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Abstract

Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and pro-

duce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, dis-

criminating functional TF binding sites (TFBSs) from background sequences represents a

significant challenge. Here, we show that a Drosophila regulatory element that activates Epi-

dermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs

(Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF

binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting

such low-affinity TFBSs. To better define parameters that increase accuracy, we developed

a method that systematically selects subsets of TFBSs based on predicted affinity to gener-

ate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degen-

erate PWMs produced from datasets depleted of high-affinity sequences were more

accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs.

Taken together, these findings reveal how TFBS arrangement can be constrained by com-

petition rather than cooperativity and that degenerate models of TF binding preferences can

improve identification of biologically relevant low affinity TFBSs.

Author summary

While all cells in an organism share a common genome, each cell type must express the

appropriate combination of genes needed for its specific function. Cells activate and

repress different parts of the genome using transcription factor proteins that bind regula-

tory regions known as enhancers. We currently have an incomplete view of how enhanc-

ers recruit transcription factors to yield accurate gene activation and repression. This

problem is complicated by the fact that most animals contain over a thousand different
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transcription factors, and each can generally bind multiple DNA sequences. Thus, it is

difficult to predict which transcription factors interact with which enhancers. To gain

insights into this process, we focused on determining how an enhancer that activates a

gene needed to make liver-like cells is regulated in a precise manner in the fruit-fly

embryo. We demonstrate that the specific activity of this enhancer depends on weak and

overlapping transcription factor binding sites. Furthermore, we demonstrate that compu-

tational models that include weak transcription factor interactions yield better predictive

accuracy. These results shed light on how DNA sequences determine enhancer activity

and the types of strategies that are most useful for predicting transcription factor binding

sites in the genome.

Introduction

The control of gene expression is fundamental for defining a cell’s identity and ability to

respond to environmental cues. At the transcriptional level, cis-regulatory modules (CRMs)

act as platforms for transcription factors (TFs) that affect RNA polymerase activity [1, 2].

Hence, the number, organization, and affinity of TF binding sites (TFBSs) within a CRM con-

vert information about cellular context conveyed by TFs into transcriptional activity [1, 3]. A

typical strategy for predicting TFBSs is to use a model of TF binding specificity, such as a posi-

tion-weight matrix, to score sequences and those with higher scores are predicted to have a

greater likelihood of being functional TFBSs. However, this approach is called into question by

the growing literature that reveals suboptimal TFBSs are often necessary for accurate biological

function [4–11].

Evidence supporting biological relevance of suboptimal TFBSs can be summarized using

four concepts [4, 12]. First, suboptimal TFBSs are more likely to differentiate between TFs

with similar binding preferences. For instance, suboptimal Hox binding sites were empirically

identified in the Drosophila shavenbaby (svb) enhancer and the non-consensus nature of these

sites was critical to ensure svb is activated by abdominal, but not thoracic Hox factors [5].

Second, suboptimal TFBSs can be more sensitive to context (e.g. TF concentration). In a classic

example, Caenorhabditis elegans genes associated with high-affinity PHA-4 TFBSs are ex-

pressed earlier in development when PHA-4 levels are low, whereas genes with low-affinity

PHA-4 sites are induced by higher PHA-4 levels later in development [6]. Third, TFBS affinity

can alter the ability of a TF to either activate or repress transcription. For example, Drosophila
Hedgehog-responsive CRMs with a cluster of low-affinity Ci TFBSs activate transcription,

whereas increasing the affinity of Ci TFBSs resulted in repression [7]. Fourth, CRM specificity

may depend on suboptimal interactions between TFs. For instance, reporter assays interrogat-

ing the Otx-a enhancer in Ciona revealed suboptimal spacing between TFBSs promote

enhancer specificity [8, 9]. These studies collectively demonstrate that low-affinity interactions

between TFs and CRMs play an important role in accurate transcriptional regulation.

