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Abstract: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor
prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial–
mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to
observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-
based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive
cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive
cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study
unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC
invasive cells. This profile overlapped partially with the expression of signature genes related to
the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting
the relevance of our data to the clinical disease progression state. Interestingly, we also observed
upregulations of genes involved in axonal guidance—L1 cell adhesion molecule (L1CAM), neuropilin-
1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components
of the stroma. Taken together, our data indicated that the catulin reporter system marked a population
of invasive HNSCC cells with a molecular profile associated with cancer invasion.

Keywords: catulin; CTNNAL1; head and neck squamous cell carcinoma; HNSCC; invasion; EMT

1. Introduction

Head and neck carcinomas (HNC) are malignant neoplasms that affect important
anatomical structures of the upper digestive tract and respiratory system, such as the
tongue, mouth, pharynx, larynx, nasal cavity, sinuses, and salivary glands, and often affect
key sensory nerves in the peripheral nervous system. The main risk factors associated with
the development of this type of cancer are tobacco smoke [1], high-percentage alcohol [2],
as well as infection with the human papilloma virus (HPV) [3]. Head and neck squamous
cell carcinoma (HNSCC), which accounts for the majority of HNC cases, is the sixth most
common cancer in the world, with a low and unchanged 50% 5-year survival rate [4,5].
This poor survival is likely due to the fact that local invasion, lymph node involvement,
and metastasis are often present at the time of diagnosis [6].

An important aspect of HNSCC progression is the specific tumor microenvironment
(TME), which consists of the extracellular matrix (ECM) as well as resident and recruited
cells in the vicinity of cancer. These cells include cancer-associated fibroblasts (CAFs), which
in the head and neck area are neural-crest-derived, adipose cells, immune-inflammatory
cells as well as nerve, blood, and lymphatic vascular networks [7,8]. The progression and
clinical outcome of cancer depends on complex interactions between tumor and stromal
cells in the TME [9]. This cross-talk takes place through paracrine signaling or direct
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interactions between cells, which leads to bidirectional remodeling, enabling tumor cell
proliferation, invasion, and migration followed by metastasis [10].

Metastasis is a complex multistep process that constitutes the main cause of death
from many types of cancer [11]. During metastasis, cancer cells escape from the primary
tumor, invade the surrounding tissues and enter the circulation [12]. Some cancer cells
can survive in lymphatic or blood vessels and reach distal sites. Finally, the survivors
extravasate and colonize in the second organ [13]. Apart from blood and lymphatic vessels,
evidence indicates that neurogenesis (increased number of neurons) and axonogenesis
(tumor-induced neural sprouting toward the TME) also play a vital role in tumorigenesis
and metastasis. Cancer cells can also infiltrate inside or around nerves in the process
called perineural invasion (PNI), which can be observed before lymphatic or vascular
invasion [14,15]. High intratumoral nerve density correlates with poor prognosis and high
recurrence across multiple solid tumor types [15]. Recent research has shown that cancer
cells express neurotrophic markers such as nerve growth factor, brain-derived neurotrophic
factor, and glial-cell-derived neurotrophic factor, and release axon-guidance molecules such
as ephrin B1 to promote axonogenesis [16]. PNI in head and neck cancers is a significant
cause of mortality, and it is one of the markers of poor prognosis for patients [17–19].
Prevalence rates of PNI in HNC ranges from 25% to 80%.

The epithelial–mesenchymal transition (EMT), the conversion of tumor cells from an
epithelial to a mesenchymal phenotype, plays a key role in cancer metastasis [20]. During
the EMT process, cancer cells exhibit the downregulation of E-cadherin and α-catenin,
reduction of cell adhesion, and enhanced migration and invasiveness [21,22]. The process
of the EMT is also closely linked with the acquisition of stem cell properties, including the
expression levels of HNSCC CSC markers CD44, CD133, or ALDH1, which are associated
with metastasis and treatment resistance. Therefore, a thorough understanding of the
nature and the molecular basis of the EMT is of clinical importance to potentially increase
the effectiveness of therapy and the survival of patients with HNSCC. However, due
to the high plasticity and reversible nature of the EMT, the research of this process is
very challenging [23]. The EMT can be context-dependent, occurring in distinct cellular
populations at particular sites within the tumor. Therefore, their functional characteristics,
tumor initiation potential, and gene expression profiles can be masked by non-metastatic
and non-invasive cells. The detection and characterization of such transient and plastic
cells in vivo during cancer progression is critical to assess the impact of the EMT on
the pathogenesis of metastatic neoplasms. Reliable molecular markers that would allow
detecting and sorting cells that dynamically undergo a partial or complete EMT in vivo
are missing. Therefore, the development of the novel reporter systems that would allow
detection of cells during transition is needed.

In our previously studied mouse model, the conditional loss of cell–cell junction
protein α-catenin in the epithelium resulted in an increased cell proliferation and migration
and squamous cell carcinoma (SCC) such as phenotype. Microarray analysis comparing
mouse α-catenin cKO keratinocytes, which failed to form cell–cell junctions, and WT
epithelial cells showed an upregulation of a new α-catenin homolog, α-catenin-like 1
(catulin) [24]. We showed that catulin is highly expressed at the invasion front of malignant
hHNSCC and the upregulation of catulin expression correlates with the transition of tumor
cells from an epithelial to mesenchymal morphology. The knockdown of catulin in hHNSCC
cell lines dramatically decreases the migratory and invasive potential of those cells in vitro
and the metastatic potential in xenotransplants in vivo, indicating an important role of this
protein in the process of cancer metastasis [25]. Interestingly, the ablation of catulin during
normal mouse development results in defects in neural tube closure due to aberrations
in active RhoA distribution, actin-myosin dynamics, and tension at cell–cell adhesion,
indicating the crucial role of this protein in cellular processes [26]. It has also been shown
that catulin is highly expressed in malignant melanoma cells and is a key factor in tumor
development, invasion, and metastasis due to the downregulation of E-cadherin and the
upregulation of mesenchymal markers such as N-cadherin, Snail/Slug, and the matrix
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metalloproteinases 2 and 9 [27], as well as contributing to chemoresistance by the activation
of NF-κB and AP-1 and the phosphorylation of ERK [28]. Catulin is also upregulated in
highly invasive non-small cell lung cancer (NSCLC) cell lines, which promotes cancer cell
migration, invasion, and metastasis through activating the integrin-linked kinase (ILK)-
mediated Akt-NF-κB signaling [29]. Since the expression and function of catulin correlate
with the metastatic potential of SCC, we have developed a novel catulin promoter-based
reporter system with a green fluorescent protein (Catulin-GFP) in stable SCC cell lines to
mark and isolate in vivo a small invasive population of cancer cells. Using this approach,
we were able to characterize molecular profiles and signaling pathways associated with
cancer invasion that can be associated with the EMT process and the progression of HNSCC.

2. Results
2.1. Development of a Novel Catulin-Promoter-Based Reporter System to Label and Track the
Population of Invasive Cancer Cells of HNSCC

