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Abstract: For decades, cancer biology focused largely on the protein-encoding genes that have
clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome
instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis.
MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators
in multicellular organisms and largely contribute to regulating gene expression. Many of the
~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant
expression results in pathological and malignant outcomes. In this review, we highlight what has
been learned about the roles of miRNAs in some of the most common human pediatric leukemias
and lymphomas, along with their value as diagnostic/prognostic factors.
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1. Introduction

Following the first microRNA (miRNA) discovery in 1993 [1], a constantly increasing number of
miRNAs have been described and investigated. In 2002, the first miRNA dysregulation associated with
human disease revealed deletion of miR-15 and miR-16 as a frequent event in chronic lymphocytic
leukemia patients [2]. A year later, another couple of miRNAS, miR-143 and miR-145, were described
as downregulated in colon adenocarcinoma [3].

In 2004, Calin and colleagues mapped 186 miRNAs and found that over 50% of miRNA genes
are located at cancer-associated genomic regions or in fragile sites, and that those located in deleted
regions are generally downregulated in cancer samples [4]. In the same year, let-7 was associated with
shortened postoperative survival in lung cancer [5] and it was identified as a specific miRNA profile in
B cell chronic lymphocytic leukemia [6].

Thenceforth, many miRNAs have been identified to have an essential role in human carcinogenesis
and progression. Several reports have shown that miRNAs are central in cancer pathways by acting
as “oncomiRs” or “tumor-suppressive miRNAs” and are often related to apoptosis, cell proliferation,
angiogenesis, metastasis, and drug resistance [7,8]. Furthermore, miRNA regulation is dependent
on the expression of its multiple mRNA targets, which are not always constitutively expressed;
consequently, a unique miRNA may have different effects under diverse conditions [9].
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The biological behavior of pediatric tumors is heterogeneous with several aspects distinguishing
them from their adult counterparts, including their location, cellular environment, cell of origin,
and genetic mutations. From treatment perspectives, they are also heterogeneous, ranging from
generally curable low-grade tumors to highly aggressive forms that are usually fatal. Consequently,
the identification of molecular markers that can effectively predict prognosis, and might contribute to
the development of new therapeutic approaches, is still needed.

Like in adults, dysregulation of miRNAs is a hallmark in childhood cancer. Herein, we will
compile current information about the role of miRNAs in the biology of leading hematological cancers
in a pediatric setting.

2. Leukemias

Leukemia, a cancer of the bone marrow (BM) that hampers normal hematopoiesis, is the most
common childhood malignancy, accounting for about 30% of all pediatric cancer. The two major
subtypes seen in children are acute lymphoblastic leukemia (ALL), and acute myeloid leukemia
(AML) [10,11], though a small fraction may present chronic myeloid leukemia (CML) and juvenile
myelomonocytic leukemia (JMML) [12,13].

2.1. Acute Lymphoblastic Leukemia

ALL represents 80% of all leukemia types in children [10] and in recent decades clinicians have
seen a significant improvement in event-free survival (EFS) rates, currently exceeding 80% in developed
nations [14]. This advancement was notably facilitated by multiagent chemotherapy regimens and
risk-adapted therapy, where the study of laboratory-based outcome variables consents the allocation
of treatment [14,15].

In 2007, Mi and colleagues [16] showed that miRNA signatures could accurately discriminate ALL
from AML. This study, although samples from adult and pediatric patients were analyzed indiscriminately,
was the first suggestion of miRNAs’ involvement in childhood leukemia. Thereafter, many research
groups also utilized miRNA-expression analyses and proved this strategy to be useful in the refinement
of ALL classification schemes. Nowadays, disruption of miRNA expression and function in ALL is the
most broadly studied and well-characterized among pediatric leukemias (Figure 1).

Differentially expressed miRNAs in childhood ALL (cALL) were firstly described in 2009 [17].
Examining 40 newly diagnosed pre-B ALL samples, miR-222, miR-339, and miR-142-3p were
found overexpressed, along with the downregulation of miR-451 and miR-373 when compared
to normal cells [17]. Additionally, a subsequent report [18] examined miRNA profiles in pediatric
ALL samples in comparison to normal CD34+ cells, and gave evidence of the upregulation of
miR-128a, miR-142, miR-150, miR-181, miR-30e-5p, miR-193, miR-34b, miR-365, miR-582, and miR-708,
and the downregulation of miR-100, miR-125b, miR-99a, miR-196b, and miR-let-7e. Later on, several
studies reported dysregulated miRNA expression in pediatric ALL samples compared to normal
cells. For example, a number of publications described increased expression of miR-21, miR-34,
miR-128, miR-142, miR-146a, miR-181b, miR-195, and miR-708 [19–23], and decreased levels of miR-18,
miR-181a, miR-99a, miR-100, miR-145, let-7, and miR-196b in ALL cells [19,21,24,25].

The biological heterogeneity and distinct-lineage origins of ALL are well-established [26].
Such heterogeneity is also reflected with respect to miRNA expression profiles, for example, miR-18a
is lower in childhood ALL when compared to the adult counterparts [24]. Among the dysregulation
of miRNAs evinced in multiples studies, specific miRNA profiles have been described for specific
ALL subtypes [18]. The same group [27] later identified unique miRNA expression patterns for
each pediatric ALL subtype and measured the expression levels of 397 miRNAs in samples from
81 patients. The authors were able to differentiate many of the major subtypes of ALL, such as
T-cell, MLL-rearranged, ETV6/RUNX1-positive, E2A/PBX1-positive, and hyperdiploid. However,
conclusive evidence for discriminative miRNA expression was not found in BCR/ABL positive and
“B-other groups”.
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Moreover, the downregulation of miR-let-7b (~70-fold) in MLL-rearranged ALL; miR-100 in
ETV6/RUNX1-positive; miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p, miR-214-5p,
miR-708 in T-ALL; and miR-31, miR-24, miR-708, and miR-128 were associated with PAX5-deleted
ALL [18,20,28,29]. Contrariwise, higher expression of miR-125b, miR-196, miR-223, and miR-708 were
found in patients with ETV6/RUNX1 translocation, and miR-24 and miR-542 were associated with
PAR1 deletion, ALL [27,29,30] increased miR-181b and miR-128a in MLL-rearranged [20,27,31], higher
miR-100 and miR-21 in B-ALL, and higher miR-196b in T-ALL [19,32–34]. Moreover, a difference on
miRNA expression was found when infant and childhood T-ALL were compared [35].