Since TFs have degenerate binding preferences and suboptimal sites are often biologically

relevant, predicting functional TFBSs from background sequence is challenging. TFBS-predic-

tion algorithms are typically binary classifiers: sequences are scored using a model of TF bind-

ing specificity (e.g. a PWM) and those that meet a threshold are classified as TFBSs. Moreover,

the field has largely used arbitrary thresholds as default settings for TFBS-prediction algo-

rithms, such as the 0.8 relative log-likelihood threshold—e.g. a recommended default on the

JASPAR website [13]. How well these standard thresholds identify suboptimal TFBSs remains
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unclear, and the cost of lowering thresholds to identify suboptimal TFBSs (i.e. increased false-

discovery rate) is largely unknown.

In this study, we used a well-characterized Drosophila CRM, Rhomboid-BAD (RhoBAD), to

assess the role of suboptimal TFBSs for accurate gene regulation and tested the ability of algo-

rithms to predict such sites. The rhomboid (rho) gene encodes a serine protease that triggers

secretion of an Epidermal Growth Factor (EGF) ligand [14]. RhoBAD activates rho within spe-

cific abdominal sensory organ precursors (C1-SOPs), and thereby induces neighboring cells to

form hepatocyte-like cells (oenocytes) essential for animal growth [15–20]. RhoBAD specificity

is largely defined by a conserved 47 base-pair sequence (RhoA) that recruits activating and

repressing TFs. Indeed, three copies of RhoA are sufficient to recapitulate the abdominal and

C1-SOP specific activity of RhoBAD (Fig 1A and 1B) [21, 22]. In the abdomen, an Abdomi-

nal-A (Abd-A) Hox factor and the Extradenticle (Exd) and Homothorax (Hth) homeodomain

Fig 1. The RhoA enhancer activates gene expression in Drosophila abdominal C1-SOPs. (A, B) Lateral view of Drosophila RhoBAD-LacZ (A) or RhoAAA-LacZ (B)

embryos (stage 11) immunostained for β-gal (green) and AbdA (purple). Both reporters are active in a specific cell type (C1-SOP) with higher levels observed in abdominal

segments (stained by AbdA, first abdominal segment marked by “A1”) than thoracic segments. (C) The RhoA sequence has binding sites for Pax2, Sens, Exd, Hth, and

AbdA that are critical for proper RhoBAD-LacZ and RhoAAA-LacZ activity in Drosophila embryos [17, 22]. (D) Schematic model of competition between activator (Pax2/

Exd/Hth/AbdA) and repressor (Sens) TFs. Sens binds and represses RhoA activity in the thorax; whereas AbdA and the activators outcompete Sens to promote gene

activation in C1-SOP cells of the abdomen.

https://doi.org/10.1371/journal.pgen.1007289.g001
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proteins form a complex with the Pax2 TF to activate gene expression [22]. Thoracic segments,

however, lack Abd-A expression and thereby allow the Senseless (Sens) TF to bind and repress

RhoBAD [17]. Importantly, Pax2 and Sens expression are largely restricted to peripheral ner-

vous system (PNS) cells in all segments. Thus, RhoA integrates both segment (Abd-A) and tis-

sue-specific (Sens and Pax2) inputs to ensure accurate expression in abdominal C1-SOPs (Fig

1C and 1D).

Here, we show that RhoBAD requires overlapping low-affinity TFBSs for Pax2 and Sens to

mediate accurate cell- and segment-specific output. Using transgenic reporters and DNA

binding assays, we found that increasing Pax2 affinity results in gene activation in additional

abdominal PNS cells, whereas increasing Sens affinity results in inappropriate repression. In

addition, altering the TFBSs to allow simultaneous binding of activators and repressors

impairs RhoBAD activity. Testing available TF binding preference models, however, revealed

high degrees of variability in predicting these low affinity TFBSs. To define the source of this

discrepancy, we developed a method that generates hundreds of PWMs by selectively sampling

TFBSs based on predicted affinity. Surprisingly, we found that PWMs created from datasets

depleted of high affinity sites were more accurate at predicting both low- and high-affinity

Pax2 and Sens TFBSs from bacterial 1-hybrid (B1H), protein binding microarray (PBM), and

mammalian ChIP-seq data than PWMs derived from high affinity sites. Altogether, these find-

ings provide new insights into the functional roles of low affinity DNA binding sites and our

ability to use computational approaches to identify TFBSs in complex datasets.