We showed previously that the upregulation of catulin expression in vitro correlates
with the transition of cancer cells from an epithelial to mesenchymal morphology, and the
increased expression levels of EMT markers Vimentin and Snail [25]. To track and isolate
invasive cancer cells of HNSCC, we took advantage of the specific expression and function
of catulin, and developed a novel reporter system, where GFP expression was driven
directly from the catulin short promoter (Figure 1A). After the stable transfection of SCC15
and SCC351 cell lines with the catulin reporter plasmid, followed by puromycin selection,
the GFP fluorescence signals of established SCC15CatGFP and SCC351CatGFP cell lines
were analyzed using flow cytometry (Figure 1B, Supplementary Figure S2A,A′). The corre-
sponding SCC cell lines were used as a control, to set up two gates, i.e., GFP-negative and
GFP-positive (gate P2, which cut off 99.9% of the SCC15 cells; Figure 1B(1), Supplementary
Figure S2A(1)). The fluorescence analysis of the SCC15CatGFP cell line showed 28% of
GFP-positive cells (gate P2; Figure 1B(2),C). Even more stringent conditions were used
to sort the SCC15CatGFP and SCC351CatGFP cell lines into two populations for further
analysis: Representative results for SCC15CatGFP plus (green frame which contained 20%
of positive cells) and SCC15CatGFP minus (which contained 56% of negative cells) are
shown in Figure 1B(2),C. To verify the efficiency of cell sorting, we reanalyzed the sorted
SCC15CatGFP plus and SCC15CatGFP minus populations (Figure 1B(3,4)). As expected,
in the SCC15CatGFP minus population, 98% of cells were GFP-negative (Figure 1B(3),C).
In the SCC15CatGFP plus population, 67% of cells showed GFP fluorescence (P2 gate;
Figure 1B(4),C), which indicated a significant enrichment in GFP-positive cells as compared
to 20% of GFP positive cells in the starting population. The appearance of 28% of cells
with no GFP fluorescence in the reanalyzed SCC15CatGFP plus population might be due
to photo bleaching during the initial sort. To verify the system, the sorted SCC15CatGFP
plus and SCC15CatGFP minus cells were seeded on coverslip glasses. After staining with
phalloidin to visualize actin cytoskeleton and 4′6-diamidino-2-phenylindole (DAPI) to
visualize nuclei, we analyzed fluorescence under a microscope. As expected, in cells sorted
as the SCC15CatGFP plus, the majority were GFP-positive, in contrast to the SCC15CatGFP
minus population, where there was no cell with GFP fluorescence (Figure 1E). To test
the correlation of GFP fluorescence with the catulin protein level, we performed Western
blot analysis of catulin levels in the sorted SCC15CatGFP plus and SCC15CatGFP minus
populations (Figure 1D). This analysis confirmed a significant enrichment of catulin protein
in the SCC15CatGFP plus population. We also tested the dynamics of the cells’ fluorescence
in the SCC15CatGFP plus and SCC15CatGFP minus populations in an in vitro culture
using an ArthurTM Fluorescence Cell Counter. GFP fluorescence was measured in every
passage from the first to the seventh (Figure 1F). The first passage of the SCC15CatGFP
plus population contained 50% of GFP-positive cells, and this number dropped with every
passage stabilizing at the sixth passage, at the level of 25% of GFP-positive cells. This
result was similar to the percentage of GFP-positive cells in the starting population of
the established SCC15CatGFP cell line that was used for cell sorting (28%; Figure 1B(2),
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gate P2). In the SCC15CatGFP minus population, the fluctuation of GFP fluorescence was
smaller and oscillated between 3% and 10% of GFP-positive cells, gaining stabilization at
the sixth passage, with 3% of GFP-positive cells. These data collectively suggested that the
Catulin-GFP reporter marks a specific population of SCC cells.
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Figure 1. Catulin-promoter-based reporter system to label and track the population of invasive
cancer cells of head and neck squamous cell carcinoma (HNSCC). (A) Schematic visualization of the
reporter system. To generate the alpha-catulin reporter system, a human alpha-catulin promoter
clone (containing a 1.5 kb insert corresponding to the 5’-flanking sequence from approximately
1400 upstream to 41 downstream of the human alpha-catulin gene transcription start site (TSS)) was
placed upstream of a green fluorescent protein (GFP) in a 4400 bp vector with puromycin as a stable
selection marker. The nucleotide identity and direction of the insert were verified by sequencing
of both strands. (B) Fluorescence-activated cell sorting (FACS) analysis result of SCC15CatGFP
cells in vitro. The fluorescence analysis results of the control SCC15 cells (1) and the sort of the
reporter cell line SCC15CatGFP (2) are shown. SCC15CatGFP was sorted into two populations,
i.e., GFP minus (cells with no expression of alpha-catulin, with no fluorescence of GFP) and GFP
plus (cells with the expression of alpha-catulin and with fluorescence of GFP). P2 gate contained
all the cells that had GFP fluorescence; however, the gate for sorting was set more restrictively,
and only cells from the GFP-positive gate were sorted (green frame). The reanalysis of the sorted
SCC15CatGFP reporter cell line (SCC15CatGFP minus (3) and SCC15CatGFP plus (4) populations)
are shown. (C) Percentage quantification of each cell type (GFP-positive and GFP-negative) in each
cell line (SCC15 Control, SCC15CatGFP, SCC15CatGFP plus, and SCC15CatGFP minus). (D) Western
blot analysis of alpha-catulin protein levels in the sorted SCC15CatGFP plus and SCC15CatGFP
minus cells. GAPDH protein was used as a loading control. The graph showed the catulin signal
intensity calculated relative to that of GAPDH in ImageJ software. (E) Immunofluorescence of the
sorted SCC15CatGFP plus and SCC15CatGFP minus cells seeded on coverslip glasses. Catulin-GFP
immunofluorescence is indicated in green, phalloidin (actin) immunofluorescence is indicated in red,
and 4′6-diamidino-2-phenylindole (DAPI) immunofluorescence is indicated in blue. Scale bar: 20 µm.
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(F) Dynamic behavior of the fluorescence signals of the SCC15CatGFP plus and SCC15CatGFP minus
populations in an in vitro culture in passages from 1 to 7. The graph represents the average percentage
of GFP-positive cells from three independent experiments. Standard error bars are shown.

2.2. Catulin-GFP Reporter System Labels Cells with Higher Migratory, Invasive, and Tumorigenic
Potential In Vitro

To investigate the invasive potential of GFP-positive cells in a three-dimensional
(3D) model, the SCC15CatGFP reporter cell line was used to generate spheres that were
then transferred into plates covered with Matrigel or collagen to observe cells invasion
(Figure 2A,B). After three days, GFP-expressing cells were observed predominantly at
the invasion front of the spheres, where the invading cells contacted with the Matrigel
or collagen (arrows in Figure 2A,B). To compare the migratory and invasive potential of
SCCCatGFP plus versus SCC15CatGFP minus cells, we performed Boyden chamber mi-
gration and Matrigel invasion assays of the sorted SCC15CatGFP plus and SCC15CatGFP
minus populations (Figure 2C(1–5),D(1–5)). Both assays indicated increased migratory
and invasive potential of the SCC15CatGFP plus population. We also analyzed the colony-
forming capacities of the sorted SCC15CatGFP plus and SCC15CatGFP minus populations
(Figure 2E(1–3)). The colony formation assays revealed that the SCC15CatGFP plus popula-
tion was able to form more colonies in comparison to the SCC15CatGFP minus population.
Taken together, obtained results indicated that the created SCC15CatGFP reporter system
marked the population of cells with higher migratory, invasive, and tumorigenic potential
in vitro.

2.3. Catulin-GFP Reporter System Marks a Small Population of Tumor Cells at the Invasive Front
in a Xenograft Model of HNSCC That Looses Epithelial Marker E-Cadherin, Indicative of a
Partial EMT

To study the nature and behavior of the labeled SCCCatGFP plus cells in vivo, we
injected SCC15CatGFP and SCC351CatGFP reporter cell lines subcutaneously, into the
neck area of NOD SCID mice. After formation, tumors were isolated and analyzed under
the dissection scope in a bright field and with fluorescence (Figure 3A,A′). The tumors
showed varying fluorescence with some areas enriched with GFP signals and vasculature
(arrows in Figure 3A,A′). In order to characterize the catulin GFP+ cells at the transcrip-
tional level, we isolated and performed fluorescence-activated cell sorting (FACS) of the
SCC15CatGFP+/alpha6+ and SCC15CatGFP−/alpha6+ cells from tumors formed after
the injection of the SCC15catulinGFP reporter cell line (Figure 3B). Integrin alpha6 was
used as an additional marker for epithelial cancer cells. We set up the gates in a very strin-
gent way, in which SCC15CatGFP+/alpha6+-positive cells accounted for 10% of the total
SCC15CatGFP population (green gate) whereas the SCC15CatGFP−/alpha6+-negative
population accounted for 9% of the total SCC15CatGFP population (red gate) (Figure 3C).
The sorted cells were subjected to the reanalysis to confirm the enrichment in GFP within
the GFP-positive fraction (GFP plus fraction in Figure 3C, Supplementary Figure S1D) and
the lack of GFP-positive cells within the negative fraction (GFP minus fraction in Figure 3C,
Supplementary Figure S1D). The same approach was applied to tumors derived from
the SCC351CatGFP cell line (Supplementary Figure S2B–D). These analyses confirmed a
proper cell sorting strategy, as we observed an enrichment of GFP-positive cells in the
Catulin-GFP plus population and no GFP-positive cells in the SCC15CatGFP minus pop-
ulation. The presence of GFP-negative cells within the reanalyzed SCC15CCatGFP plus
population might be due to laser photobleaching, similarly to the in vitro experiment. The
fluorescence analysis for DAPI, indicating viability for all abovementioned cell populations,
is presented in Supplementary Figure S1B,C. Compensation controls for cell sorting and
analysis are presented in Supplementary Figure S1A. Small parts of the isolated tumors
were fixed in PFA and embedded in an OCT compound, and sections were immunostained
with epithelial marker E-cadherin and analyzed under a confocal microscope. Strong
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GFP fluorescence, indicating catulin-GFP reporter expression, was observed specifically
at the tumor invasion front in clusters of cells invading the surrounding stroma (arrows
in Figure 3D,D′). The further confocal microscopy analysis revealed that cells with high
expression of the catulin reporter (strong GFP fluorescence) (boxed areas II in Figure 3D,E
and arrows in Figure 3F,F′) showed a decreased E-cadherin expression, indicative of a
partial EMT. On the contrary, in the tumor center, minimal GFP fluorescence correlated with
a strong expression level of E-cadherin at the cell–cell contacts (asterisks in Figure 3D,D′