The clinical importance of miRNA profiling was also verified by the description of an association
with treatment resistance and EFS. Specific miRNA profiles were described for several commonly
used drugs (Figure 2). A study published in 2015 by Hamzeh et al. showed that miRNA-related
dysregulated pathways were associated to resistance to asparaginase (L_ASP), daunorubicin (DAUNO),
prednisolone (PREDS), and vincristine (VIN) [36]. Several miRNAs have been attributed an
association with leukemia treatment resistance, such as miR-34 [37,38], miR-128b, and miR-223 [39].
Zhang et al. [23] described an miRNA signature (miR-18a, miR-532, miR-218, miR-625, miR-193a,
miR-638, miR-550, and miR-633) that was able to predict prednisone (PRED) response in childhood
ALL patients. Later, in a separate study involving cALL samples, it was shown that the expression
profiles of the same group of miRNAs could similarly be used to predict early response to
this glucocorticoid [40]. Furthermore, miR-124 was upregulated in prednisone and glucocorticoid
resistance [41]. Alternatively, it was shown that prednisolone significantly increased miR-16-1 and
miR-15a expression [42]. Additionally, it has been demonstrated that the restoration of miR-128b and
miR-221 co-operatively sensitizes MLL/AF4(+) ALL cell lines to glucocorticoids [43], while exogenous
expression of miR-335 in ALL cells renders cells to PREDS-mediated apoptosis [44].

Comparatively, in an attempt to elucidate miRNA signatures that indicate sensitivity to other
chemotherapeutics used in ALL treatment, 397 miRNA were verified by Schotte and colleagues [27].
From those, 17 were related to resistance to one or more drugs. Among them, miR-99a, miR-100,
miR-125b, and miR-126 were associated with VIN and DAUNO resistance, while miR-625 was
associated with VIN and PREDS resistance. The expression of miR-125b, together with miR-99a and/or
miR-100 overexpression, is also linked to vincristine resistance [45,46], while the overexpression of
miR-652-3p increases sensitivity to vincristine and cytarabin (CYT) [47]. Recently, downregulation
miR-326 was associated with multidrug resistance [48].

Furthermore, miR-3117-3p polymorphism has been associated with vincristine-induced
neurotoxicity [49]. Moreover, miR-5189, miR-595, miR-6083, and some polymorphisms related to
miRNA can also be linked to methotrexate (MTX) response, and miR-1206 can be used to predict MTX
toxicity [50–52].

On the other hand, the association of distinct miRNA expression patterns in relation to risk
stratification in childhood ALL has been scrutinized in the literature. A report by Zhang et al. [23]
alluded to the association of miRNA expression with prognostic parameters such Central Nervous
system (CNS) relapse, specific risk category, and disease recurrence. More than 20% of patients with
CNS relapse showed a threefold increase of miR-7, miR-198, and miR-633, and a decrease of miR-126,
miR-345, miR-222, and miR-551a at a one-year follow-up. Some of these findings were later confirmed
in a report by Xu and colleagues [40].

The expression of some miRNAs can be used to monitor disease progression, such as with miR-128,
miR-146a, miR-155, miR-181a, and miR-195 [21]. In addition, miR-210 has been proposed as a good
prognostic factor and a useful predictor of drug sensitivity [53]. Moreover, a systematic investigation
by Schotte et al. [27] verified a correlation with the probability of disease-free survival (DFS) and
expression levels of 31 distinct miRNAs. Among those, 14 miRNAs were considered independent
prognostic factors that allowed the distinction of a group of patients with favorable expression profiles
and a five-year DFS of 89.4 ± 7% from those with less favorable miRNA profiles, with a five-year DFS
rate of 60.8 ± 12%.
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In parallel, Han et al. [54], using panel of matched samples (diagnosis/remission and
diagnosis/relapse), described the altered expression of miR-223, miR-23a, let-7g, miR-181, miR-708,
and miR-130b in relapsed samples, and miR-27a, miR-223, miR-23a, miR-181, and miR-128b in samples
taken at remission. MiRNAs expression associated with shorter EFS or other clinical markers in cALL
were also described [39,53,55–58]. An association of miR-708, miR-223, and miR-27a with relapse-free
survival (RFS) was also demonstrated, as well as a prediction for relapse in patients with altered
expression of miR-210 and for miR-143/miR-182 [59,60]. Moreover, the low expression of miR-151-5p
and miR-451, high expression of miR-1290, or a combination of all three predicted inferior RFS [61].
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Figure 1. Dysregulated microRNAs (miRNAs) in childhood acute lymphoblastic leukemia.
Hyperexpressed and hypoexpressed miRNAs in acute lymphoblastic leukemia within cellular (B-cell
or T-cell) or molecular (ETV6/RUNX1+, PAX5-deleted, MLL-rearranged, or PAR1-deleted) subgroups
are denoted in green and red, respectively.
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Figure 2. Dysregulated miRNAS that are associated with treatment response. Several miRNAs have
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2.2. Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is the second most common type of pediatric leukemia,
representing 17% of all hematological cancer in children [10] and five-year survival estimates of
approximately 65% in developed countries [62]. MiRNA dysregulation has also been described in this
pathology, though to a much lower extent when compared to ALL (Figure 3).

The first analysis of miRNA signatures in childhood AML (cAML) was also described by Mi and
colleagues [16]. Nonetheless, adult and pediatric patients were analyzed indiscriminately and, among
the 93 AML cases analyzed, only 17 were under 18 years old (nine patients under 12 years-old).

In 2009, samples from patients diagnosed with AML showed low levels of miR-34b, while in vitro
exogenous expression of this miRNA caused cell-cycle abnormalities, reduced anchorage-independent
growth, and altered CREB (cAMP response element-binding protein) target gene expression, suggesting
suppressor potential [63]. Furthermore, in 2013, the same group demonstrated the hypermethylation
of miR-34b promoter in AML [63].

Hypermethylation of the miR-663 promoter was also observed in another pediatric AML cohort
and, consequently, a significantly lower expression of this miRNA was observed compared to normal
bone-marrow control samples [64].

Several research groups have widely explored the study of individual miRNAs in AML.
Emmrich et al. [65] observed that miR-582 and miR-9 are downregulated in t(8;21) AML; miR-500a
and miR-192/194 are downregulated in AML with inv (16); and miR-181a, miR-1331, and miR-126 are
downregulated while miR-187 is increased in MLL-rearranged AML. In 2017, Obulkasim et al. [66]
published a signature prolife of 47 miRNAs to distinguished different AML cytogenetic subtypes.
Moreover, miR-155 was proposed as a potential diagnostic biomarker for all AML, whereas miR-196b
is specific for subgroups M4–M5 [67,68]. Another study stated that high miR-155 expression is also
an adverse prognostic factor in pediatric NK-AML and is associated with worse EFS and overall
survival (OS) [69].

