary longitudinal vascular canals and primary osteons

towards the outer part of the cortex. There are no Haversian systems in the small juvenile

(Fig. 5B), although their content increases during ontogeny and is highest in the subadult

specimen. Although heavily recrystallized, an adult tibia of Hippopotamus minor shows
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Figure 5 Bone cortex of Hippopotamus minor femora. (A) Life reconstruction (from Van der Geer
et al., 2010; drawing: Alexis Vlachos) of another Mediterranean dwarf hippopotamid from the Middle
Pleistocene of Crete. Since no life reconstruction of Hippopotamus minor is available, we here show the
one of Hippopotamus creutzburgi. Histological images (B), and (C) in linear polarised light, (D) in crossed
polarised light. (B) Small juvenile specimen CKS 110/B. (C) Intermediate sized juvenile specimen CKS
122/B showing reticular to plexiform vascularised bone. Note that the middle part mainly consists of
reticular bone. (D) Outer bone cortex of large juvenile specimen CKS 117 showing mainly parallel-fibred
bone. Black and grey areas indicate zones of recrystallisation due to diagenetic alteration of bone tissue.

strong remodelling with partially dense Haversian bone occurring from the inner to the

outermost part of the cortex. Towards the outer cortex of the subadult femur (Fig. 5D) and

typically for large mammals, the amount of parallel-fibred bone within the fibrolamellar

complex increases, indicating a decrease in growth rate.

Another taxon sampled for the current study is Sinomegaceros yabei (Table 1), which

is, as Megaloceros, a large-sized megacerine deer. Although a thorough description is

prevented by the suboptimal preservation of the specimens, some of their histological

features can be described here. The primary bone of the inner cortex is highly vascularised,

being formed by fibrolamellar tissue with a mostly plexiform vascularisation. The outer

cortex is in turn weakly vascularised. The adult femur OMNH QV-4062 features seven

LAGs (Fig. 6), with a 2.57 mm thick second growth zone, which is even greater than

the extreme values found in the elk, Alces and Megaloceros (Kolb et al., 2015), and which

indicates, as in the latter taxa, a high growth rate.

Several authors focused on the bone histology of cetaceans and sirenians for their

peculiar aquatic lifestyle. Enlow & Brown (1958) described the primary bone tissue of
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Figure 6 Histological features of Sinomegaceros yabei, the megacerine deer from the Pleistocene of
Japan. Histological images in linear polarised light of an adult femur (OMNH QV-4062) depicting
(A) the whole cross-section and (B) a close-up of the outer cortex. The red bar in (A) localises the
approximated position of the section on the life reconstruction (courtesy of Hirokazu Tokugawa), and
the red rectangle indicates the area of the close-up. (B) Note that seven LAGs are visible, as indicated by
white arrows.

skull bones and vertebrae of the porpoise (Phocoena phocoena) as featuring a reticular

vascularisation with a high amount of remodelling including the occurrence of dense

Haversian bone. Buffrénil and colleagues studied the microstructure of bone tissue from

baleen whales in several works. They found annually deposited well-defined LAGs in

mandibular bone tissue of the common porpoise, Phocoena phocoena (Buffrénil, 1982).

The humeral bone tissue of the common dolphin (Delphinus delphis) shows a cancellous
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texture without an open medullary cavity and during ontogeny more bone eroded than

deposited, indicating an osteoporotic-like process (Buffrénil & Schoevaert, 1988). Buffrénil

& Casinos (1995), by using standard microscopic methods, and Zylberberg et al. (1998), by

using scanning and transmission electron microscopy, studied the rostrum of the extant

Blainville’s beaked whale Mesoplodon densirostris, demonstrating a high density because of

hypermineralised tissue with longitudinal fibres in dense Haversian bone. Buffrénil, Dabin

& Zylberberg (2004) demonstrated that the petro-tympanic bone complex in common

dolphins consists of reticular to laminar fibrolamellar bone, initially being deposited as

loose spongiosa with hypermineralised tissue and without Haversian remodelling. Two

Eocene archaeocete taxa featured pachyostosis with hyperostosis (excessive bone growth)

of the periosteal cortex very similar to the condition present in some sirenians (Buffrénil et

al., 1990). The comparative study by Gray et al. (2007) analysed the ribs of ten specimens

representing five extinct cetacean families from the Eocene as they made their transition

from a terrestrial/semiaquatic to an obligate aquatic lifestyle over a 10-million-year period.

The authors compared those data to nine genera of extant mammals, amongst them

modern dolphins, and found profound changes in microstructure involving a shift in bone

function. The mechanisms of osteogenesis were flexible enough to accommodate the shift

from a typical terrestrial form to one presenting osteosclerosis and pachyosteosclerosis,

and then to osteoporosis in the first quarter of the evolutionary history of cetaceans.