and asterisks in Figure 3F,F′). The mean fluorescence of GFP and E-cadherin from boxed
areas in Figure 3E was quantified and is presented in the table in Figure 3E′. Since tumor
areas with a strong GFP expression level was visibly enriched in vasculature (Figure 3A,A′).
Tumor sections were also immunostained with endothelial marker CD31 antibody, which
marked vasculature. Remarkably, an area with a newly formed tumor bud-like structure
invading into the stroma was characterized by strong GFP expression, a decrease in cell–cell
junctional E-cadherin staining (arrows in Figure 3F,G,G′), and an enrichment in a newly
formed vasculature in the vicinity of the GFP-positive cells (asterisks in Figure 3F,G,G′).
These observations validated the use of the Catulin-GFP reporter system to analyze the
transcriptional profile of Catulin-GFP-positive cells as a population of tumor invasive cells.
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Figure 2. Migratory, invasive, and tumorigenic potential of the cells labeled with Catulin-GFP
reporter system in vitro. (A) Sphere formed by SCC15CatGFP cells invading into Matrigel presented
in a bright field and GFP fluorescence. Arrows indicate cells with the highest alpha-catulin (GFP
fluorescence) expression at the invasion front. Scale bar: 100 µm. (B) Sphere formed by SCC15CatGFP
cells placed on collagen presented in a bright field (upper picture) and GFP fluorescence (lower
picture). Arrows indicate cells with the highest alpha-catulin (GFP fluorescence) expression at the
invasion front. Scale bar: 100 µm. (C) Boyden chamber migration assays of the SCC15CatGFP plus
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and SCC15CatGFP minus populations. (1,2) Image of the entire insert. (3,4) Image of a randomly
selected area at a higher magnification (4×). Cells were stained with crystal violet. (5) Quantification
of the cells from both populations that migrated through the insert. *** statistical significance was
assessed by t-test (p < 0.001). Standard error bars are shown. (D) Boyden chamber Matrigel invasion
assays of the SCC15CatGFP plus and SCC15CatGFP minus populations. (1,2) Image of the entire
insert. (3,4) Image of a randomly selected area at a higher magnification (4×). Cells were stained
with crystal violet. (5) Quantification of cells from both population that invaded through the insert
covered with Matrigel. *** statistical significance was assessed by t-test (p < 0.001). Standard error
bars are shown. (E) Colony formation assays of the SCC15CatGFP plus (1) and SCC15CatGFP minus
(2) populations. An equal number of cells of both populations were plated in duplicates into six-
well plates. Cells were stained with crystal violet. (3) Quantification of colonies formed by both
populations presented as a percent of the covered plate area. *** statistical significance was assessed
by t-test (p < 0.001). Standard error bars are shown.
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line in a bright field (A) and GFP fluorescence (A′). Scale bar: 0.5 cm. (B1) Fluorescence analysis
result of the control SCC15 cells. (B2) Fluorescence analysis result of the sorted SCC15CatGFP cells
isolated from formed tumor. Alpha6-PE was used as an epithelial marker. Cells were FACS-sorted
into two alpha6-PE-positive populations, i.e., SCC15CatGFP plus (GFP-positive; green frame) and
SCC15CatGFP minus (GFP-negative; red frame). (C) Percentage quantification of each cell type
(GFP-positive and GFP-negative) isolated from tumor SCC15CatGFP cells used for FACS and in
each sorted cell population (SCC15CatGFP plus and SCC15CatGFP minus). In Q2 and Q4, gates
were cells that had (Q2) or did not have (Q4) GFP fluorescence, respectively. However, gates for cell
sorting were set more restrictively, and only cells from GFP-positive and GFP-negative gates were
sorted (green and red frames). (D) Fluorescence analysis results of the section of tumor formed by
SCC15CatGFP immunostained with the E-cadherin antibody. Tumor cells invading the stroma are
indicated by arrows. Cells expressing high E-cadherin and low alpha-catulin levels are indicated
with asterisks. GFP (alpha-catulin) fluorescence is indicated in green, E-cadherin fluorescence is
indicated in red, and DAPI (nucleus) fluorescence is indicated in blue. Scale bar: 100 µm. The boxed
area in (D) is enlarged in (D′). (E) Fluorescence analysis result of the section of tumor formed by
SCC15CatGFP immunostained with the E-cadherin antibody. GFP (alpha-catulin) fluorescence is
indicated in green, E-cadherin fluorescence is indicated in red, and DAPI (nucleus) fluorescence
is indicated in blue. The border between the tumor and the stroma is indicated by the dashed
line. Boxed areas are regions with strong E-cadherin (IA and IB) or GFP (IIA and IIB) fluorescence
signals. Scale bar: 100 µm. (E′) Quantification of the mean fluorescence of E-cadherin and alpha-
catulin (GFP) from regions I (A,B) and II (A,B). (F) Fluorescence analysis result of section of tumor
formed by SCC15CatGFP immunostained with the E-cadherin antibody. Tumor cells expressing high
alpha-catulin levels are indicated by arrows. Cells expressing high E-cadherin and low alpha-catulin
levels are indicated by asterisks. GFP (alpha-catulin) fluorescence is indicated in green, E-cadherin
fluorescence is indicated in red, and DAPI (nucleus) fluorescence is indicated in blue. Scale bar:
100 µm. The boxed area in (F) is enlarged in (F′). (G) Fluorescence analysis result of the section of
tumor formed by SCC15CatGFP immunostained with the CD31 antibody. Tumor cells expressing
high alpha-catulin levels are indicated by arrows. Cells expressing high CD31 levels are indicated by
asterisks. GFP (alpha-catulin) fluorescence is indicated in green, CD31 fluorescence is indicated in
red, and DAPI (nucleus) fluorescence is indicated in blue. Scale bar: 100 µm. The boxed area in (G) is
enlarged in (G′). Arrows indicate areas enriched with GFP signal.