In addition, miR-193b-3p was described as downregulated and proposed as an independent
indicator for poor prognosis in pediatric AML, independent of patient age or genetics [70]. MiR-146b
was described as an independent poor prognostic factor, while high expression of miR-181c and
miR-4786 appeared to be favorable factors [71]. High expression of miR-196b in diagnostic marrow
samples of pediatric AML was also associated with an unfavorable outcome [72].

Upregulation of miR-100 and miR-375 was also correlated with poor RFS OS [73],
and downregulation of miR-29a was associated with advanced clinical features and poor prognosis
of pediatric patients [74]. More, recently, an miRNA-based predictor of poststandard induction
chemotherapy outcome in cAML was created to identify EFS in children with AML, and it offers the
potential for improved patient stratification and management [75].

On the other hand, Danen-van Oorschot and colleagues [76] showed high levels of miR-196a and
-b expression in pediatric patients carrying MLL fissions, NPM1 mutations, or FLT3/ITD. In contrast,
CEBPA-mutated cases presented low expression of miR-196a and -b. Alternatively, high expression of
miR-155 was also observed in FLT3/ITD and NPM1-mutated cases, while downregulation of miR-29a
was mostly detected in MLL-rearranged samples [76]. Moreover, the miR-106b~25 cluster has shown
to be upregulated in relapse pediatric AML with MLL rearrangements [77].

Another comprehensive overview of miRNA expression showed that samples with core-binding
factor AML and promyelocytic leukemia differed from each other and could be distinguished from
MLL-rearranged AML subtypes by differentially expressed miRNAs that included miR-126, -146a,
-181a/b, -100, and miR-125b [78].

MiR-99a was also found highly expressed in pediatric-onset AML, while significantly
underexpressed during complete remission. Additionally, in vitro studies suggested a potential
oncogenic role [79]. Moreover, forced expression of miR-9 reduced leukemic growth and induced
monocytes differentiation of t(8;21) AML cell lines in vitro and in vivo, being characterized as a
tumor-suppressor miRNA that acts in a strict cell context-dependent manner [65].
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In parallel, many miRNAs have been related to AML by regulating cell proliferation, including
downregulation of miR-122 as an aggressive progression marker [80], and miR-181a as a regulator of
G1/S transition [81]. Others, like miR-126 and miR-182, were highly expressed in AML cell lines and
inhibition of miR-126 significantly induced cell death through apoptosis [82,83]

2.3. Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a rare childhood hematological malignancy representing
around 3% of all leukemias, with an annual incidence of one per million children and young people
aged <15 years [84].

The characteristic reciprocal translocation t(9;22)(q34;q11) that leads to the formation of BCR/ABL
chimeric oncoprotein is present in 90–95% of childhood CML [85]. In the era of therapy with specific
tyrosine kinase inhibitors, the two-year survival among children with CML is 81–89%; nonetheless,
age-group analysis evidenced that risk of death was three times higher for children younger than five
years versus those aged 10–14 years [86].

Independent of age, many miRNAs have been described as active regulators of ABL1 and
BCR/ABL. For example, it was demonstrated that ABL1 is a direct target of miR-203. This miRNA
is silenced in CML and its restoration reduces ABL1 and BCR/ABL1 expression, decreasing cell
growth. Additionally, one of the molecular mechanisms of imatinib is the demethylation of miR-203
in BCR/ABL-positive leukemia cells [87,88]. Nevertheless, the specific role of miRNAs in pediatric
CML has been little explored. In 2013, miR-99a expression levels were evaluated in eight CML patients
(including four samples before therapy and four samples with complete remission) and 12 pediatric
controls. Although with a small number of patients, miR-99a expression was significantly increased in
samples collected at diagnosis and decreased in samples after treatment [79].

A more recent study, aiming to evaluate profibrotic changes in childhood CML, analyzed
16 pediatric and 16 adult CML samples with and without fibrosis (each n = 8), as well as
18 non-neoplastic controls. Fiber accumulation in BM represents an adverse prognostic factor in
adult CML, but, in children, this event is unknown. Nonetheless, among many gene-expression
profiles investigated, two were miRNAs: miR-10 (previously associated with CML) and miR-146b
(previously associated with fibrosis). MiR-10 was not associated with disease subtypes, fibrosis,
or age. MiR-146b, on the other hand, showed lower expression levels in most pediatric samples when
compared to adult counterparts, but no clear associations were found [89]. Other studies evaluating
miRNA pathways specifically in childhood CML were not found.

2.4. Juvenile Myelomonocytic Leukemia

Juvenile myelomonocytic leukemia (JMML) is a rare myeloid progenitor disorder that occurs in
young children with an annual incidence of as much as 1.2 per million children, accounting for less
than 3% of all childhood hematologic malignancies [90].

Patients with JMML respond poorly to chemotherapy and have poor prognosis. The EFS
is between 24–54% after hematopoietic stem-cell transplantation and is less than 10% without
transplant [91]. Somatic defects in RAS, NF1, PTPN11, or CBL are detected in 85% of patients,
evidencing RAS/MAPK-pathway (Rat Sarcoma virus /mitogen-activated protein kinase) activation as
an important mechanism in JMML pathogenesis [92].

Aiming to evaluate miRNAs’ role in JMML, miR-let-7a-1/miR-let-7f-1 and the 3′UTR of NRAS or
KRAS were sequenced in BM cells from 10 JMML patients. RAS is a known target of miR-let-7 but,
in this report, there was no evidence of any mutations in let-7 or in let-7-binding sites that might lead
to its upregulation in JMML [93]. On the other hand, reduced levels of most members of the miR-let-7
miRNA family were evidenced in a novel fetal-like subgroup of JMML patients with LIN28B protein
overexpression [94].

Analyses of 20 JMML samples by Ripperger and coworkers through comparative genomic
hybridization found two patients with an almost identical partial gain of chromosome 8, suggesting
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8p11.21q11.21 as a critical region. This band includes 31 protein-coding genes and two noncoding
RNAs among which miR-486 is a known regulator of phosphatase and tensin homolog (PTEN) and
the transcription factor forkhead box O1 (FOXO1) [95].

In 2013, downregulation of miR-34b was described in JMML patients (n = 17) [63], but this
association was not confirmed by Liu et al., analyzing a bigger JMML cohort (n = 47) [96]. Nonetheless,
these authors described high expression levels of miR-183 (13.8 vs. 4.2, p < 0.001) with significant
linear correlation with monocyte percentage and in samples with PTPN11 mutations [96]. MiR-223 and
miR-15a were also found upregulated in JMML BM harboring PTPN11 mutations (11 from 19 analyzed
patients), but not those without PTPN11 defects [97].