The limb bones and ribs of Indohyus, a taxon closely related to cetaceans, featured

osteosclerosis, and considered indicative of the use of bottom-walking as swimming mode

(Thewissen et al., 2007; Cooper et al., 2012). Ricqlès, Taquet & Buffrénil (2009) published

the description of a rediscovered collection of thin sections from the 19th century French

palaeontologist Paul Gervais including sections of cetacean bones. The most recent study

on the bone microstructure of cetaceans is the one of Houssaye, Muizon & Gingerich (2015)

analysing the bone microstructure of ribs and vertebrae of 15 archaeocete specimens,

i.e., Remingtonocetidae, Protocetidae, and Basilosauridae using microtomography and

virtual thin-sectioning (i.e., CT scanning). They found bone mass increase in ribs and

femora, whereas vertebrae are essentially spongeous. Humeri changed from compact

to spongeous whereas femora in basilosaurids became, once spurious for locomotion,

reduced, displaying strong osteosclerosis. The authors concluded that Remingtonocetidae

and Protocetidae probably swam in shallow water, whereas basilosaurids, for their osseous

specializations similar to those of modern cetaceans, are considered capable of active

swimming in the open-sea.

Creodonta
As it is the case for many other vertebrate taxa, Enlow & Brown (1958) are still the only

workers who analysed the “creodonts,” mammalian predators from the Paleogene and

Early Neogene of North America, Africa, and Eurasia. Bone tissue from mandibles, ribs,

and long bones consists of primary lamellar bone with longitudinal/radial vascularisation

and secondary Haversian tissue, generally similar to the bone tissue found in modern

carnivorans.
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Carnivora
Enlow & Brown (1958) studied the mandible bone tissue of Ursus and found primary

reticular bone and secondary dense Haversian bone, whereas a rib showed only dense

Haversian bone. In the outer part, the bone cortex of Ursus consisted of plexiform bone.

Chinsamy, Rich & Vickers-Rich (1998) found several LAGs in the zonal bone cortex of

the polar bear. Hayashi et al. (2013) reported that the polar bear (Ursus maritimus) has

microanatomical features close to those of active swimmers in its limb bones, particularly

in the humerus. The microanatomy of the femur is intermediate between aquatic

and terrestrial taxa, despite its morphological features, which do not show particular

adaptation for swimming. However, U. maritimus long bones still display a true medullary

cavity. The authors suggested that this result, notably the apparently stronger adaptation of

the humerus for an aquatic mode of life, is probably linked to its swimming style because

U. maritimus uses the forelimbs as the main propulsors during swimming.

Mephitis (skunk), Procyon (raccoon), Mustela (badger), Felis (cat), Canis (dog), and

Urocyon (fox) all possess reticular and radial primary bone (Enlow & Brown, 1958).

However, the bone cortex of adult specimens in these taxa was dominated by secondary

Haversian bone. The outer cortex of Canis was composed of primary plexiform bone

tissue. The mongoose (Herpestes) showed in its femur primary longitudinal vascularised

bone devoid of Haversian remodelling whereas the bone cortex of the American mink

(Neovison vison) was composed of reticular and Haversian bone.

Singh, Tonna & Gandel (1974) found in felids and mustelids lamellar bone with radial

to longitudinal vascularisation. Klevezal & Kleinenberg (1969) found annual LAGs in the

bone cortex of carnivorans. Several works dealt with the accuracy of LAGs in carnivorans

in comparison to dental histology as a tool of age determination: Johnston & Beauregard

(1969) (Vulpes), Pascal & Delattre (1981) (Mustela), King (1991) (Mustela), Klevezal (1996)

(Mustela, Martes), Pascal & Castanet (1978) (Felis). The outcome was always in favour of

dental cementum analysis. Buffrénil & Pascal (1984) concluded that in mink mandibles the

deposition of LAGs is not strictly annual by using fluorescein and alizarin labelling.

The long bones of Valenictus, a Pliocene walrus (Odobenidae), were described as being

osteosclerotic (Deméré, 1994). Nakajima & Endo (2013) and Nakajima, Hirayama & Endo

(2014) analysed humeral microanatomy of multiple carnivore taxa including terrestrial,

semi-aquatic and fully-aquatic taxa. The authors used CT-scans and found variations of

bone organisation in the centre of bone ossification and in the humeral head among car-

nivorans including different modes of life. Cancellousness in the centre of bone ossification

is relatively low in the semiaquatic taxa like the sea otter and is relatively high both in

terrestrial taxa like the wolverine and highly aquatic taxa such as the southern elephant

seal. Trabeculae in humeral heads are fine and well-organised in terrestrial to semi-aquatic

taxa, while trabeculae from aquatic taxa are rather coarse and randomly oriented.

Euarchontoglires–Rodentia
Early contributions to rodent bone histology were made by Foote (1911a), Enlow & Brown

(1958) as well as Singh, Tonna & Gandel (1974). More recent works are by Klevezal (1996)
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on rest lines and age determination, Martiniaková et al. (2005) on rat bone histology,

and Garcia-Martinez et al. (2011) on the bone histology of dormice. The bone tissue

of rodents mainly consists of lamellar or parallel-fibred bone with reticular, radial or

longitudinal vascularisation as primary bone tissue. Development of Haversian systems

is rare. Geiger et al. (2013) studied the bone cortex of a femur of the giant caviomorph

Phoberomys pattersoni from the Miocene of Trinidad, and found it to be composed of

lamellar-zonal bone. The sampled specimen showed alternating layers of compacted coarse

cancellous bone and parallel-fibred/lamellar primary bone with a reticulum-like structure.