2.4. Identification of Signature Genes of Invasive Catulin-GFP Reporter-Labeled Cancer Cells

To determine the genetic signature of Catulin-GFP reporter-positive cells, we per-
formed RNAseq analysis and compared sorted SCC15CatGFP+/alpha6+ GFP-positive cells
(invasive cells) and SCC15CatGFP−/alpha6+ (non-invasive) cancer cells (Figure 3B,C).
The principal component analysis (PCA) of RNAseq analyses for the sorted SCC15CatGFP
plus (GFPp) and SCC15CatGFP minus (GFPn) populations are presented in
Supplementary Figure S1E. The proper function of the reporter system and the sorting
strategy were verified by the appearance in the RNAseq data from tumors formed after
injection of both cell lines, CTNNAL1 gene in SCC15CatGFP plus populations as an inter-
nal control (boxed in Figure 4B and highlighted in red in Figure 4D). The gene ontology
enrichment analysis of biological processes revealed an increase in general categories such
as cancer, endocrine system disorders, organismal injury and abnormalities, as well as
the cell cycle, cellular development, DNA replication, and cellular movement (Figure 4A
and Supplementary Figure S3A,B). We focused our further analysis on genes involved in
cellular movement and subcategories and the invasion of cells (boxed in Figure 4A and
boxed in Supplementary Figure S3A). This category included 59 upregulated genes of
particular interest because of their potential role in tumor invasion (p < 0.05; Figure 4B). We
next wanted to verify if data obtained in our screen correlated with clinical data. Therefore,
we used data published by Puram et al. [30], in which they profiled transcriptomes of
~6000 single cells from 18 HNSCC patients, including five matched pairs of primary tumors
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and lymph node metastasis. Although malignant cells from human specimens varied
within and between tumors, they established signatures of common genes for the partial
epithelial-to-mesenchymal transition (p-EMT), cell cycle, and epithelial differentiation
(Epi-dif) among others. The comparison of our RNAseq data with the established human
specimen signatures revealed a strong overlap (23%) of upregulated genes important for
p-EMT and (45%) for the cell cycle. As expected for cells going through a p-EMT, the
genes important for epithelial differentiation were mainly downregulated in our screen,
which correlated with the data obtained from human specimens (22% overlap; Figure 4C).
The comparison of the data obtained using two independent reporter cell lines, namely
SCC15CatGFP and SCC351CatGFP within the most interesting category of cell invasion,
revealed that many genes belonging to this category were changed in both cell lines (Fig-
ure 4D). It is important to emphasize genes upregulated in both cell lines, namely CATULIN,
L1 cell adhesion molecule (L1CAM), FOXM1, SERPINE1, neuropilin-1 (NRP1), EPHA2,
tenascin-C (TNC), and caveolin-1 (CAV1), suggesting a common mechanism of invasion
in HNSCC.

2.5. Genetic Signature of Catulin-GFP Reporter-Labeled Cancer Cells Indicates an Enrichment in
Genes Involved in Axonal Guidance, Glioblastoma Multiforme, ILK, and Integrin Signaling Pathways

To obtain a deeper insight into pathways that can be involved in the increased invasive
potential of the SCC15CatGFP plus population, we performed ingenuity pathway analysis.
Among the signaling pathways most changed in the SCC15CatGFP plus population, ax-
onal guidance, glioblastoma multiforme, ILK, and integrin signaling pathways received
special attention in the light of cancer–stroma interactions during invasion and metastasis
(Figure 5A). We analyzed 145 changed (up- or downregulated) genes in the SCC15CatGFP
plus population that was associated with the invasion of cells and compared them with the
list of changed genes involved in axonal guidance and glioblastoma multiforme signaling
pathways. Out of 145 genes involved in invasion, 18 overlapped with axonal guidance
signaling, seven genes overlapped with glioblastoma multiforme signaling, and four genes
were common for all three gene categories (Figure 5B,C,C′,C”).

Interestingly, L1CAM, of which the upregulation correlated with the unfavorable prog-
nosis for HNSCC patients is also upregulated in Catulin-GFP plus populations. L1CAM is
a neural adhesion transmembrane glycoprotein belonging to the immunoglobulin super-
family that plays a crucial role in nervous system development, and its expression level is
elevated in many cancers, promoting cancer cell motility and invasion and in some types
of cancer is associated with PNI. Additional genes involved in axonal guidance, NRP1 and
neuropilin-2 (NRP2), are also elevated in SCC15CatGFP plus populations. It is important
to emphasize that the direct interaction of L1CAM with NRP1 plays a crucial role in this
process. Neuropilins also play important role in tumor vascularization, promoting metasta-
sis, and their co-expression correlates with increased vascularity and poor prognosis for
NSCLC patients.

Another group of genes that are upregulated in SCC15CatGFP plus populations are
ephrin receptors, i.e., EphA2 and EphB2. Studies concerning their functions in cancer
suggest their roles in cell growth, survival, migration tumor initiation, and angiogenesis,
and their overexpression levels are correlated with aggressiveness, poor prognosis, and
metastasis in various cancers.
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Figure 4. Signature genes of invasive Catulin-GFP reporter-labeled cancer cells. (A) Bar chart
presenting the most changed processes in the sorted SCC15CatGFP plus population. (B) Heatmap
of genes changed in the sorted SCC15CatGFP plus population associated with the invasion of cells.
(C) Heatmaps of genes changed in the sorted SCC15CatGFP plus population associated with the
cell cycle, partial epithelial–mesenchymal transition (p-EMT), and epithelial differentiation (Epi-dif)
in comparison to genes presented by [Puram et al., 2017] [30]. Catenin alpha-like 1 (CNTTAL1)
gene is boxed. (D) Table presenting upregulated genes common for the SCC15CatGFP plus and
SCC351CatGFP plus populations involved in the in invasion of cells. CTNNAL1 and other genes of
interest are highlighted in red.
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Figure 5. Ingenuity pathway analysis results of RNAseq data of invasive Catulin-GFP reporter-
labeled cancer cells. (A) Box chart presenting the most changed signaling pathways in the sorted
SCC15CatGFP plus population. Signaling pathways of interest are boxed (integrin-linked kinase
(ILK), axonal guidance, glioblastoma multiforme, and integrin signaling). (B) Volcano plot showing
the fold change (log2FC) and statistical significance (p-value) for all genes differentially expressed
in the sorted SCC15CatGFP population. Genes shown in dark grey were statistically significant
(p < 0.05 and log2FC > 0.3), genes shown in light grey were statistically insignificant (p > 0.05 and
log2FC < 0.3), and genes shown in red were significant genes involved in the invasion of cells.
(C) BioVenn diagram showing the overlap between genes involved in the invasion of cells (X, red),
genes related to axonal guidance signaling (Y, green), and genes related to glioblastoma multiforme
signaling (Z, violet). The numbers inside the diagram indicated the number of genes in each group.
The area of the overlap was proportional to the number of common genes. (C′) Volcano plot showing
the fold changes (log2FC) and statistical significance values (p-value) for all genes differentially
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expressed in the sorted SCC15CatGFP population. Genes shown in dark grey were statistically
significant (p < 0.05 and log2FC > 0.3), genes shown in light grey were statistically insignificant
(p > 0.05 and log2FC < 0.3), genes shown in green were significant genes involved in axonal guid-
ance, genes shown in orange were significant genes involved in glioblastoma multiforme signaling,
and genes shown in black were significant genes common for axonal guidance and glioblastoma
multiforme signaling. (C”) Bar chart presenting genes significantly (p < 0.05 and log2FC > 0.3) down-
regulated (in green) and upregulated (in red) that belonged to more than one group (common for X/Z,
X/Y, Y/Z, or X/Y/Z). (D) BioVenn diagram showing the overlap between genes involved in the inva-
sion of cells (X, red), genes related to ILK signaling (Y, green), and genes related to integrin signaling
(Z, violet). The numbers inside the diagram indicated the number of genes in each group. The area of
the overlap was proportional to the number of common genes. (D′) Volcano plot showing the fold
changes (log2FC) and the statistical significance values (p-value) for all genes differentially expressed
in the sorted SCC15CatGFP population. Genes shown in dark grey were statistically significant
(p < 0.05 and log2FC > 0.3), genes shown in light grey were statistically insignificant (p > 0.05 and
log2FC < 0.3), genes shown in green were significant genes involved in integrin signaling, and
genes shown in orange were significant genes involved in ILK signaling xD (log2FC > 0.3) and
downregulated (in green) and upregulated (in red) that belonged to more than one group (com-
mon for X/Z, X/Y, Y/Z, or X/Y/Z). (D”). Bar chart presenting genes significantly (p < 0.05 and
log2FC > 0.3) downregulated (in green) and upregulated (in red) that belong to more than one group
(common for: X/Z, X/Y, Y/Z or X/Y/Z).

We performed an analogical comparison of 145 genes involved in invasion with ILK
and integrin signaling pathways affected genes. Four genes involved in invasion over-
lapped with ILK signaling, six genes overlapped with integrin signaling, and seven genes
were common for all three gene categories (Figure 5D,D′,D”). The most upregulated genes
that were associated with the invasion of cells and ILK and integrin signaling are breast
cancer antiestrogen resistance 3 (BCAR3), Cav1, α-actinin-1 (ACTN1), paxillin (PXN), and
parvin-β (PARVB), with most of them being involved in cytoskeleton organization, cell
adhesion, and focal contacts formation. Interestingly, specific Rho molecules showed to be
affected, with RhoF being upregulated whereas RhoV and RhoQ being downregulated in
the SCC15CatGFP plus cells. Our RNAseq analysis also revealed that in the SCC15CatGFP
plus population, there was an upregulation of two semaphorins, SEMA7A and SEMA6B
(Supplementary Figure S4A), which are proteins that take part in the nervous system
development by axonal guidance. One of the SEMA7A receptors is PlexinC1, a transmem-
brane protein that can act as a tumor suppressor through the inhibition of cofilin 1 (CFL1),
an actin-binding protein that play role in cell migration. Our RNAseq data showed that
in the SCC15CatGFP plus population PlexinC1 expression was downregulated (log2FC:
−3.749; p-value: 1,76 × 10−6), and the expression of CFL1 was upregulated (log2FC: 0.3;
p-value: 0.019), what indicated an increased migratory potential of the SCC15CatGFP
plus population.