Results

RhoA contains low-affinity Pax2 and Sens TFBSs

While empirical studies showed that five different transcription factors directly regulate RhoBAD,

PWMs derived from published SELEX-seq assays [23] fail to predict the Sens and Pax2 TFBSs

using the 0.8 relative-to-range log-likelihood (RLL) threshold (default setting on JASPAR [13])

(Fig 2A and 2D and S1 Fig). This finding suggests that the RhoA Sens and Pax2 TFBSs are low

affinity and that the PWMs developed using these in vitro assays maybe too restrictive to accu-

rately predict such functional low affinity TFBSs. To ascertain how affinity correlates with PWM

RLL scores, we used electromobility shift assays (EMSAs) with purified Sens and Pax2 proteins to

compare RhoA binding to nine randomly selected Pax2 and Sens sites from a published bacterial-

1-hyrbid (B1H) study [24] (Fig 2B and 2E and S2 Fig). The selected B1H sites have a large range

of RLL scores (Fig 2A and 2D) and were placed in the context of RhoA to maintain consistent

flanking nucleotides. EMSAs revealed that the PWMs performed well in ranking TFBS affinity

with Spearman’s rank correlations (ρ) of 0.65 and 0.85 for Pax2 and Sens, respectively, between

predicted and observed binding (see Methods for details [25–27]) (Fig 2C and 2F). Moreover,

these results revealed that the RhoA Pax2 and Sens sites (red in Fig 2C and 2F) were relatively low

in affinity compared to the B1H sites (Fig 2B, 2C, 2E and 2F).

Increasing Pax2 affinity results in ectopic activity within the abdominal PNS

To determine if RhoBAD activity depends on a low-affinity Pax2 TFBS, we altered the Pax2

site to better match the consensus motif (RhoA-PS, Fig 3A). EMSAs using Pax2 confirmed a

greater affinity for RhoA-PS than wildtype RhoA, without affecting Sens or Exd/Hth/AbdA

binding (Fig 3B, and S3 Fig). Next, we integrated RhoBAD-lacZ and RhoBAD-PS-lacZ into

identical loci and performed quantitative analysis on age-matched Drosophila embryos. Like

RhoBAD-lacZ, RhoBAD-PS-lacZ drives high β-gal levels in abdominal C1-SOPs and weak lev-

els in thoracic C1-SOPs, but with a small, statistically significant increase in all segments (Fig

3C–3E). In addition, RhoBAD-PS-lacZ embryos inappropriately increased β-gal expression in
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non-C1 PNS cells (Fig 3D, arrowheads). To determine if the ectopic activation of RhoBAD-PS
reaches an "abdominal C1-SOP-like" level of activity, we defined a threshold equal to the 5th

percentile of wild type RhoBAD-lacZ abdominal C1-SOP intensity and above the 100th percen-

tile of thoracic C1-SOP intensity (red line in Fig 3E–3E’). Using this threshold, we found that

Fig 2. RhoA contains low affinity Pax2 and Sens binding sites. (A, D) Alignment of Pax2 (A) and Sens (D) logos derived from SELEX-seq [23] to RhoA and selected

B1H sites [24]. Mismatches to the logos are highlighted in red. (B, E) Pax2 (B) and Sens (E) binding to RhoA and selected B1H hits using EMSAs. Each probe was

incubated with 0, 106, or 212 ng of Sens or 0, 48, or 96 ng of Pax2. Full gels are shown in S2 Fig. (C, F) Correlation between proportion of probe bound in EMSAs versus

proportion predicted by PWM energy models. The Spearman-rank correlation (ρ) and coefficient-of-determination (r2) are indicated on the plots. Linear regression of

this relationship is shown in blue.

https://doi.org/10.1371/journal.pgen.1007289.g002

Low-affinity sites and enhancer specificity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007289 April 4, 2018 5 / 25

https://doi.org/10.1371/journal.pgen.1007289.g002
https://doi.org/10.1371/journal.pgen.1007289


Fig 3. A high affinity Pax2 binding site results in ectopic RhoA activity in additional PNS cells. (A) The SELEX-seq

[23] Pax2 logo aligned with RhoA-WT and RhoA-PS. Mis-matches are in red font, and nucleotides that improve the

match are in green font. The Sens, Exd, Hth, and Hox TFBSs are highlighted. (B) EMSAs using purified Pax2 protein

(0, 10.25, 20.5, 41, and 82 ng) on RhoA-WT and RhoA-PS probes reveal Pax2 has a higher affinity for RhoA-PS (Full

gels are shown in S3 Fig). (C, D) Lateral view of RhoBAD-LacZ (C) and RhoBAD-PS-lacZ (D) embryos (stage 11)

immunostained for β-gal. β-gal intensity is represented by heat-map at left. “A1” indicates the first abdominal segment.