More recently, distinctive miRNA signatures associated with the PTPN11, KRAS, and NRAS
molecular subtypes of JMML were also described. From a panel of miRNAs, miR-630, miR-3195,
miR-575, miR-4508, miR-224-5p, miR-320e, miR-494, miR-548ai, miR-222-3p, miR-23a-3p, and miR-338-3p
were found upregulated, while miR-150-5p, let-7g-5p, miR-1260a, let-7a-5p, miR-4454, miR-148a-3p,
miR-146b-5p, miR-342-3p, let-7f-5p, miR-26a-5p, let-7d-5p, miR-30b-5p, miR-29b-3p, and miR-29a-3p were
described as downregulated. Of note, miR-150-5p was found to target STAT5b (Signal transducer and
activator of transcription 5b), and its induced overexpression in mononuclear cells from JMML patients
decreased proliferation rates [98].
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3. Lymphomas

Lymphomas stricto sensu comprise any neoplasm of the lymphatic tissue. In the pediatric setting,
lymphomas represent the third most common malignancy.

The World Health Organization (WHO) groups lymphomas by cell type and defining phenotypic,
molecular, or cytogenetic characteristics [99]. Basically, there are two main categories of lymphoma,
Hodgkin (HL) and non-Hodgkin lymphoma (NHL). HL most commonly affects adolescents and
accounts for 4–7% of overall childhood cancer [100], while NHL is more frequently diagnosed in
children younger than 15 years of age and represents 7–10% of pediatric malignancies [101,102].
NHL has a wide range of histological appearances and clinical features at presentation and, despite
classification refinement, some groups remain heterogeneous. Nonetheless, Burkitt lymphoma (BL),



Int. J. Mol. Sci. 2018, 19, 2688 8 of 30

diffuse large B-cell lymphoma (DLBCL), primary mediastinal large B-cell lymphoma (PMLBCL),
anaplastic large cell lymphoma (ALCL), and lymphoblastic lymphoma (LL) comprise childhood
NHLs [103].

Over the last decade, the pattern of miRNA expression of different types of pediatric lymphomas
has been extensively studied. A substantial number of miRNAs have been described as dysregulated
and contributing to better classifying this type of tumor, though, for many, their roles in tumor
development are still unclear (Figure 4). Moreover, the lack of information about miRNAs in some
forms, such as PMLBCL and classical HL, is evident.

3.1. Burkitt Lymphoma

BL represents about 30% of all pediatric NHL and is considered a highly aggressive tumor [102].
The study of miRNA in BL is usually focused on the establishment of miRNA profiles and the
understanding of tumor transformation and progression. On this regard, miRNA expression could
discriminate BL from other lymphomas, pediatric from adult samples, and Epstein–Barr virus (EBV)
BL-positive from negative cases [104–108].

In 2004, miR-155 was the first described as deregulated in lymphoma. This miRNA is encoded by
the human BIC gene and it was found overexpressed in pediatric BL. Metzler et al. [102] suggested that
this RNA could be acting in co-operation with c-Myc on B-cell transformation. MiR-155 expression
induces polyclonal expansion in B-cells, favoring the occurrence of secondary mutations and leading to
full transformation [109]. This miRNA has as a direct target SHIP1 (Src homology-2 domain-containing
inositol 5-phosphatase 1), whose suppression in hematopoietic cells leads to mieloproliferative
diseases [110]. In addition, miR-155 showed low expression in pediatric BL, inversely associated with
the downregulation of the nuclear interactor of ARF (ADP-ribosylation factor) and Mdm2 (murine
double minute 2) (NIAM, the protein-coding transcript splice variant of TBRG1 locus), a protein with a
tumor-suppressor function [111].

It was demonstrated that miR-155 was expressed only in BL EBV-positive cases, which account for
70% of all pediatric BL [112,113]. Secreted vesicles (exosomes) from EBV-positive Raji cells could deliver
miR-155 to other recipient cell lines, such as retinal-pigment epithelial cells (ARPE-19), and miR-155
increased transcriptional and translational levels of VEGF-A in ARPE-19 cells [114].

Other studies have also demonstrated a close association between EBV infection and miRNA
dysregulation in BL. High levels of miR-155 and miR-146a were found in response to the viral latent
membrane protein-1 (LMP1) through NF-κB (nuclear factor kappa B) modulation, although the precise
mechanism is still unclear [115,116]. LMP1 seems to stabilize BIC mRNA via p38/MAPK, and the
LMP1–BIC axis contributes to EBV-induced lymphomagenesis [117]. Additionally, LMP1 induces
miR-34a expression, leading to EBV-transformed cell growth [118]. However, a tumor-suppressor
effect of LMP1 has also been described through the upregulation of miR-29b, which represses TCL1
(T-cell leukemia/lymphoma protein 1) and leads to tumor cell-proliferation reduction [119].

Epstein–Barr nuclear antigen 1 (EBNA1) also has a role on BL development by miR-127 induction.
This miRNA impairs B-cell differentiation by decreasing BLIMP-1 (PR domain zinc finger protein 1)
and XBP-1 (X-box binding protein 1) expression, which leads to BCL-6 overexpression and IRF-4
(interferon regulatory factor 4) downregulation [120]. The presence of the EBV virus determines a
profile of miRNAs in pediatric and adults BLs, therefore 28 miRNAs were differentially expressed in
positive EBV cases, including EBV-encoded and host miRNAs [107].

During EBV infection, the virus-control miRNAs expression of host cells and expressed two
clusters of miRNAs. A member of the miR-BART cluster, EBV-BART-6-3p target interleukin-6
receptor (IL-6R) and impair the immune system [121,122]. Synergistically with EBV-BASRT-6-3p,
host cellular miR-142 and miR-197 targeted and reduced expression of IL-6R in Ramos BL cell
lines [123,124]. Therefore, miRNA detection could be a specific and sensitive tool to recognize EBV
vestiges once EBV-negative samples classified by immunohistochemistry demonstrated the presence
of EBV-miRNAs, suggesting that EBV might contribute to lymphomagenesis [125].
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Among the dysregulated miRNAs in BL, there are also those regulated by the NF-κB pathway and
those regulated by c-Myc, transcription factors that regulate cell proliferation, growth, and apoptosis.
Among these, miR-23a, miR-26a, miR-29b, miR-30d, miR-146a, miR-146b-5p, miR-155, and miR-221
were found statistically significantly downregulated in BL compared to other lymphomas [126].
In Raji cells, miR-520a was associated with the regulation of the AKT1 (v-akt murine thymoma viral
oncogene homolog 1) and NF-κB signaling pathways, and mimics of this miRNA inhibited growth
and proliferation, and promoted apoptosis [127].