The comparison of the data obtained using two independent reporter cell lines
SCC15CatGFP and SCC351CatGFP within most interesting categories, i.e., cell invasion,
axonal guidance, glioblastoma multiforme, ILK, and integrin signaling pathways, re-
vealed that many genes belonging to those categories were changed in both cell lines
(Supplementary Figure S5A).

To confirm the clinical importance of our findings, we correlated our RNAseq data
with the data collected in the Human Protein Atlas for genes associated with poor prog-
nosis for the HNSCC patients. We found that 12 genes that are listed as unfavorable for
patients overlapped with one or more categories changed in the SCC15CatGFP plus cells
(10 with invasion of cells, three with axonal guidance, two with glioblastoma multiforme sig-
naling, three with ILK signaling, and three with integrin signaling; Supplementary Figure S5B).
Moreover, nine of these genes are common for SCC15CatGFP and SCC351CatGFP. The
other important process that is involved in cancer metastasis is a degradation of the
ECM. The analysis of our RNAseq data showed the upregulation of five of a disinte-
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grin and metalloproteinases ADAMs (ADAM12, ADAM19, ADAMS16, ADAM9, and
ADAM15) in the SCC15CatGFP plus population (Supplementary Figure S4B). This might
suggest that SCC15CatGFP plus cells have a higher ability to degrade the ECM and as a
result, more effectively invade the surrounding stroma in comparison to the SCC15CatGFP
minus population.

2.6. Known Invasion Markers PXN and Tenascin-C Are Expressed in the Cells Marked by the
Catulin Reporter System at the Tumor Invasion Front

We first performed immunofluorescence stainings with known markers of invasion,
namely TNC and PXN, which appeared in our RNAseq screen, as genes involved in the
invasion. TNC is an adhesion modulatory ECM molecule that is highly expressed in the
microenvironment of most solid tumors. It is a factor in the tumor-specific microenviron-
ment that is expressed by both transformed epithelial cells and stromal cells. TNC is a
key determinant of the tumor stroma that is involved in the initiation of tumorigenesis
and progression to metastasis. We observed a strong upregulation of TNC correlating
with GFP fluorescence signals from the catulin reporter expressing tumor cells (arrows in
Figure 6B). PXN is a focal adhesion adapter protein with an important scaffolding role at
focal adhesions by recruiting structural and signaling molecules involved in cell movement
and migration. As a major participant in the regulation of cell movement through integrins,
PXN plays distinct roles in normal development and homeostasis. Importantly, PXN is also
an essential player in pathological conditions including cancer development and metastasis.
In tumors derived from the injection of catulin reporter cell lines, a strong expression level
of PXN was visible at the tumor invasion front, co-localizing with catulin-GFP expression
(arrows in Figure 6A).

2.7. CAV1 Is Expressed at the Invasion Front in Tumors Derived from Cells with the Catulin
Reporter System and in the Human Specimens of HNSCC

In cancer, CAV1 operates as both a tumor suppressor gene and a promoter of metas-
tasis, depending on the cancer type and stage [31,32]. Therefore, we wanted to assess
the expression of CAV1, because it was upregulated in tumors formed after injection of
both reporter cell lines. We confirmed the enrichment and co-localization of CAV1 protein,
with the GFP expression of labeled cells at the invasion front of the SCC15CatGFP tumors
(Figure 7A,A′). Cells with a high catulin reporter GFP expression at the tumor invasion
front were also positive for CAV1 protein (arrows in Figure 7A,A′). The high expression
levels of both catulin and CAV1 proteins were visible in streams/clusters of cancer cells
invading the stroma. (arrows in Figure 7A′). To verify if the expression of CAV1 protein
correlated with the tumor stage of different HNSCC cells, we performed immunohisto-
chemical analysis of CAV1 on a human tissue microarray slide panel (Figure 7B). We
compared the expression levels of CAV1 in different stages of maxillary sinus SCC, larynx
SCC, and tongue SCC. Higher CAV1 expression was observed in grade 2 and/or grade 3 of
maxillary sinus, larynx, tongue, and lower lip SCC as compared to in grade 1. Interestingly,
a gingiva SCC expression level of CAV1 was observed even in grade 1 (Figure 7B). For
comparison, the normal tongue epithelium showed some level of CAV1 expression, but
at a much lower level than in cancer tissues. We concluded that the expression of CAV1
correlated with the progression of the tumor. In advanced stages of cancer, we observed
areas with strong CAV1 staining, indicating its high expression, especially in cancer cells
invading neighboring stroma (arrow in Figure 7B).

2.8. Invasive Cells Marked by the Catulin Reporter System and Human Specimens of HNSCC
Express a Perineural Invasion Marker L1CAM at the Tumor–Stroma Border

The RNAseq data obtained using our reporter system indicate the upregulation of
genes involved in axonal guidance signaling. L1CAM is a neuronal adhesion molecule that
also plays a role in perineural invasion. L1CAM is shown to be involved in proliferation,
invasion, and metastasis of different tumor types and is engaged in homophilic interactions
with many other ligands in a context-dependent manner. To verify the enrichment and
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co-localization of L1CAM with the expression of GFP-labeled cells at the invasion front of
the SCC15CatGFP tumors, immunofluorescence staining with the anti-L1CAM antibody
was performed (Figure 8A,A′). We observed that GFP-positive clusters of invasive cells at
the tumor invasion front expressed high levels of L1CAM (Figure 8A,A′). High expression
levels of catulin-GFP and L1CAM correlated with low levels of E-cadherin (arrows in
Figure 8A′), indicating cells going through a partial EMT. To asses if the expression of
L1CAM correlated with the clinical tumor stage of tongue SCC, we performed immuno-
histochemical stainings of L1CAM on a tissue microarray slide panel (Figure 8B). In the
majority of advanced stages of human tongue cancers, clusters of cells strongly positive
for L1CAM were visible (arrows in Figure 8B). On the contrary, the expression level of
L1CAM in grade 1 cancers was much lower, except for some parts of cancer tissue where
the expression level of L1CAM was slightly higher (asterisks in Figure 8B); however, this
level of expression was comparable to in normal tongue tissue.
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Figure 6. Cell invasion markers localization in Catulin-GFP reporter tumors. (A) Immunofluores-
cence staining of the section of tumor formed after the injection of SCC15CatGFP and the use of
the paxillin antibody. GFP (catulin reporter) immunofluorescence is indicated in green, paxillin
immunofluorescence is indicated in red, and DAPI (nucleus) immunofluorescence is indicated in
blue. Arrows indicate cells expressing high catulin reporter and paxillin levels. Scale bar: 50 µm.
(B) Immunofluorescence staining of the section of tumor formed after the injection of SCC15CatGFP
and the use of the tenascin C (TNC) antibody. GFP (catulin reporter) immunofluorescence is indicated
in green, TNC immunofluorescence is indicated in red, and DAPI (nucleus) immunofluorescence is
indicated in blue. Arrows indicate cells expressing high catulin reporter levels and tenascin C levels.