The authors reported Haversian tissue absent. Montoya (2014) examined the bone

microstructure of the extant subterranean rodent Bathyergus suillus (Bathyergidae). The

author found thickening compacta during ontogeny in contrast to cursorial and bipedal

mammals. Females of Bathyergus suillus displayed a wide variation of microanatomical

parameters with resorptive activity already from juvenile ontogenetic stages.

The femoral bone cortex of Mikrotia magna, a giant insular murine rodent from the

Late Miocene former island of Gargano (Italy; Table 1), consists merely of compact bone.

The bone matrix of the middle part of the cortex is dominated by parallel-fibred bone

with poor longitudinal but mainly reticular vascularisation being pervaded by mainly

irregularly shaped and obliquely oriented secondary osteons (Figs. 7A–7C), producing

a distinct disorganised pattern (Enlow & Brown, 1958). Additionally, delimited areas of

fibrolamellar bone occur within the middle cortex. The inner and outer parts of the cortex

are formed by lamellar bone with poor longitudinal but mainly radial vascularisation.

The thickness of those parts varies throughout the circumference of the bone cortex and

between samples, and intercalated thin layers consisting of woven-fibred bone are present.

All the samples display LAGs. In the adult femur RGM.792085, four to five LAGs were

counted. Resorption cavities are present close to the medullary cavity.

Thin sections of the femur of the dormouse Leithia sp. from the Pleistocene of Sicily

(Table 1) are characterised by a compact cortex. The primary bone matrix, which is only

present in the outermost periosteal part of the cortex, was formed by avascular lamellar

bone. The rest of the cortex consists of compact coarse cancellous bone displaying thick

layers of endosteal lamellar bone with poor longitudinal to radial vascularisation and areas

of endosteal infilling of intertrabecular spaces with lamellar bone (Figs. 7D–7F; Enlow,

1962; Francillon-Vieillot et al., 1990; Prondvai et al., 2012). The compact coarse cancellous

bone is in turn invaded by mainly irregularly shaped and obliquely oriented secondary

osteons. LAGs are absent in the sampled specimen. Large resorption cavities and small

areas of fibrolamellar bone occur.

Lagomorpha
For this study four different species of ochotonids (Prolagus) were investigated (Table 1).

One mainland form (Prolagus oeningensis from La Grive France) and three island forms:

the giant species Prolagus sardus (Sardinia, Italy) (Fig. 8A) and P. imperialis along with

P. apricenicus, both from Gargano, Italy. Generally, the bone cortex of the femur and

the humerus of Prolagus is compact. It is characterised by a bone matrix changing from
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Figure 7 Bone histology of fossil island rodents. Histological images (A) and (D) in linear polarised
light, (B) and (E) in crossed polarised light, and (C) and (F) in crossed polarised light with additional use
of lambda compensator. (A–C) Adult Mikrotia sp. femur (specimen RGM.792085) showing disorganised,
mainly parallel-fibred/lamellar bone in its centre. (D–F) Adult femur of Leithia sp. specimen NMB G
2160 displaying a mainly compacted coarse cancellous cortex of endosteal lamellar bone with areas of
trabecular infilling and remodelling. Please note that periosteal lamellar bone is only present close to the
bone surface.

fibrolamellar to parallel-fibred into lamellar bone from the inner cortex towards the OCL

(Figs. 8B–8F). An endosteal lamellar layer is present. In most specimens the fibrolamellar

or parallel-fibred bone is partly pervaded by mainly irregularly shaped and obliquely

oriented secondary osteons, producing the “subendosteal layer of Haversian-like bone”

sensu Pazzaglia et al. (2015: Fig. 6B). The primary bone cortex is in general weakly

vascularised. Within the primary fibrolamellar and parallel-fibred bone, primary and

simple longitudinal vascular canals as well as radial and reticular vascular canals occur

and are arranged in an irregular manner. LAGs indicating minimum ages are present in

some adult specimens. Prolagus oeningensis (Figs. 8B and 8C) has a maximum number

of three LAGs, Prolagus apricenicus a maximum of two LAGs, and Prolagus imperialis as

well as Prolagus sardus each have a maximum of five (Figs. 8D–8F). Femora from juvenile

Prolagus oeningensis (PIMUZ A/V 4532) and Prolagus sardus (NMB Ty. 4974; Fig. 8E) as

well as a humerus from a juvenile Prolagus imperialis (RGM.792102) are characterised in

the inner and middle part of the cortex by longitudinal, radial, and reticular vascularised

fibrolamellar bone with a high amount of woven bone. Towards the bone surface, the

amount of parallel-fibred bone increases and the vascularisation changes into longitudinal

simple and primary vascular canals. Primary bone tissue in juveniles is already invaded

by mainly irregularly shaped and obliquely oriented secondary osteons in the inner and

middle part of the cortex. Our observations on lagomorph bone histology essentially agree

with Foote’s (1911a) and Enlow & Brown’s (1958) observations on lagomorphs. The same is

the case for the study of Pazzaglia et al. (2015), who studied rabbit (Oryctolagus cuniculus)