Alterations on c-Myc expression or function of are one of the most frequent abnormalities in
human malignancy; in BL, the recurrent t(14;18) chromosomal translocation juxtaposes this oncogene to
the regulatory elements of the immunoglobulin resulting in the constitutive expression of c-Myc [128].
This activation promotes the expression of cluster miR-17–92 [129], which has a causative role in
lymphomagenesis, regulating proapoptotic proteins and cell-cycle regulators [130]. In the p53-mutated
BL cell line Raji, c-Myc is an alternative target of Inauhzin (INZ) via miRNA pathways, including
miR-24 and miR-34a. INZ is a small molecule that activates p53 and inhibits tumor growth [131].
In fact, De Falco et al. (2015) showed four miRNAs (miR-29a, miR-29b, miR-513a-5p, and miR-628-3p)
differentially expressing between MYC translocation-positive and negative BL. These miRNAs targets
are involved in gene expression, proliferation, and DNA modification. In MYC translocation-negative,
overexpression of DNA methyltransferase (DNMT) was associated with hypoexpression of the miR-29
family [132]. Association between high expression of DNMT1 and decrease in the miR-29 family was
observed in a pediatric cohort (n = 71), suggesting a methylation control of has-miR-29 [133].

Analysis of known Myc-targeted miRNAs demonstrated significant association between BL with
Myc translocation in a cohort composed by 61% of pediatric BL [104]. Those miRNAs included
an upregulated cluster (miR-17-92 and its paralogs miR-18b, miR20b, miR-106a), and a set of
downregulated miRNAs (miR-23a, miR-29c, miR-29b, miR150, miR146a). Upregulated miRNAs in BL
were expressed at significantly lower levels in normal B cells, T cells and stromal cells, but were noted
in BL cell lines (Daudi and Raji). BL cases with high expression of miR-17-92 cluster members showed
significantly repression of these target genes in BL [104]. The investigation of the miR-17–92 cluster
(miR-17, miR-19a, miR-19b, miR-20, and miR-92 a) expression in pediatric BL showed correlation
between the upregulation of miR-17 and miR-20a with a lack of proapoptotic BIM (Bcl-2-like protein
11) expression. MiR-17 was a predictor of shortened OS, and inhibition of this miRNA in Daudi cells
induced BIM expression [133].

MiR-26a and miR-28, on the other hand, were found underexpressed in BL. Their ectopic
expression reduces proliferation, impairs cell-cycle progression, and increases apoptosis by targeting
different proteins [134,135]. Another important c-Myc target, miR-150, which targets MYB and survivin,
was found downregulated in BL. Overexpression of this miRNA in BL cells reduced proliferation rates
and increased apoptosis [136,137].

Moreover, miR-181b, which is located in the intron of the FAMLF (familial acute myelogenous
leukemia related factor) gene, showed an inverse correlation with FAMLF expression, and an
interaction with its 5′UTR. Downregulation of FAMLF by miR-181b inhibited cell viability and arrested
cell cycle in Raji BL cells [138,139].

Differential miRNA profiles have also been described in endemic Burkitt Lymphoma (eBL),
an aggressive germinal center CG cell cancer that represents a subdivision of BL with high incidence in
pediatric patients in equatorial Africa. eBL is associated with EBV and Plasmodium falciparum malaria
coinfection, and shows c-Myc overexpression [140]. An integrative analysis compared normal germinal
center (GC) B cells with eBL and evidenced 49 miRNAs with differential gene expression. Of these,
27 miRNAs were downregulated (including let-7 family members) and 22 upregulated (among them
miR-17–92 cluster) in eBL samples. Enrichment of pathways showed the interaction of these miRNAs
with marked tumor suppression (PTEN, AXIN1, ATM, NLK), and important proto-oncogenes and
tumor-promoting genes as MYC [141].
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A comparison between eBL jaw- and abdominal-tumor biopsies showed no discernible clustering
based on tumor-site designation. MiR-10a-5p was the only miRNA with differential expression, and it
was lower in jaw eBL compared to abdominal, and it presented reduced expression in nonsurvivor
patients. MiR-10a-5p could target 473 genes, and enrichment of pathways showed its importance
in cancer, focal adhesion, EPV infection, and apoptosis pathways [142]. Therefore, in pediatric
BL, EBV infection and c-Myc translocation promote lymphomagenesis through the deregulation of
several miRNAs.

3.2. Diffuse Large B-Cell Lymphoma

DLBCL represents 10% to 20% of childhood lymphomas and it is more frequently found in
children older than 10 years of age [128]. This tumor is divided in two distinct subtypes according
to the cell of origin: the activated B cell-like (ABC) and the germinal center B cell-like (GCB) [143],
though most pediatric DLBCL patients are diagnosed with the GCB form [144].

The clinical presentation of pediatric DLBCL and BL are very similar. Currently, they are
recognized as two different entities; however, in the pediatric group, there is a significant overlap of
features resulting in a group of unclassifiable lymphomas. Nonetheless, through microarray technology,
different research groups were able to define a collection of distinct miRNAs that constitutes a DLBCL
signature [106,145]. This analysis also enables us to differentiate ABC from GCB-subtypes.

Ten miRNAs (miR-146b, miR-146a, miR-21, miR-155, miR-500, miR-222, miR-221, miR-363,
miR-574, and miR-574*) were found to be more upregulated in ABC than in the GCB lymphoma
type, suggesting that the high levels of these miRNAs are not due to tumor malignancy but associated
with the cell of origin [146,147]. MiR-155 was one of the first miRNAs found upregulated in
ABC-DLBCL [147,148]. Its aberrant expression seems to be a consequence of an autocrine stimulation
by TNFα (tumor necrosis factor alfa) rather than chromosomal translocations like in BL tumors [149].
Initially, no correlation with prognosis was found when all DLBCL tumors were considered [145,150];
however, when only the ABC group was examined, high miR-155 expression was associated with
better survival rates. In this case, the five-year survival probability changed from 15% for patients with
low miR-155 to 53% for patients with high miR-155. Moreover, higher expression of miR-222 was also
associated with inferior overall and progression-free survival [150].

Other studies later indicated miR-155 and miR-146a as potential diagnostic and prognostic
indicators in DLBCL. Patients with low expression of these miRNAs were associated with high
complete remission, high overall response rate, and better five-year OS when patients were treated
with the R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin, VIN, and PREDS) [151].
Furthermore, in DLBCL patients, higher expression of miR-28, miR-214, miR-339*, and miR-5586
was associated with better outcome, while upregulation of miR-324 was associated with poor
prognosis [152].

Although ABC-DLBCL miRNA signatures have been better studied, the expression of few
miRNAs was also associated with GCB-DLBCL, such as the amplification of the 17–92 cluster [153]
and high levels of miR-106a and miR-181b [154].