Int. J. Mol. Sci. 2022, 23, 140 15 of 26
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 17 of 29 
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Figure 7. Caveolin-1 localization in Catulin-GFP reporter tumor and in human HNSCC cancer tissues.
(A) Immunofluorescence staining of the section of tumor formed after the injection of SCC15CatGFP
and with the use of the caveolin-1 antibody. GFP (catulin reporter) immunofluorescence is indicated
in green, caveolin-1 immunofluorescence is indicated in red, and DAPI (nucleus) immunofluorescence
is indicated in blue. The boxed area in (A) are enlarged in (A′). Arrows indicate the co-localization
of the catulin reporter with caveolin-1. Scale bar: 200 µm. (B) Immunohistochemical DAB stainings
of caveolin-1 in a tissue array of HNSCC samples and in normal human tongue tissue. Arrows
indicate high caveolin-1 expression in potentially invasive cells. Tissue origin and tumor grade, as
provided by the manufacturer, are indicated. The stroma/epithelium border in normal tongue tissue
is indicated.
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Figure 8. L1 cell adhesion molecule (L1CAM) localization in Catulin-GFP reporter tumor and in
human HNSCC cancer tissues. (A) Immunofluorescence staining of the section of SCC15CatGFP
tumor formed with the injection of SCC15CatGFP and with the use of the L1CAM antibody. GFP
(catulin reporter) immunofluorescence is indicated in green, L1CAM immunofluorescence is indicated
in red, E-cadherin immunofluorescence is indicated in cyan, and DAPI (nucleus) immunofluorescence
is indicated in blue. The boxed area in (A) are enlarged in (A′). Arrows indicate the co-localization of
the catulin reporter with L1CAM. The dashed line indicates the tumor–stroma border. Invasive cells
are indicated. Scale bar: 200 µm. (B) Immunohistochemical DAB stainings of L1CAM in a tissue array
of tongue SCC samples and in normal human tongue tissue. Arrows indicate high L1CAM expression
in potentially invasive cells. Asterisks indicate regions with A higher than average level of L1CAM
expression. Tumor grade, as provided by the manufacturer, is indicated. The stroma/epithelium
border in normal tongue tissue is indicated.
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3. Discussion

HNSCC is a common malignancy with high and unchanged death rates for decades.
In comparison to standard surgery with resection margins of >1 cm, compartmental tongue
surgery (CTS) improves disease-free and overall survival, indicating the importance of
tumor–stroma interactions in the locoregional spread of this type of cancer [33]. In HNSCC,
an EMT cell state is associated with cancer aggressiveness and poor prognosis. However,
the transient and reversible nature of the EMT process involved in tumor invasion precludes
the use of surface markers to effectively track, isolate and characterize invasive cancer
cells in vivo, enhancing our understanding of their biology. Our previous investigation
concerning the pathogenesis of HNSCC showed that cells at the tumor invasion front
had a high expression of catulin protein and that this protein might be involved in cancer
metastasis. Therefore, to label, track and characterize cells with higher catulin expression
and invasive potential, we developed a novel reporter system based on GFP protein
expression under the short catulin promoter. Based on GFP fluorescence, which indicated
catulin expression, we sorted and analyzed cells from the Catulin-GFP reporter cell line,
showing their increased migratory, invasive, and tumorigenic potential. These results are
in accordance with our previous findings from knock-out experiments, where we showed
that the ablation of catulin expression resulted in a decrease of migratory and invasive
potential of hHNSCC cells in vitro and in vivo [25].

As expected, the analysis of tumors formed after the injection of Catulin-GFP reporter
cells revealed an opposite correlation in the expression between varying levels of an epithe-
lial marker, E-cadherin and Catulin-GFP reporter, and in cells localized predominantly at
the tumor invasion front, indicating that those cells underwent a partial EMT. The partial
decrease or destabilization of E-cadherin at the cell–cell contacts only at the tumor invading
front indicated metastasis through collective cell migration and invasion, which is very
common for HNSCC. This phenomenon occurs, when a group of cells with preserved
cell–cell contacts invade and migrate cohesively as a multicellular unit conducted by leader
cells, which consists of stromal CAFs and invasive cancer cells [34]. Although it is well-
established that collectively migrating cells exhibit homotypic cell–cell interactions, but
a less-appreciated is the contribution of heterotypic cell–cell interactions between cancer
and stromal cells [35]. More recently, the heterotypic adhesion between CAFs and cancer
cells using N-cadherin and E-cadherin is shown to lead to CAF-led collective cell migration.
Stromal CAFs can also facilitate invasion by remodeling of the ECM to clear an area for
invading cancer cells as was observed in SCC [35]. It could be an explanation for the
lack of the upregulation of typical ECM degrading enzymes, Matrix metalloproteinases
(MMPs) in the invasive SCC15CatGFP plus population. However, there was an upreg-
ulation of five disintegrin and metalloproteinases ADAMs: ADAM12 that can degrade
gelatin, fibronectin, and type IV collagen [36], ADAM9 that degrades fibronectin and
collagen XVII, ADAM15 degrading type IV collagen and gelatin [37], ADAMTS16 that
can degrade aggrecan [38], and ADAM19 that is described as a marker of the EMT [39]
(Supplementary Figure S4B). The p-EMT and collectively migrating cell clusters with a
mixed phenotype of epithelial (e.g., adhesion) and mesenchymal (e.g., migration) proper-
ties have many advantages over single migrating cells, which in general results in much
higher tumor-initiating and metastatic potential, as well as in resistance to chemotherapy
and immune systems and overall apoptosis [40]. This model can be supported by our
RNAseq analysis of SCC15CatGFP plus cancer cells, which revealed an increase in the
invasion of cells, cell proliferation, cell cycle progression, and cell survival and viability,
and a decrease in cell death, necrosis, and apoptosis.

The RNAseq data also indicated that the SCC15CatGFP plus population was enriched
with genes involved in the progression of the cell cycle. We hypothesized that it could be
due to the misregulation of three genes engaged in cell cycle regulation—cyclin dependent
kinase 2 (CDK2) and G1/S-specific cyclin D1 (CCND1), which are upregulated and cyclin-
dependent kinase inhibitor 1B (CDKN1B) that is downregulated. An elevated level of
CCND1 is correlated with poor prognosis, and its expression is upregulated in 30% to 50%



Int. J. Mol. Sci. 2022, 23, 140 18 of 26

of HNSCC patients due to gene amplification [41,42]. CDK2, which is also an unfavorable
prognosis gene, can be associated with radiotherapy resistance [43]. The activities of
both CDK2 and CyclinD1 can be inhibited by CDKN1B, which is downregulated in the
SCC15CatGFP plus population. The exact mechanism of CDKN1B downregulation in our
study is not known, but it could be possible through miR-196a delivered by exosomes
released by CAFs [44]. This scenario could be possible because of the proximity of the
SCC15CatGFP plus population to the TME and CAFs, as those cells localize mainly at the
tumor invasion front. Overall, these findings suggest that both the expression level and
activity of CDK2 and CyclinD1 could be elevated, which can lead to increased cell cycle
progression and cell proliferation.

The noticed upregulation of genes involved in the ILK and integrin signaling pathways
in Catulin-GFP reporter cells emphasized previously published potential mechanism of
action for catulin in cancer metastasis by activating the ILK-mediated Akt-NF-κB-αvβ3
signaling axis [29]. The analysis of our RNAseq data also showed an upregulation of
the BCAR3 gene, engaged in enhanced cancer cell motility, by regulation of the balance
between Rac1 and RhoA signaling in invasive breast cancer cells [45]. The Catulin-GFP
plus population also showed a upregulation of ACTN1 gene, of which the high expression
level was recently associated with the clinical stage, node metastasis, and poor prognosis
for oral squamous cell carcinoma (OSCC) patients [46]. PARVB, a direct binding partner of
ACTN1 [47] and ILK, is also upregulated in the SCC15CatGFP plus population. PARVB
is involved in mediating actin polymerization in focal adhesions. Therefore, it plays an
important role in promoting cell spreading [48] and was shown to be overexpressed in
tongue SCC [49]. PARVB can also bind directly and specifically to PXN, another focal
adhesion protein upregulated in the SCC15CatGFP plus population. This interaction
between PARVB and PXN is crucial for the early recruitment and proper localization of
PARVB to focal adhesions [50]. PXN is also one of the unfavorable prognosis genes in
HNSCC [51,52].

High and unchanged mortality of HNSCC patients for decades is mainly caused
by tumor dissemination and metastasis. This process can occur through the blood and
lymphatic system as well as along the nerves by PNI mediated by factors that normally
play role in nervous system development such as axon guidance molecules. Our RNAseq
analysis of the invasive SCC15CatGFP plus population revealed the upregulation of genes
involved in axonal guidance (Figure 5C′). One of the genes involved in axonal guidance
is L1CAM, of which the expression correlates with aggressive clinical features [53] as
well as poor prognosis in many types of cancer [54]. It was also reported that L1CAM
expression is correlated with perineural invasion and poor outcomes in pancreatic ductal
adenocarcinoma [55,56]. L1CAM protein can interact with NRP1 by direct association
through their extracellular domains what is required for axon guidance [57]. The expression
level of NRP1 is elevated in the SCC15CatGFP plus population as well as the expression of
second subtype, NRP2. Neuropilins were also shown to engage in tumor neovascularization
and metastasis, and their co-expression was shown to be correlated with the increased
vascularity and poor prognosis for NSCLC patients [58]. The expression of both NRP1
and NRP2 was found in many tumor types [59], where their overexpression contributed to
metastasis [59–61].