femora of different ontogenetic stages via micro CT-scanning. However, what they call
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Figure 8 Bone histology of fossil ochotonids. (A) Life reconstruction of Prolagus sardus (“Prolagus3,”
courtesy of Wikimedia Commons—http://commons.wikimedia.org). Histological images (B), (D), (F)
in linear polarised light, (C) in crossed polarised light with additional use of lambda compensator, and
(E) in crossed polarised light. (B, C) Lateral cortex of adult Prolagus oeningensis femur PIMUZ A/V
4532 showing fibrolamellar bone partially pervaded by irregular secondary osteons in the inner part
and mainly parallel-fibred bone in the middle and outer part as well as three LAGs. (D) Lateral cortex
of adult Prolagus imperialis femur RGM.792096 displaying an identical pattern of bone tissue but five
LAGs. (E) Posteromedial cortex of juvenile Prolagus sardus femur NMB Ty. 4974 showing an area of
fibrolamellar bone with a high amount of woven-fibred bone in the inner part and an increasing amount
of parallel-fibred bone in the middle and outer part of the cortex. (F) Outer anterolateral cortex of adult
Prolagus sardus femur NMB Ty.12659 displaying five LAGs. Note that the line in the lower third of the
cortex is a resorption line (RL) and not a LAG. Occurrence of LAGs indicated by white or yellow arrows.

laminar respectively plexiform bone tissue is not in agreement with the nomenclature

of Francillon-Vieillot et al. (1990) used by us, i.e., longitudinal, radial, and reticular

vascularisation. Moncunill-Solé et al. (in press) provided mass estimates of 350 g for the

extinct continental Prolagus cf. calpensis, and 280–600 g for Prolagus apricenicus based

on femoral measurements. Bone histological analysis suggests a longevity for Prolagus

apricenicus of at least seven years (five years more than in our sample of P. apricenicus).

Again, the bone histological traits observed in Moncunill-Solé et al. (in press) are essentially

in agreement with our findings in Prolagus.

Primates
Again, Enlow & Brown (1958) were the first to describe the bone tissue of extinct

primates by sampling a mandible of the fossil Paleocene Plesiolestes and long bones

of modern primates. The authors described primary bone tissue formed by lamellar

bone. Vascularisation was mainly characterised by longitudinal primary vascular canals.

Remodelling was locally abundant and the organisation of Haversian bone was dense in

some areas of the bone cortex. Those observations have been confirmed by the comparative

studies of Cuijpers (2006) and Hillier & Bell (2007) as well as in the conceptual studies of

Bromage et al. (2009; see also above) and Castanet (2006; see also above). Castanet et al.

(2004; see also above) found the inner and thicker part of the bone cortex of Microcebus
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formed by parallel-fibred bone containing primary blood vessels and scarce primary

osteons. In contrast, the outer part of the cortex is not vascularised. Crowder & Stout (2012)

have compiled a book covering the current utilisation of histological analysis of bones

and teeth within the field of anthropology, including the biology and growth of bone,

histomorphological analysis, and age determination. Extensive literature on hominoids,

especially on bone pathologies in Homo sapiens, exists. To remain within the scope of

this work, we cite here only some examples of those publications specific to this area.

Mart́ınez-Maza, Rosas & Garćıa-Vargas (2006) and Martinez-Maza et al. (2011) analysed

bone surfaces under the reflected light and scanning electron microscope in order to

decipher modelling and remodelling patterns in extant hominine facial skeletons and

mandibles as well as in Neanderthal mandibles, explaining specific morphological traits.

Schultz & Schmidt-Schultz (2014) examined fossil human bone and reviewed the methods

and techniques of light microscopy, scanning electron microscopy, and the advantages

of polarisation microscopy for palaeoanthropology. In this context it is noteworthy that

the estimation of individual age in anthropology is carried out by mainly two methods

(Schultz & Schmidt-Schultz, 2014): (1) the histomorphometric method (HMM) and (2) the

histomorphologic method (HML). The HMM method is applied primarily to long bones

(e.g., Kerley, 1965; Drusini, 1987) and is based upon the frequencies of osteons (Haversian

systems), fragmented osteons (interstitial lamellae), non-Haversian canals, and the

percentage of the external circumferential lamellae. The HML method is based upon the

morphology (presence, size, shape, development) of external and internal circumferential

lamellae, osteons, fragmented osteons, and non-Haversian canals (e.g., Schultz, 1997).

Skinner et al. (2015) studied the pattern of trabeculae distributions of metacarpals in

Australopithecus africanus and Pleistocene hominins. They found a ‘human-like’ pattern,

considered to be consistent with tool use. Ryan & Shaw (2015) quantified the proximal

femur trabecular bone structure using micro-CT data from 31 extant primate taxa

(229 individuals) and four distinct archaeological human populations (59 individuals)

representing sedentary agriculturalists and mobile foragers. Trabecular bone variables

indicate that the forager populations had significantly higher bone volume fraction, thicker

trabeculae, and lower relative bone surface area compared with the two agriculturalist

groups. The authors did not find any significant differences between agriculturalist and

forager populations for trabecular spacing, number, or degree of anisotropy. Ryan & Shaw

concluded there was a correspondence between human behaviour and bone structure

in the proximal femur, indicating that more highly mobile human populations have

trabecular bone structure similar to what would be expected for wild non-human primates

of the same body mass, thus emphasising the importance of physical activity and exercise

for bone health and the attenuation of age-related bone loss.