(C’, D’) Close-up of an abdominal C1-SOP with arrowheads highlighting non-C1-SOPs that activate RhoBAD-PS-lacZ.

(C”, D”) Same close-up showing β-gal (green) and Pax2 (red). (E) Boxplot of β-gal immunostain intensities in thoracic

and abdominal C1-SOPs. One-tailed Welch’s t-test was used to compare mean β-gal intensity per embryo (� p< 0.05,
��� p< 0.001), n = 20 (WT) and 23 (PS). Each box represents measurements from a single embryo. (E’) Boxplot of β-

gal immunostain intensities in non-C1 PNS (Sens+) cells. Dotted line represents 5th percentile of β-gal intensity in

C1-SOPs–a threshold to define “C1-like reporter activity”. (F) Proportion of non-C1 PNS cells per embryo with

C1-like β-gal intensities in RhoBAD-lacZ and RhoBAD-PS-lacZ embryos (�� p< 0.01, One-tailed Wilcoxon Rank Sum

Test), n = 20 (WT) and 23 (PS). (G-H) Lateral view of RhoBAD-rhocDNA; rho7M (G) and RhoBAD-PS-rhocDNA; rho7M

(H) embryos (stage 15) immunostained for an oenocyte marker (HNF4). Note, in the absence of rho, embryos do not

develop HNF4+ oenocytes [15, 17]. (I) Violin plots of the number of oenocytes (HNF4+) per embryonic segment for

all RhoBAD-rhocDNA or RhoBAD-PS-rhocDNA embryos. Lines represent range of oenocytes per segment for each

embryo, while dots represent individual segments (� p< 0.05, One-tailed Wilcoxon Rank Sum Test), n = 95 (WT) and

98 (PS). (J, K) Lateral views of RhoBAD-rhocDNA; rho7M/+ (J) and RhoBAD-PS-rhocDNA; rho7M/+ (K) embryos

immunostained for HNF4. Arrowheads indicate ectopic HNF4+ cells. (J’, K’) Close-up of A1-A3 abdominal segments

of panels J and K.

https://doi.org/10.1371/journal.pgen.1007289.g003
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β-gal is ectopically expressed in over 5 times more PNS cells in RhoBAD-PS-lacZ than Rho-
BAD-lacZ embryos (Fig 3F). As a control, no difference in intensity of Sens staining was

observed in these embryos (S4 Fig). Thus, strengthening Pax2 binding results in increased

RhoBAD activity within C1-SOPs as well as in additional abdominal PNS cells.

To assess if the increased activity of RhoBAD-PS can have functional consequences, we

developed an oenocyte rescue assay. In the absence of rho, no EGF signal is sent from abdomi-

nal C1-SOPs, and thus adjacent ectodermal cells fail to differentiate into oenocytes [15, 17].

However, rho mutant embryos (rho7M) carrying a wild type RhoBAD-rhocDNA transgene can

substantially rescue oenocyte (HNF4+) formation (Fig 3G) [18, 28]. Consistent with Rho-
BAD-PS having increased reporter activity, RhoBAD-PS-rhocDNA induced a significant increase

in oenocyte numbers (Fig 3H and 3I). Moreover, analysis of rho heterozygous embryos carry-

ing RhoBAD-PS-rhocDNA revealed that 30% (3/10) of the embryos had at least one segment

with ectopic oenocytes whereas none were observed in embryos with wild type RhoBAD-
rhocDNA (arrowheads in Fig 3J and 3K). Altogether, these oenocyte rescue data are consistent

with RhoBAD-PS driving increased EGF signaling, potentially via non-C1-SOP cells.