In our screen, we also showed a upregulation of semaphorin7A (Sema7A). This
membrane-linked semaphorin promotes the outgrowth of central and peripheral axons.
Sema7A has pro-angiogenic properties [62], can contribute to the metastasis of breast
cancer cells by inducing EMT [63] and was reported to be overexpressed in oral SCC,
where the proliferation and invasiveness of cancer cells are enhanced [64]. Sema7A can
bind to its receptor Plexin C1 (PLXNC1). In melanoma, it was shown that PlexinC1 is a
tumor suppressor protein, as it inactivates CFL1, an actin-binding protein critical for cell
adhesion and migration. In metastatic melanoma, there is a significant loss of PLXNC1,
which results in an enhanced activation of CFL1 and acquisition of a metastatic phenotype
by cancer cells [65,66]. Our data indicated a possibility of a similar model as, apart from
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the upregulation of Sema7A, there were a downregulation of PLXNC1and a upregulation
of CFL1 in the SCC15CatGFP population.

The function of some genes upregulated in the Catulin-GFP reporter cells in cancer
progression is still controversial such as for Cav1, which can act as both tumor suppressor,
by regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions [67–69]
and tumor-promoting molecules by affecting miR-133a [70,71]. However, our data from
human HNSCC tissue arrays suggested that the expression of CAV1 correlated with the
progression of tumor and was specifically stronger in advanced stages of cancer, especially
in cancer cells invading neighboring stroma.

Importantly, the comparison of our RNAseq data with data published by Puram
et al. [30], in which they profiled transcriptomes of ~6000 single cells from 18 HNSCC
patients, including five matched pairs of primary tumors and lymph node metastasis,
revealed a correlation within the established signatures of common genes for the partial
EMT, cell cycle, and epithelial differentiation. This comparison strengthened our findings,
which provided an even longer list of potential genes involved in HNSCC invasion. Our
reporter system had a probably higher sensitivity because of the labeling and sorting
out a very small, specific population of invasive cells from the tumor. In addition, the
comparison of the results from tumors derived from two different HNSCC catulin reporter
cell lines showed a pool of genes associated with invasion and common for both cell lines,
suggesting similarities in invasiveness and metastasis. Those genes, among others, were
Sema7A, L1CAM, NRP1, NRP2, BCAR3, IER3, CAV1, EPHA2, EPHB2, CCND1, CDK2, and
CTNNAL1 (catulin).

4. Materials and Methods
4.1. Cell Lines and Generation of the Catulin Reporter System

An SCC15 cell line was obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA) and authenticated by ATCC with tests such as short tandem repeat
profiling (STR profiling). SCC351 (USC-HN1) was previously described and character-
ized [72]. Both cell lines were cultured in Dulbecco’s modified Eagles’s medium (DMEM;
high glucose; Biowest, Nuaillé, France, #L0102-500) containing 10% fetal bovine serum
(FBS) (Biowest, #S181S-500), 1% antibiotics: penicillin (100 U/mL), and streptomycin (100
µg/mL) (Biowest, #L0018-100). The cell line was grown at 37 ◦C in humidified 5% CO2/95%
air atmosphere. The number of living cells was calculated by trypan blue staining using
a EVETM Automatic Cell Counter (Nano EnTek, Seoul, Korea). The cell line was regu-
larly tested for mycoplasma contamination using a PCR-based method [73]. To generate
stable reporter cell lines, SCC15 and SCC351 cell lines were transfected with GLuc-ON
Promoter Reporter Clone (#HPRM14050-PF02; GeneCopoeia, Rockville, MD, USA) con-
struct using Lipofectamine 3000 Transfection Reagent (#L3000001; Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol. 48 h after transfection,
the cells were treated with puromycin to select properly transfected cells and establish
stable cell lines. For GFP fluorescence analysis, an ArthurTM (Nano EnTek, Seoul, Korea)
Fluorescence Cell Counter was used. Detailed catulin plasmid informations are provided in
Supplementary Table S1.

4.2. FACS and Flow Cytometry Fluorescence Analysis

Flow cytometry fluorescence analysis and FACS was performed using BD FACS,
Becton, Dickinson and Company, San Jose, CA, USA Aria Fusion. SCC15CatGFP cells
were trypsynized, fixed and permabilized, and single cells suspensions in 1% FBS (free
Ca2+) in dPBS were stained with Alpha6 Integrin (conjugated to PE) in a 1:200 dilution for
30 min in the dark on ice. Cell viability was determined by adding DAPI in a 1:1000 dilution
before cell sorting. The samples were analyzed using Diva software (Version 8.0.1, BD
Biosciences, San Jose, CA, USA). Gates for cell sorting were set in relation to the unstained
control SCC15 cell line. A similar protocol was used for the SCC351 cell line.



Int. J. Mol. Sci. 2022, 23, 140 20 of 26

4.3. Protein Isolation and Western Blot Analysis

The cells were washed with phosphate-buffered saline (PBS) and scraped in an NP-
40 lysis buffer supplemented with 1% protease inhibitor and 1% phosphatase inhibitor
cocktails. Proteins were separated by electrophoresis in 10% SDS-PAGE gels and then
electro-transferred onto nitrocellulose membranes. The membranes were blocked by in-
cubation with 5% non-fat milk in TBS (0.1% Tween-20) for 1 h at room temperature and
then incubated overnight at 4 ◦C with primary antibodies. Next day, the membranes
were incubated with appropriate HRP-conjugated secondary antibodies. Signals were
visualized by enhanced chemiluminescence detection (SuperSignal®West Dura, Thermo
Scientific™, Waltham, MA, USA). As a loading control, the membranes were incubated
with a monoclonal anti-GAPDH antibody.

4.4. Sphere Invasion

In order to form spheres from the SCC15CatGFP cell line, 100 cells per well in a 96-well
low-attachment plate were grown in sphere formation media for one week. After that, the
spheres were gently transferred into an 8-well chamber slide (IBIDI) filled with Matrigel
(BD Biosciences, San Jose, CA, USA) or rat-tail collagen and cultured for additional three
days. Images of invading spheres were taken under a fluorescence microscope.

4.5. Migration and Invasion Assay

Cell migration and invasion were determined using a Boyden insert chamber (8-µm
pore size) and a BD BioCoat (Bedford, MA, USA) Matrigel Invasion Chamber (8 µm),
respectively. Cells were trypsynized and resuspended in a serum-free medium and then
counted with an EVETM Automatic Cell Counter (Nano EnTek). A total of 100,000 cells
were resuspended in a DMEM medium, were seeded inside the insert and were incubated
for 24 h at 37 ◦C in a humidified 5% CO2 atmosphere. Outside the insert, a DMEM medium
supplemented with 10% FBS was used as the chemoattractant. The cells that migrated or
invaded through the membrane of chamber were fixed and stained using crystal violet.
Experiments were repeated at least three times.

4.6. Colony Formation Assay

To investigate the colony formation ability, an equal number of cells (150, 300, and
600 cells per well) was plated in triplicates into six-well plates. The colonies were visualized
after 10 days of culturing using a crystal violet dye. Experiments were repeated at least
three times.

4.7. Xenograft Transplants and Experimental Animals

A total of 1× 106 cells suspended in media were mixed with Matrigel (BD Biosciences)
at a volume ratio of 1:1 and injected subcutaneously between the neck and shoulder of
NOD SCID mice. Tumors were allowed to form for 4 to 9 weeks before sacrificing and
collecting the primary tumor. For further analysis and FACS, three independently formed
tumors were taken. Mice were maintained and bred in Central Laboratory of Experimental
Animals, Medical University in Warsaw in the Individually Ventilated Cages (IVC) system.

4.8. Dissection Scope Pictures

Images of isolated tumors formed after the injection of SCC15CatGFP cell line were
taken under a Leica (Wetzlar, Germany) dissection scope.