SELECTED CONTRIBUTIONS ON MAMMALIAN
HISTOLOGY
Many excellent papers on mammalian histology have appeared over the years, and we

cannot discuss all of them. However, we feel that a number of these deserve a more detailed
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evaluation as they address important aspects of applications of palaeohistological work.

Enlow & Brown’s (1958) outstanding comparative work on mammalian bone histology is

not further mentioned in this section, since it is repeatedly discussed above.

Klevezal & Kleinenberg (1969) were the first to recognise the presence and importance

of rest lines in the bone cortex of mammals for skeletochronological studies (see also

Chinsamy-Turan, 2005). In their work, which was originally published in Russian in 1967,

they found that in mammals, unlike the zonal bone forming in reptiles, the recording part

including LAGs is the outer or periosteal zone (see also above). Klevezal (1996) found that

rest lines are not formed from the first year of life in every mammalian taxon. Therefore,

she suggested a variable correction factor for different mammalian taxa and concluded that

the best structures for recording growth and age are dentine and especially cementum

(Klevezal, 1996). In her detailed and comprehensive study of recording structures in

mammals, she found that the growth rate of a particular structure can change according to

the growth rate of the whole organism and that seasonal changes of growth intensity of an

animal as a whole determine the formation of growth layers. Klevezal (1996) argued that

changes in humidity, not temperature, may play a role as a seasonal factor in growth.

Sander & Andrassy (2006) described the occurrence of LAGs in 21 long bones (mainly

tibiae and metatarsals) of herbivorous mammals from the Late Pleistocene of Germany

comprising the extinct giant deer Megaloceros giganteus, the red deer Cervus elaphus, the

reindeer Rangifer tarandus, the extinct bovids Bos primigenius and Bison priscus, the equid

Equus sp., the extinct rhinocerotid Coelodonta antiquitatis, and the extinct elephantid

Mammuthus primigenius. All samples showed fibrolamellar bone and a varying degree

of remodelling and most of the long bones displayed LAGs. The authors questioned the

argument that LAGs in dinosaur bone indicate ectothermy because of the frequently found

LAGs in endothermic animals.

Köhler & Moyà-Solà (2009) examined the long-bone histology of Myotragus, a Plio-

Pleistocene bovid from the Balearic Islands. They found lamellar-zonal tissue throughout

the cortex, a trait exclusive to ectothermic reptiles. According to Köhler and colleagues,

Myotragus grew unlike any other mammal but similar to crocodiles, i.e., at slow and flexible

rates, ceased growth periodically, and attained somatic maturity late after twelve years. The

authors concluded that this developmental pattern indicates that Myotragus, much like

extant reptiles, synchronized its metabolic requirements with fluctuating resource levels.

Kolb et al. (2015) performed a histological analysis of long bones and teeth representing

eleven extinct and extant cervid taxa, amongst them the dwarf island morphotypes of

Candiacervus from the Late Pleistocene of Crete and the giant deer Megaloceros giganteus,

both in a clade together with fallow deer (Dama dama) among extant species. Bone tissue

types observed were similar, indicating a comparable mode of growth across the eight

species examined, with long bones mainly possessing primary plexiform fibrolamellar

bone (Figs. 1B, 1C, 1E and 1F). Dwarf Candiacervus were characterised by low growth

rates, Megaloceros by high rates, and the lowest recorded rates were those of the Miocene

small stem cervid Procervulus praelucidus. It should be noted that Sinomegaceros yabei,

sampled for the present study, features a very thick second growth zone, which suggests
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a high growth rate, comparable to that of the closely related Megaloceros. Skeletal

maturity estimates (see also above) indicated late attainment in sampled Candiacervus and

Procervulus. Tooth cementum analysis of first molars of two senile Megaloceros giganteus

specimens revealed ages of 16 and 19 years whereas two old dwarf Candiacervus specimens

gave ages of 12 and 18 years. Kolb et al. (2015) concluded that the bone histological

condition found in Candiacervus had features in common with that of Myotragus (Köhler

& Moyà-Solà, 2009), but was achieved with a lesser modification of bone tissue and

suggested various modes of life history and size evolution among island mammals. Amson

et al. (in press) examined further ‘stem-cervid’ bone histology in describing that of other

Miocene taxa, Dicrocerus elegans and Euprox sp. With their inclusion in the dataset of

Kolb et al. (2015), they estimated ancestral growth rates among cervids, and studied their

correlation with body size. The skeletochronology of Dicrocerus and Euprox suggested

relatively high and intermediate growth rates respectively for their body sizes, differing

from the condition of Procervulus, and hence documenting diversity in the life history

traits of Miocene cervids.

Dumont et al. (2013) documented the microstructure of vertebral centra using 2D

histomorphometric analyses of vertebral centra from 98 therian mammal species that

cover the main size ranges and locomotor adaptations known in therian taxa. The authors

extracted eleven variables relative to the development and geometry of trabecular networks

from CT scan mid-sagittal sections. Random taxon reshuffling and squared change

parsimony indicated a phylogenetic signal in the majority of the variables. Furthermore,

based on those variables, it was possible to determine three categories of locomotion

among the sampled taxa: (a) terrestrial + flying + digging + amphibious forms, (b) coastal

oscillatory aquatic taxa, and (c) pelagic oscillatory aquatic forms represented by oceanic

cetaceans. Dumont and colleagues concluded that, when specific size increases, the length

of trabecular networks, as well as trabecular proliferation, increase with positive allometry.