Increasing Sens affinity results in loss of segment-specific activation in

abdominal SOPs

Previous studies have found that increasing Sens TFBS affinity (RhoA-SS, Fig 4A) is sufficient to

decrease abdominal RhoBAD activity [17] (Fig 4E). However, this experiment was performed

prior to the discovery of an overlapping Pax2 site [22], and EMSAs reveal RhoA-SS not only

increases Sens binding but also decreases Pax2 binding (Fig 4B and 4C). Hence, loss of Rho-
BAD-SS activity could be due to either increased repressor binding (Sens) or decreased activator

binding (Pax2). To distinguish between these possibilities, we first compared the activity of Rho-
BAD-PM (which decreases Pax2 binding while leaving Sens binding) to the activity of Rho-
BAD-SS (which decreases Pax2 binding while simultaneously increasing Sens binding) (Fig 4B

and 4C). Importantly, neither change substantially affects Exd/Hth/AbdA binding (S3 Fig).

Comparative analysis of embryos with RhoBAD-PM-lacZ reveals a significant decrease, but not

a complete loss, of abdominal C1-SOP activity; whereas RhoBAD-SS-lacZ embryos have a severe

loss of activity in both abdominal and thoracic C1-SOPs (Fig 4E, 4F and 4H and S5 and S6

Figs). These results indicate that the lack of RhoBAD-SS activity is largely due to increased Sens

binding, rather than loss of Pax2 binding. As a second test, we engineered a RhoA sequence

with high affinity sites for both Sens and Pax2 (RhoA-PSSS). EMSAs reveal this sequence

enhances Sens and Pax2 binding (Fig 4B and 4C) without affecting Exd/Hth/AbdA binding (S3

Fig). Reporter analysis demonstrates that RhoBAD-PSSS-lacZ embryos have nearly no activity

in C1-SOP cells and behave much like RhoBAD-SS-lacZ (Fig 4G and 4H and S7 Fig). These

results indicate that a strong Sens binding site can eliminate RhoBAD activity regardless of Pax2

affinity. Moreover, we found that RhoBAD-SS-rhocDNA and RhoBAD-PSSS-rhocDNA transgenes

failed to rescue oenocyte development in rho mutant embryos (Fig 4J and 4K). By comparison,

the wildtype RhoBAD-rhocDNA transgene significantly induced oenoctye formation in abdomi-

nal segments (Figs 3I and 4I). Altogether, these experiments demonstrate that segment-specific

RhoBAD activity requires a low affinity Sens TFBS.

Overlapping activator and repressor sites are necessary for abdominal

RhoBAD specificity

We previously found that abdomen-specific activity of RhoA is due to TF competition between

a repressor (Sens) and activators (Pax2 plus Exd/Hth/Abd-A) [17, 22]. In this model, Exd/

Hth/Abd-A and Pax2 bind RhoA in abdominal C1-SOP cells to both activate transcription and

Low-affinity sites and enhancer specificity
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Fig 4. A high affinity Sens site results in repression of RhoA in abdominal C1-SOPs. (A) The SELEX-seq [23] Sens logo aligned with RhoA variants. Mis-matches are in

red font, and sequence variants that improve the match are in green font. The Pax2, Exd, Hth, and Hox TFBSs are highlighted. (B, C) EMSAs using the indicated RhoA
probes with either purified Sens (0, 23.5, 57, 114, and 228 ng) or Pax2 (0, 10.25, 20.5, 41, and 82 ng). Full gels are shown in S3 Fig. (D-G) Lateral view of stage 11 RhoBAD-
lacZ (D), RhoBAD-SS-lacZ (E), RhoBAD-PM-lacZ (F), and RhoBAD-PSSS-lacZ (G) embryos immunostained for β-gal. β-gal intensity is represented by a heat-map at left.