Additionally, the role of some of these miRNAs in DLBCL development has been elucidated
over the last few years. MiR-125a and miR-25b, for example, are overexpressed in DLBCL and target
TNFαIP3, an NF-κB negative regulator. They participate in a positive self-regulatory loop where
miR-125 is also regulated by NF-κB, what is probably an important mechanism to keep the constitutive
activation of the NF-κB pathway in DLBCL pathogenesis [155]. In addition, miR-34a repression was
described to cause high-grade transformation of B-cell lymphoma by altering FOXP1 (Forkhead Box
P1) expression [156]. Interestingly, mice treated with miR-34a mimics results in a 95% reduction in
DLBCL tumor growth due to its strong proapoptotic properties, suggesting an alternative therapeutic
strategy [157].
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3.3. Primary Mediastinal Large B-Cell Lymphoma

PMLBCL was first described in the 1980s and is considered a distinct clinicopathologic entity of
DLBCL [158]. PMLBCL is characterized by a rapidly growing mediastinal mass that arises from mature
thymic medulla B-cells, frequently accompanied by local invasiveness and occasionally with distant
metastasis. Uncommon, but not rare, this clinicopathological entity occurs more often in young adult
females [159] and constitutes 2–3% of all N and 6–10% of all diffuse large-cell lymphomas [160,161].

Recently, a large population-based study was able to estimate the incidence of PMLBCL. Based on
slightly more than 400 patients in the United States, the annual incidence rate was estimated at 0.4 per
million. Females had significantly higher incidence than males (ratio 3:1) and the peak of occurrence
was recognized at 30–39 years. The five-year survival rate of 85% and prognosis were also reduced
with advancing age [162].

In patients aged <18 years (22/451 cases), PMLBCL incidence was 4.9% [162]. Other reports,
in which young patients showed inferior outcomes, compared adult counterparts or children with
other B-NHL histological subtypes, with EFS rates ranging between 70% and 80% [163–167].

In the literature, there are few studies on miRNA expression profiles in PMLBCL. The first report
was given by Kluiver et al. [168], who showed positivity for BIC and miR-155 in one cell line and eight
PMLBCL samples derived from a tissue bank. Later, Iqbal et al. [104] described an miRNA signature
that allowed the distinction between PMLBCL from other DLBCL, including upregulation of miR-193b
and miR-365, and underexpression of miR-629, miR-423-5p, and miR-15a. Higher levels of miR-92a
were also described as a classifier of PMBLBCL [169]. Moreover, a recent study by Malpeli et al. [170]
showed that the polycistron miR-17–92 cluster, miR-29 family, miR-150, and miR-497 had the highest
power of discrimination between B-cell NHL types, though only eight PMLBCL samples were included.
Nonetheless, none of these studies gave any specific details about pediatric samples, and the mean age
of patients was always reported above 27 years old.

3.4. Anaplastic Large-Cell Lymphoma

Anaplastic large-cell lymphoma (ALCL) is an intermediate grade NHL and accounts for
approximately 10% of pediatric NHL [171]. Most pediatric ALCL present the chromosomal
translocation t(2;5) (p23;q35). In 80% of cases, that translocation results in the expression of a fusion
gene called NPM–ALK that encodes a potent oncogenic tyrosine kinase [172].

Several miRNAs have been described as promoting this neoplasia and they seem to express
and act differently in ALK+ and ALK− tumors and cell lines [173,174]. The suggested signature for
ALK+ cells includes seven miRNA, five of them being upregulated (miR-512*, miR-886, miR-886*,
miR-708, and miR-135b) and two downregulated (miR-146a and miR-155). High expression of miR-886
and miR-886* seems to be related with higher AKT expression, since treatment with AKT inhibitors
leads to a reduction on these miRNAs levels. It has been shown that miR-886 might act deregulating
apoptosis by targeting the proapoptotic gene BAX [173]. Furthermore, miR-16 is downregulated in
AKT+, resulting in VEGF expression, tumor growth, and angiogenesis [175].

Besides the above-mentioned miRNAs, the 17–92 cluster has also been found overexpressed in
AKT+ ALCL [176]. These miRNAs are transcriptionally regulated by STAT3, a major substrate for
ALK, and promote survival and growth of this tumor. Among the known targets of this cluster, BIM
and TGFβRII have been described. An autoregulatory loop between STAT3 and miR-17–92 was also
characterized, suggesting an involvement of this cluster in the pathogenesis of this tumor [177].

Conversely, miR-155 showed low expression in ALCL ALK+ tumors and cell lines, and its
inhibition is mediated by methylation. SR278 transfection (pediatric ALCL ALK-positive cells) with
pre-miR-155 reduced expression levels of miR-155 targets (C/EBPβ, SOCS1) by binding sites in their
3′-UTR. The action of miR-155 in the immune system was demonstrated through reducing IL-8 and
IL-22 transcript levels [178]. C/EBPβ downregulation evidenced the role of this transcription factor
in miRNA regulation, mainly miR-181a*, miR-181, and miR-203. MiR-181a showed low expression
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in ALK+ ALCL cases; this miRNA coordinates T-cell differentiation and modulates TCR antigen
expression, being involved in innate and adaptive immune response [174].

MiR-29a was found remarkably reduced in ALK+ when compared to ALK-ALCL, where it
regulates MCL-1, contributing with apoptosis blockage [179]. Moreover, ALK knockdown results in
increased miR-96 levels, while miR-96 overexpression leads to a reduction in ALK protein levels
and decreases cell viability and growth, reinforcing the hypothesis that ALK sustains its own
expression by exerting a reciprocal negative feedback loop that hinders the expression of miRNAs [180].
ALK-positive cells showed low levels of miR-146a, miR-29c, miR-29b, miR-29a, miR-22, miR-101,
miR-150, and miR-125b, while miR-20b was upregulated [176].

The translocation and activity of NPM-ALK are responsible for miR-150 and miR-125b silencing
in cell lines, mediated by DNMT1-dependent activity [181,182]. Inhibition of DNMT1 binding to the
MIR125B1 promoter decreased BAK1 expression, an miR-125b target. Mir-125b repression and increase
of BAK1 is correlated with early relapse in human ALK+ ALCL biopsies [182]. Conversely, miR-101
is found downregulated in both types of ALCL, but, because it targets the mammalian/mechanistic
target of the rapamycin (mTOR) pathway, its forced expression only affects ALK+ cell growth [176].

3.5. Lymphoblastic Lymphoma

LL is a rare neoplasm of immature cells committed to the B (B-LBL)- or T-cell lineage (T-LBL)
that accounts for approximately 2% of all lymphomas. The annual incidence in children (<15 years) is
3.6 per 100,000, which is then reduced to 0.8 in people older than 25 years old [183]. Studies about the
role of miRNAs on this form of lymphoma are scarce and are summarized as follows.