4.9. Tissue Preparation and Cell Isolation

All steps of cell isolation from tissue were performed on ice. Mice tongues were placed
on petri dishes and chopped into small pieces using scissors and a razor blade in a small
volume of a cold culture medium. The soup was transferred to a 50 mL tube filled with
20 mL cold culture medium and spun at 300× g for 5 min at 4 ◦C. The supernatant was
discarded, 20 mL of cold dPBS were added, and the samples were spun at 300× g for
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5 min at 4 ◦C. The supernatant was discarded, and the pellet was resuspended in 1 mL of
collagenase I solution (1000 U of collagenase/mL media). The samples were incubated at
37 ◦C for 45 min with gentle agitation. After incubation, the samples were spun at 300× g
for 5 min at 4 ◦C, the supernatant was discarded, and the pellet was resuspended in a 0.25%
trypsin solution. The samples were incubated at 37 ◦C for 15 min with gentle agitation.
After neutralizing trypsin activity by adding 15 mL of cold media with FBS and spinning
the samples at 300× g for 5 min at 4 ◦C, the pellet was resuspended in 15 mL of low calcium
media and cell suspension was passed on pre-wetted 70 µm and 40 µm nylon meshes. The
samples were spun at 300× g and at 4 ◦C 5 min and resuspended in 1% FBS (free Ca2+) in
dPBS. Single cells suspensions were used for FACS.

4.10. Hematoxlin and Eosin (H&E) Staining and Immunofluorescence

Tissues for immunofluorescence and H&E staining were incubated in sucrose solution
for 1 hour in room temperature, fixed overnight in 4% paraformaldehyde (PFA), embedded
in an OCT compound and frozen at −80 ◦C. Frozen tissues were cut on Leica cryostat, and
12 µm-thick cryosections were kept at−80 ◦C until required for staining. H&E staining was
performed according to a standard protocol. Tissues for immunofluorescence staining were
fixed in 4% PFA for 10 min at room temperature and subsequently permeabilized in 0.1%
Triton X-100 in PBS (PBS-T) for 10 min at room temperature. Non-specific sites were blocked
in 0.1% bovine serum albumine (BSA), 2.5% normal goat serum (NGS), and 2.5% normal
donkey serum (NDS) in 0.1% PBS-T for 30 min at room temperature. Specific primary
antibodies were diluted in 0.1% BSA in PBS-T and incubated overnight at 4 ◦C. Next day,
secondary fluorochrome-conjugated antibodies were diluted at 1:500 in a blocking solution
and incubated 1 h at room temperature in the dark. For actin visualization, the samples
were incubated with phalloidin-TRITC at a dilution of 1:200 for 1 h in room temperature
in the dark. The samples were counterstained with nuclear dye DAPI at a dilution of
1:1000 for two minutes at room temperature in the dark. The samples were mounted
in FluorSave (Merck Millipore, Burlington, MA, USA). Images were acquired by a laser
scanning confocal microscope LSM 700 (Zeiss, Oberkochen, Germany) and analyzed with
Zen2 Program (Zeiss, Zen 2012 SP5 FP3 (black ) Version 14.0.17.201; Zen 2.3 (blue) Version
2.3.64.0). The information about antibodies used for immunofluorescence is presented in
Supplementary Table S1.

4.11. Immunohistochemistry

The immunohistochemical staining analysis for CAV1 and L1CAM was performed
on tissue microarray slide panels HN483 and OR601a (Biomax, Derwood, MD, USA),
respectively. The slides were deparaffinized and rehydrated with a standard protocol,
and heat-induced antigen unmasking was performed using a special antigen-unmasking
retriever in 0.01 M sodium citrate (pH 6) for 10 min at 120 ◦C. After blocking the endogenous
peroxidase activity in 0.3% H2O2 for 3 min, the slides were blocked in a blocking buffer
(0.1% gelatin, 0.1% BSA, 2.5% donkey serum, 2.5% goat serum, and 0.3% Triton X in PBS)
for 1 h at room temperature. After that, the slides were incubated with a primary antibody
in 0.1% BSA in 0.1% PBS-T ON at 4 ◦C. Next day, the slides were incubated in appropriate
biotin-conjugated secondary antibody (1:100) (Vector Labs, Burlingame, CA, USA) for
1 h in the blocking buffer. Next, the slides were incubated in the prepared Vectastain
A + B solution (2 drops of A, 2 drops of B, 2.5 mL PBS 1X) for 30 min at RT. Reactions were
developed using the diaminobenzidine (DAB) reagent as the chromogenic substrate (SK-
4100; Vector). The sections were counterstained with 5× diluted haematoxylin, mounted in
80% glycerol and examined under a light microscope. The information about antibodies
used for immunohistochemistry is presented in Supplementary Table S1.
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4.12. RNA Isolation

Total RNA was isolated from the SCC15CatGFP plus and SCC15CatGFP minus pop-
ulations using a RNeasy Mini Kit (#74106; Qiagen, Hilden, Germany) according to the
manufacturer’s protocol.

4.13. RNAseq Analysis

The RNA samples were subjected to quality analysis using a Pico 6000 RNA kit (Agi-
lent, Santa Clara, CA, USA). Based on the measurements, the samples were normalized to
a maximum of 50 ng in 10 µL and were subjected to total RNA libraries construction using
the KAPA RNA HyperPrep Kit with RiboErase (HMR) (Kapa Biosciences, Oslo, Norway)
and KAPA Dual-Indexed adapters (Kapa Biosciences). The manufacturer’s recommenda-
tions were used, including fragmentation by incubation 4 min at 94 ◦C and 14 cycles of
enrichment by amplification. The resulting RNA-seq libraries were subjected to fragment
length control with an Agilent Bioanalyzer 2100 analyzer and a High Sensitivity DNA kit
reagent kit (Agilent, Santa Clara, CA, USA). The library concentration was determined by
qPCR using a Kapa Library Quantification kit (Kapa Biosciences). All the procedures were
performed according to the manufacturer’s recommendations. Sequencing was performed
on the Illumina NovaSeq 6000 instrument using NovaSeq 6000 S1 Reagent Kit (200 cycles)
reagents (Illumina, San Diego, CA, USA), in pair-end read mode (2 × 100 cycles) using
the standard procedure recommended by producers. The resulting reads were processed
as in [74]. Briefly, the reads were trimmed, and Illumina adapters were removed using
trimmomatic v0.36 [75] using the following options: LEADING:20 TRAILING:20 SLIDING-
WINDOW:6:20 MINLEN:75 CROP:100. The quality of individual fastq files was assessed
by FastQC. Subsequently, the remaining rRNAs were removed using sortmeRNA v3.03 [76]
and then mapped to hg38 reference transcriptome (GRCh38 UCSC) [77] using the STAR
aligner [78]. Due to the contamination of the samples with mouse transcripts and after
careful PCA, 1 control sample was removed from the analysis. The aligned reads were
then quantified using Salmon v0.13.1 [79] using the following options: validateMappings,
rangeFactorizationBins 4, seqBias, gcBias, and numBootstraps 100. Differentially expressed
genes (DEGs) were then identified using DESeq2 [80]. Only genes with at least 0.3 log2-fold
change and p-value less than 0.05 were considered. The obtained results were bioinfor-
matically analyzed through BioVenn [81] and ingenuity pathway analysis (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis, access
date: 6 November 2019) [82].

4.14. Statistical Analysis

Statistical significance was determined using student t-test. *** p < 0.001 was consid-
ered to be statistically significant.

5. Conclusions

In conclusion, our results demonstrated that using a novel catulin promoter-based
reporter system, we can label with GFP and isolate and characterize the specific population
of invasive cancer cells enriched in the clusters at the tumor–stroma interface, supporting
the collective migration mode of invasion in HNSCC. Those cells harbored the aggressive
phenotype as verified by a series of in vitro tests. More importantly, the molecular profiling
of those cells provided a list of genes associated with cells movement and invasion. This
profile overlapped partially with the expression of signature genes related to the partial
EMT available from the single-cell analysis of human HNSCC specimens, highlighting the
relevance of our data to the clinical disease progression state. Interestingly, we also observed
upregulations of genes involved in axonal guidance like L1CAM, NRP1, semaphorins, and
ephrins, emphasizing potential interactions of cancer cells and neuronal components of
the stroma.

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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