They found that, by using six structural variables, locomotion mode can be predicted

with a 97.4% success rate for terrestrial forms, 66.7% for coastal oscillatory, and 81.3% for

pelagic oscillatory.

DISCUSSION ON BONE HISTOLOGY OF ISLAND
MAMMALS
Within our overview, we have a large sample of insular mammals. Islands have their

own set of rules when it comes down to evolution (Van der Geer et al., 2010; Lomolino

et al., 2012; Lomolino et al., 2013), and in the following we explore to what extent insular

evolution may effect bone histology.

Three juvenile specimens of the dwarf island hippopotamid Hippopotamus minor from

the Late Pleistocene of Cyprus show reticular to plexiform fibrolamellar bone, which does

not indicate an island-specific pattern of bone growth or life history but a mode of growth

similar to continental artiodactyl relatives instead. The bone cortex of the dormouse

Leithia sp. from the Pleistocene of Sicily is characterised by primary lamellar bone and

a high amount of compact coarse cancellous bone. Mikrotia magna, the giant island
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rodent from the Late Miocene of Gargano, Italy shows in the middle part of the cortex

parallel-fibred bone with reticular vascularisation and mainly irregularly shaped and

obliquely oriented secondary osteons. The inner and outer parts of the cortex are formed

by lamellar bone. Garcia-Martinez et al. (2011) did not find compact coarse cancellous

bone in their sample of extant dormice. The high amount of compact coarse cancellous

bone and therefore strong inward growth (Enlow, 1962) in our Leithia sp. specimen might

point towards an island specific modification of bone tissue. However, sampling of more

specimens in order to confirm this observation is necessary. The composition of bone

tissues found in Mikrotia magna is in general similar to the one encountered in extant

murid rodents (Foote, 1911a; Enlow & Brown, 1958; Enlow, 1962; Singh, Tonna & Gandel,

1974; Martiniaková et al., 2005). The partially high amount of remodelling encountered in

Mikrotia is likely related to high individual ages. In the bone cortex of three fossil species of

insular giant Prolagus and the fossil continental lagomorph Prolagus oeningensis are mainly

parallel-fibred bone and reticular, radial as well as longitudinal vascularisation indicating

a similarity of bone histological arrangements in continental and island species of rodents

and lagomorphs.

The highest age found in Prolagus sardus and P. imperialis of five years are well within

the known longevities of extant ochotonids such as Ochotona princeps (seven years in

captivity) and O. hyperborean (9.4 years in captivity) (Tacutu et al., 2013). Moncunill-Solé

et al. (in press) suggested a longevity for Prolagus apricenicus of at least seven years (five

years more than in our sample of P. apricenicus). Based on the predictions by the body

mass inferred, Moncunill-Solé et al. (in press) suggested a move to the slow end of the

fast-slow continuum (maturing later and fewer offspring) in Prolagus apricenicus. A

minimal individual age deduced from growth marks in the bone tissue of Deinogalerix

specimen RGM 178017 lies also well within the known longevities for extant erinaceids

such as Erinaceus europaeus (11.7 years in captivity), E. concolor (seven years in captivity),

and E. amurensis (9.4 years in captivity). Longevity data for extant galericines are not yet

available (Tacutu et al., 2013).

The insular dwarf bovid Myotragus balearicus from Majorca showed an important

decrease in bone growth rate and an evolution towards a slow life history, i.e., delayed

maturity and long lifespan (Köhler & Moyà-Solà, 2009; Köhler, 2010; Jordana & Köhler,

2011; Jordana et al., 2012; Moncunill-Solé et al., in press; but see Raia, Barbera & Conte

(2003) for an opposite case of life history modification in Sicilian dwarf elephants).

The authors suggest these findings to be trends for island mammals in agreement with

MacArthur & Wilson (1967), as well as life history theory (Stearns, 1992) and that the

degree of these modifications depends on multiple factors such as island size, distance

from mainland, climate, phylogeny, time of evolution and others (see also Moncunill-Solé

et al., 2014). Myotragus dwelt on Majora for 5.2 Ma and therefore underwent an

exceptionally long time of evolution (Van der Geer et al., 2010) and resource limitation

(Köhler & Moyà-Solà, 2009). A similarly high degree of bone histological and life history

modification as described by Köhler & Moyà-Solà (2009) for Myotragus in comparison

to continental artiodactyls has not been recorded for the insular mammals Deinogalerix
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sp., Hippopotamus minor, Leithia sp., Mikrotia magna, or for several species of Prolagus in

comparison to their mainland relatives.

A variable degree of modification in bone tissue and life history could be related to

shorter persistence times and different island size (Lomolino et al., 2012; Lomolino et al.,

2013; Kolb et al., 2015), in line with Austad & Fischer (1991), McNab (1994), McNab (2002),

McNab (2010), Raia, Barbera & Conte (2003), Curtin et al. (2012) and Kolb et al. (2015).