3.5.1. B-Cell Lymphoblastic Lymphoma

B-LBL typically affects children younger than six years, but is also encountered in older children
and in adult populations [184]. B-LBL tumor cells are virtually always positive for B-cell markers CD19,
CD79a, and CD22, and may be associated with the presence of leukemia rearrangements such as those
involving ETV6, MLL, or ABL1 [183]. Thus, even though lymph nodes and extranodal sites, such as
skin, bone, and soft tissue, are frequently involved, this rare NHL is considered a lymphomatous
variant of ALL and is often treated with leukemia-like regimens [183].

As a result, over the last years, high priority has been given to the identification of
biological/prognostic features of T-LBL to allow either risk stratification or treatment planning.

3.5.2. T-Cell Lymphoblastic Lymphoma

T-LBL represents 30% of pediatric NHL [185]. The downregulation of miR-193b in T-LBL
was first associated with the activation of the GLI/hedgehog pathway promoting cell survival and
proliferation by enhancing SMO (smoothened) expression [186]. Later, this miRNA with miR-196b
were found involved in the regulation of the PDGF (platelet-derived growth factor) signaling pathway.
In addition, miR-221 was specifically found upregulated in T-LBL directly targeting CDKN1B,
a cell-cycle regulator [187]. MiR-22, miR-125a, and miR-125b were also identified as upregulated
in T-LBL, and seem to have a role on the maintenance of hematopoietic cells contributing to their
proliferation and self-renewal abilities [187].

In a cohort with 52% of T-LBL pediatric samples, upregulation of miR-17 and miR-19 and positive
MYC protein was associated with unfavorable prognosis. MYC is known to regulate the miR-17–92
cluster. Cox proportional hazard models showed that miR-17, miR-19, and MYC overexpression were
independent poor prognostic factors [188]. MiR-241 is upregulated in T-LBL tissue and a direct target
of a long noncoding RNA MEG3 (maternally expressed 3). Overexpression of MEG3 inhibits tumor
growth in vitro and in vivo [189].

Downregulation of miR-374b was associated with worse overall survival and increased risk in
T-LBL samples. MiR-374b inhibited proliferation and promoted apoptosis in a pediatric T-LBL cell
line (SUP-T1) by repressing AKT1 and Wnt-16 [190]. Moreover, upregulation of miR-221-3p and
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miR-222-3p, and downregulation of miR-203a and miR-205-5p, miR-200a-3p, and miR-375 have shown
to play important roles in T-LBLs by dysregulating in the CDKN1C/E2F1/TP53 axis [191].Int. J. Mol. Sci. 2018, 19, x 13 of 30 
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Epstein–Bar virus and t(14;18) positive cases), diffuse large B-cell lymphoma (DLBCL) (including
activated B-cell-like and germinal center B-cell-like subtypes), anaplastic large-cell lymphoma (ALCL)
(including the ALK+ subtype), and lymphoblastic T-cell lymphoma (T-LBL).

3.6. Hodgkin’s Lymphoma

Hodgkin lymphoma (HL) is characterized by multinucleated giant cells (Hodgkin/Reed-Sternberg
cells, H/RS) or large mononuclear cell variants (lymphocytic and histiocytic cells) (representing 1% of
the tumor) in a background of inflammatory cells that include lymphocytes, histiocytes, neutrophils,
eosinophils, plasma cells, and fibroblasts [192]. The annual incidence of HL is 2–3 cases per 100,000 in
Europe and the USA, with a bimodal peak, with young adults aged 15–34 being the most affected,
followed by those aged 60 and older [193]. HL accounts for 5% to 6% of all childhood cancer and is
one of the most curable forms [194]. The five-year EFS in childhood and adolescence exceeds 90% for
patients with early-stage and 70% to 80% for those with advanced-stage disease [195].

Over the last decade, efforts have been made in order to identify miRNAs as biomarkers for the
refinement of diagnosis and therapy of HL; even so, information is still limited. Some miRNAs have
been described as dysregulated in adult samples (mean age 29 years old) by different groups [196–198].
MiR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140*, and miR-125a [199], or miR-34a-5p,
miR-146a-5p, miR-93-5p, miR-20a-5p, miR-339-3p, miR-324-3p, miR-372, miR-127-3p, miR-155-5p,
miR-320a, and miR-370 [200], for instance, have been described as upregulated in tumor samples.
Concomitantly, miR-23a, miR-122, miR-93, and miR-144 [199], miR-582-3p, miR-525-3p, miR-448,
miR-512-3p, miR-642a-5p, miR-876-5p, miR-532-3p, miR-654-5p, miR-128, miR-145-5p, miR-15b-5p,
miR-328, and miR-660-5p were designated as downregulated [200]. Other studies that are based on
a limited number of samples have no information about age [201], used data miming [202], or are
centered on different cell lines that are all of adult origin [203–206]. Thus, so far, there is no information
about dysregulated miRNAs in the pediatric setting.

4. MiRNAs in Clinics

4.1. Circulating MiRNAs as Biomarkers

The pursuit for noninvasive tools for the diagnosis and management of cancer has long
encouraged the interest of researchers into the field of circulating nucleic acids. Compelling evidence
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has shown that genetic and epigenetic cancer markers are also measureable in the plasma and serum
of cancer patients and may be useful as a tool for early detection, diagnosis, and follow-up [207,208].

Recently, extracellular circulating miRNAs were detected in secreted membrane vesicles
(exosomes), blood serum, and other body fluids. This discovery suggests that miRNAs play a role in
intracellular communication in both a paracrine and endocrine manner [209]. Dysregulated expression
of miRNAs is implicated in tumorigenesis; therefore, functional characterization of these miRNAs in
cancer has received more attention in identifying promising diagnostic and/or prognostic biomarkers.
On this regard, MiRNAs are ideal candidates due to their unique expression patterns associated with
disease-stage stability and their stability in plasma, easy detection, and recovery [210].

After the first description of circulating miRNAs in lymphoma patients, a significant increase in
the number of studies appeared [207], but the amount of research of pediatric cases is smaller than
their adult counterparts.

In ALL, a few circulating miRNAs were recently described, and among them miR-146a. Significant
higher median levels of miR-100, miR-196a, and miR-146a were reported in blood samples of affected
children compared to controls, but the diagnostic efficacy for miR-146a analysis presented superior
sensitivity and specificity [211]. These same authors recently reported the significant increased
expression of circulating miR-125b-1 and low levels of miR-203 in serum samples from untreated newly
diagnosed children with ALL (n = 43), as detected by quantitative RT-PCR analysis [212]. They also
showed higher levels of miR-125b-1 in T-ALL samples as compared to other ALL phenotypes [212].
More recently, circulating miR-652-3p was found downregulated in serum from ALL patients and
levels reported as restored when patients attained in complete remission [47].

In AML patients, Fayyad-Kazan et al. [213] analyzed serum samples from a large cohort of newly
diagnosed patients and compared them to normal samples from adult donors. After a two-phase
selection and validation process, let-7d, miR-150, miR-339, and miR-342 were found downregulated,
while let-7b and miR-523 were upregulated AML compared to control sera [213]. Other results have
revealed the presence of two miRNAs, miR-150 and miR-342, significantly downregulated in the
plasma of AML patients at diagnosis when compared to healthy controls [214]. Moreover, high
serum miR-335 levels were associated with shorter RFS and OS. Furthermore, serum miR-335 and
cytogenetic risk were identified as independent prognostic factors for both RFS and OS, suggesting
miR-335 as a promising biomarker for pediatric AML [214,215]. Conversely, Zhao and colleagues [216]
showed that miR-144 was markedly reduced in both the peripheral blood and bone marrow of AML
patients. A similar pattern is commonly observed, miR-34a underexpression in AML patients with
intermediate/poor risk cytogenetic and the M5 subtype [217]. More recently, low levels of miR-370
and miR-195 were described in sera of pediatric AML patients and associated with classification M7
subtype, unfavorable karyotype, and shorter RFS and OS [218,219].

In lymphoma, Lawrie et al. [207] showed miR-155, miR-210, and miR-21 in high levels in serum
from DLBCL patients compared with healthy controls’ sera. Moreover, high miR-21 expression was
associated with RFS [207], which was later confirmed by Chen et al. [220] in an independent cohort;
thus far, it is the only circulating miRNA in DLBC that has shown consistent results and is now
considered a biomarker for diagnosis [221].

More recently, the high levels of miR-155 and miR-22 in plasma from DLBCL patients were
associated with shorter overall survival [222,223], while high levels of circulating miR-125b and
miR-130a further demonstrated that they were involved in the recurrence, progression, and R-CHOP
resistance [224]. Additionally, Khare et al. [199] described increased plasma levels of miR-124 and
miR-532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128,
and miR-122 in plasma samples from patients with DLBCL through small-RNA sequencing.

For other lymphoma types, information is restricted to adult cases. MiR-221 has been described as
elevated in plasma samples from T-LBL patients, with higher levels associated with a poorer long-term
outcome [225]. Overexpression of miR-21 and miR-23a, on the other hand, has been associated with
staging, WBC, upregulated serum lactate dehydrogenase (LDH) level, and tumor size ≥6 cm in
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BL, while miR-125b expression had an association with staging and upregulated serum LDH [226].
Additionally, a more recent study identified miR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140*,
and miR-125a to be upregulated, while miR-23a, miR-122, miR-93, and miR-144 were downregulated
in HL [199].

4.2. Prognostic Use of MiRNAs

Despite substantial advancement in research and medicine, cancer remains a major public-health
problem in our society. Thus, the utility of miRNA expression analysis as diagnostic and prognostic
molecular markers is strongly supported. For example, analysis of 217 miRNAs from 334 samples
including multiple human cancers provided expression signatures more accurate for cancer-subtype
classification than expression-profiling of all known mRNAs does [227]. Additionally, as seen in
previous sections, many miRNA dysregulations have also been associated with treatment response
(Figure 2). Thereafter, many research groups have shown aberrant-expression profiles of miRNAs
in a broad variety of human malignant cancers, especially hematological cancer (Tables S1 and S2).
Furthermore, miRNA analysis has some benefits because these molecules are highly resistant to
degradation and their expression levels can be obtained in a few hours with small biological samples [9].

4.3. Therapeutic Use of MiRNAs

The progress of miRNAs analysis as molecular markers creates hope for personalized cancer
treatments by miRNA modulation. Unfortunately, miRNAs are still not druggable, and clinics are
far from reality due to a variety of challenges. Nonetheless, local delivery through encapsulation in
lipidic or polymer nanoparticles, or ultrasound-mediated microbubble formulations and hyaluronic
acid (HA)/protamine sulfate (PS) interpolyelectrolyte complexes, has shown promising results in
mice models [228–233]. Viral vectors for delivering miRNAs into cells have also been widely used in
preclinical studies; nonetheless, their safety remains controversial mainly because of lack of safety
(i.e., lentivirus), off-target effects, or immune responses [234].

So far, only two strategies have entered clinical trials, though none of them involved hematologic
cancer. Miravirsen (Satnaris Pharma®), a locked nucleic acid-modified DNA antisense oligonucleotide
that targets the liver-specific miR-122 has demonstrated antiviral activity against hepatitis C and,
at phase 2, no dose-limiting adverse events [233,235]. More recently, Mirna Therapeutics Inc.
began treating patients with advanced solid tumors with MRX34®, a liposomal injection carrying
encapsulated miR-34 showing acceptable safety and evidence of antitumor activity in a subset of
patients, despite some liposome-related toxicities [236].

5. Concluding Remarks

Targeted therapies have distinctly transformed the treatment of cancer over the past decade.
The utility of miRNA-expression analysis as diagnostic and prognostic molecular markers is strongly
supported and, in the near future, it may impact the treatment of hematological cancer.
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AML Acute Myeloid Leukemia
BL Burkitt Lymphoma
B-LBL B-cell Lymphoblastic Lymphoma
cALL Childhood ALL
CML Chronic Myeloid Leukemia
CNS Central nervous System
CYT Cytarabin
DAUNO Daunorrubicin
DEXA Dexamethasone
DFS Disease-Free Survival
DLBCL Diffuse Large B-cell lymphoma
eBL Endemic Burkitt Lymphoma
EBNA1 Epstein–Barr nuclear antigen 1
EBV Epstein–Barr virus
EFS Event-Free Survival
GCB Germinal center B cell-like
HL Hodgkin Lymphoma
INZ Inauhzin
JMML Juvenile Myelomonocytic Leukemia
L-ASP L-asparaginase
LDH Lactate dehydrogenase
LL Lymphoblastic Lymphoma
miR Micro RNA
MiRNAs Micro RNAs
MTX Methotrexate
NHL Non-Hodgkin Lymphoma
OS Overall Survival
PMLBCL Primary Mediastinal Large B Cell Lymphoma
PRED Prednisone
PREDS Prednisolone
RFS Relapse-Free Survival
RT-PCR Reverse Transcription Polymerase Chain Reaction
T-LBL T-cell Lymphoblastic Lymphoma
VIN Vincristine
WHO World Health Organization
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