CONCLUSIONS
A large variety of bone tissues and vascularisation patterns is encountered in mammalian

bone reaching from lamellar or parallel-fibred to fibrolamellar or woven-fibred bone,

largely depending on taxon and individual age. A plexiform to laminar organisation of

vascular canals within fibrolamellar bone is typically found in taxa containing large-bodied

species such as non-mammalian cynodonts, laurasiatherians, and afrotherians. The

deposition of Haversian systems throughout ontogeny of non-mammalian cynodonts and

mammals is common. Table 2 gives a summary on general patterns of bone histological

features encountered in major cynodont clades.

We suggest the presence of various modes of bone histological modification and

mammalian life history evolution on islands depending on factors of island evolution

such as island size, distance from mainland, climate, phylogeny, and time of evolution.

Further bone histological comparisons and sampling of more specimens as well as species

of fossil insular endemics and their mainland relatives within an ontogenetic framework

would contribute significantly to the knowledge of the ecology of past island ecosystems.

FUTURE RESEARCH FIELDS
New technologies
3D reconstructions attained by virtual image analysis gain increasing importance for

palaeontological research at the anatomical, microanatomical, and even histological levels

(Sanchez et al., 2012; Clément & Geffard-Kuriyama, 2010; Curtin et al., 2012; see also

Ricqlès, 2011). The potential advantages of virtual imaging as a method are evident: firstly,

specimens are not damaged by invasive sampling. Secondly, a third dimension, usually

achieved by time consuming serial sectioning or preparation of orthogonally oriented

thin sections, is easily realizable. Thirdly, virtual imaging techniques allow continuous

“zooming” from the histological to the micro- and macronatomical levels of structural

organisation. High resolution synchrotron virtual histology provides new 3D insights into

the submicron-scale histology of fossil and extant bones. This is based on the development

of new data acquisition strategies, pink-beam configurations, and improved processing

tools (Sanchez et al., 2012). Nevertheless, for the high resolution optical properties of

a polarisation microscope and its applications for identification and analysis of bone

microstructure, as well as for the comparatively low amount of financial resources needed,

traditional thin sections are far from being completely replaced by virtual imaging

techniques. Moreover, new statistical methods allow extraction of phylogenetic signals

from bone microstructures and of high specimen numbers (Laurin, 2004; Laurin, Girondot
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Table 2 Summary of histological traits of non-mammalian cynodonts and major mammalian clades (based on material sampled and references cited in the current
study). The terminology follows Francillon-Vieillot et al. (1990).

Histological traits Non-mammalian
cynodonts

Multituberculata and
early mammals

Monotremata Marsupialia Euarchontoglires Laurasiatheria Afrotheria Xenarthra

Main primary bone
tissue types

fibrolamellar,
parallel-fibred,
lamellar

fibrolamellar,
parallel-fibred,
lamellar

fibrolamellar,
lamellar

fibrolamellar,
parallel-fibred,
lamellar

lamellar or
parallel-fibred

fibrolamellar fibrolamellar fibrolamellar

Main vascularisation
patterns

plexiform,
laminar,
longitudinal,
reticular,
radial

longitudinal,
radial,
reticular

longitudinal,
radial,
reticular,
laminar

longitudinal,
radial

longitudinal,
reticular,
radial

longitudinal,
reticular,
radial,
laminar,
plexiform

circumferential,
longitudinal,
reticular,
laminar,
plexiform

longitudinal,
reticular,
radial

Lines of arrested growth present present not documented present present present present present

Remodelling Haversian bone not documented Haversian bone Haversian bone Haversian bone Haversian bone Haversian bone Haversian bone
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& Loth, 2004; Cubo et al., 2008). In addition to a phylogenetic signal, bone tissues are also

influenced by biomechanical and ecological signals (Cubo et al., 2005; Cubo et al., 2008;

Laurin, Girondot & Loth, 2004; Laurin, 2004; Ricqlès & Cubo, 2010; Hayashi et al., 2013).

Here too, the advances in high performance computers and software open possibilities

to investigate the variability in bone tissues by taking multiple factors into account. The

creation of histological databases will soon be necessary due to an increasing number of

palaeohistological publications and growing collections of thin sections (Ricqlès, Castanet

& Francillon-Vieillot, 2004; Ricqlès, Taquet & Buffrénil, 2009; Bromage, 2006; Kriloff et al.,

2008; Scheyer, 2009–2015; Canoville & Laurin, 2010; O’Leary & Kaufman, 2012).

Extant vertebrate biology
Actualistic models are essential for the interpretation of fossil hard tissues in every

sense, no matter if developmental and life historical, histophysiological, morphological,

ecological, or systematic. Living animals present the basis for inferring palaeobiological

conclusions and this has already been performed in several bone histological works (e.g.,

Canoville & Laurin, 2010; Köhler et al., 2012; Maŕın-Moratalla, Jordana & Köhler, 2013;

Maŕın-Moratalla et al., 2014; Kolb et al., 2015).

In regard to deciphering life history signals, the actualistic approach is fundamental

and will become increasingly more so (e.g., Köhler et al., 2012; Maŕın-Moratalla, Jordana

& Köhler, 2013; Maŕın-Moratalla et al., 2014; Kolb et al., 2015). Life history variables such

as annual growth rate, skeletal/sexual maturity, and longevity and their signal in bone

microstructure help to understand palaeobiology not only of fossil mammals but also

of tetrapods in general. It is possible to use bone histology to quantify growth rates and

vascularisation or cellular density in mammals as a relative proxy for growth rate (Curtin

et al., 2012; Kolb et al., 2015; Maŕın-Moratalla, Jordana & Köhler, 2013; Maŕın-Moratalla

et al., 2014; Jordana et al., in press), whereby the existing literature on the paleobiology of

dinosaurs has been used as a starting point. However, not every methodological approach

used for dinosaurs is applicable or relevant for mammals (e.g., Erickson, Curry Rogers

& Yerby, 2001; Griebeler, Klein & Sander, 2013; Kolb et al., 2015). No one stated it better

than Armand de Ricqlès: “The possibilities of using bone histology of extant vertebrates

for various fundamental or applied research, whether on life history traits, ecology, or

microevolution, are simply boundless.” (Ricqlès, 2011).
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(Mustela vison, Schreiber): données sur la dynamique et l’interprétation fonctionnelle des
dépots osseux mandibulaires. Canadian Journal of Zoology 62:2026–2037 DOI 10.1139/z84-297.

Buffrénil V de, Ricqlès AD, Ray CE, Domning DP. 1990. Bone histology of the ribs of
the archaeocetes (Mammalia: Cetacea). Journal of Vertebrate Paleontology 10:455–466
DOI 10.1080/02724634.1990.10011828.

Buffrénil V de, Schoevaert D. 1988. On how the periosteal bone of the delphinid humerus
becomes cancellous: ontogeny of a histological specialization. Journal of Morphology
198:149–164 DOI 10.1002/jmor.1051980203.

Bybee PJ, Lee AH, Lamm ET. 2006. Sizing the Jurassic theropod dinosaur Allosaurus: assessing
growth strategy and evolution of ontogenetic scaling of limbs. Journal of Morphology
267:347–359 DOI 10.1002/jmor.10406.

Canoville A, Laurin M. 2010. Evolution of humeral microanatomy and lifestyle in amniotes,
and some comments on palaeobiological inferences. Biological Journal of the Linnean Society
100:384–406 DOI 10.1111/j.1095-8312.2010.01431.x.

Castanet J. 1994. Age estimation and longevity in reptiles. Gerontology 40:174–192
DOI 10.1159/000213586.

Castanet J. 2006. Time recording in bone microstructures of endothermic animals; functional
relationships. Comptes Rendus Palevol 5:629–636 DOI 10.1016/j.crpv.2005.10.006.

Castanet J, Croci S, Aujard F, Perret M, Cubo J, De Margerie E. 2004. Lines of arrested growth in
bone and age estimation in a small primate: Microcebus murinus. Journal of Zoology 263:31–39
DOI 10.1017/S0952836904004844.

Castanet J, Smirina EM. 1990. Introduction to the skeletochronological method in amphibians
and reptiles. Annales des Sciences Naturelles, Zoologie 11:191–196.
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Jordana X, Köhler M. 2011. Enamel microstructure in the fossil bovid Myotragus
balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals
in insular ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 300:59–66
DOI 10.1016/j.palaeo.2010.12.008.

Jordana X, Marı́n-Moratalla N, DeMiguel D, Kaiser TM, Köhler M. 2012. Evidence of correlated
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structuro-fonctionnelle : 1/généralités, 2/l’exemple du tissu osseux. In: Gayon J, Ricqlès AD,
eds. Les Fonctions: des organismes aux artefacts. Paris: PUF, 179–188.

Ricqlès A de, Meunier FJ, Castanet J, Francillon-Vieillot H. 1991. Comparative microstructure of
bone. In: Hall BK, ed. Bone volume 3: bone matrix and bone specific products. Boca Raton: CRC
Press, 1–78.

Ricqlès A de, Taquet P, Buffrénil V de. 2009. Rediscovery of Paul Gervais’ paleohistological
collection. Geodiversitas 31:943–971 DOI 10.5252/g2009n4a943.

Ryan TM, Shaw CN. 2015. Gracility of the modern Homo sapiens skeleton is the result of decreased
biomechanical loading. Proceedings of the National Academy of Sciences of the United States of
America 112:372–377 DOI 10.1073/pnas.1418646112.

Sanchez S, Ahlberg P, Trinajstic K, Mirone A, Tafforeau P. 2012. Three dimensional synchrotron
virtual paleohistology: a new insight into the world of fossil bone microstructures. Microscopy
and Microanalysis 18:1095–1105 DOI 10.1017/S1431927612001079.

Sander PM, Andrassy P. 2006. Lines of arrested growth and long bone histology in
Pleistocene large mammals from Germany: what do they tell us about dinosaur
physiology? Palaeontographica Abteilung A 277:143–159.

Sander PM, Klein N, Buffetaut E, Cuny G, Suteethorn V, Le Loeuff J. 2004. Adaptive radiation
in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through
acceleration. Organisms, Diversity & Evolution 4:165–173 DOI 10.1016/j.ode.2003.12.002.

Sander PM, Tückmantel C. 2003. Bone lamina thickness, bone apposition rates, and age
estimates in sauropod humeri and femora. Paläontologische Zeitschrift 77:161–172
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