“A1” indicates the first abdominal segment. (H) Quantification of β-gal intensity in abdominal C1-SOPs in age-matched embryos. Each box represents measurements

from a single embryo. RhoBAD-SS-lacZ, RhoBAD-PM-lacZ, and RhoBAD-PSSS-lacZ embryos were processed and imaged separately, each with RhoBAD-lacZ control

embryos. Quantification for a representative set of RhoBAD-lacZ embryos are shown. β-gal intensities for each variant are reported as relative to the average β-gal intensity

of control embryos. Two-tailed Welch’s T-test with Bonferroni correction was done to compare β-gal intensities to RhobAD-SS (� p< 0.05, �� p< 0.001, ��� p< 0.0001),

n = 12 (WT), 9 (SS), 13 (PM), and 19 (PSSS). (I-K) Lateral view of RhoBAD-rhocDNA (I), RhoBAD-SS-rhocDNA (J), and RhoBAD-PSSS-rhocDNA embryos in a rho7M

background (stage 15) immunostained for an oenocyte marker (HNF4). Note, at least 10 embryos with transgenes containing high affinity Sens sites were analyzed and no

oenocytes were observed.

https://doi.org/10.1371/journal.pgen.1007289.g004
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limit the binding of the Sens repressor (Fig 1C and 1D). Thoracic segments lack Abd-A

expression, allowing Sens to bind and repress RhoBAD activity in the thorax. Moreover, the

data in Fig 4 suggest that competition between activators and repressors is a key feature of reg-

ulating output, as raising Sens affinity results in dominant repressor binding and a loss of Rho-
BAD activity in abdominal SOPs.

To better understand the role of TFBS competition in segment-specific output, we created

constructs that uncouple the repressor and activator TFBSs. To do so, we first tested a reporter

with the sequences 3’ to the Hox site randomly mutated (RhoA-RDM) and found it had similar

activity as wild type RhoBAD-lacZ (Fig 5A and 5B and S8 Fig). Hence, this region can be

altered without compromising RhoBAD activity. Next, we created a RhoAmutation that abol-

ishes Sens binding (RhoA-SM) (Fig 5A and 5D) without altering activator binding (S3 Fig)

[17]. Comparative analysis of RhoBAD-lacZwith RhoBAD-SM-lacZ revealed two expected

results: First, loss of Sens binding resulted in a small but significant increase in thoracic expres-

sion compared to wild type RhoBAD-lacZ (Fig 5C and S9 Fig). Second, loss of Sens binding

was not sufficient to equilibrate the C1-SOP levels between thoracic and abdominal segments.

The latter result is consistent with thoracic segments lacking Abd-A, which plays an active role

in stimulating transcription [22]. Unexpectedly, however, the Sens mutation also led to a

small, but significant loss in abdominal SOP activity through mechanisms that are currently

unclear (Fig 5C). Nevertheless, RhoA-SM eliminates Sens binding in vitro and alters RhoBAD
activity in vivo, and thereby provides a platform for uncoupling the activator and repressor

sites.

To generate sequences that lack TF binding competition, we created RhoA variants that

lack an endogenous Sens site (RhoA-SM) and provide a new Sens site downstream of the Hox

site. Three variants were tested: (1) a mutant Sens site (RhoA-SM/SM); (2) the wild type low

affinity site (RhoA-SM/SWT); and (3) a high affinity Sens site (RhoA-SM/SS) (Fig 5A). EMSAs

reveal that while Sens fails to bind RhoA-SM and RhoA-SM/SM, it binds the re-engineered

RhoA-SM/SWT similarly to RhoA-WT and binds RhoA-SM/SSwith greater affinity (Fig 5D).

Importantly, moving the Sens site is sufficient to permit co-binding of activator and repressor

TFs in vitro as Sens and Exd/Hth/Abd-A proteins simultaneously bind RhoA-SM/SS but not

RhoA-SS, which has overlapping binding sites (Fig 5E).

Comparative analysis of the RhoBAD variants revealed that competition for overlapping

TFBSs is essential for proper output (Fig 5F–5J and S10 Fig). First, we found that the re-engi-

neered wild-type Sens site (RhoBAD-SM/SWT) is insufficient to repress reporter activity and

behaves similarly as RhoBAD-SM and RhoBAD-SM/SM, which both lack Sens binding (Fig

5F–5H and 5J). Hence, a low affinity Sens site that is uncoupled from the activator sites (Pax2/

Exd/Hth/Hox) is unable to repress either abdominal or thoracic SOP activity. In sharp con-

trast, the re-engineered high-affinity Sens site (RhoBAD-SM/SS) results in gene repression in

both thoracic and abdominal SOPs (Fig 5I and 5J). This finding suggests that Sens can inhibit

RhoBAD activation through mechanisms other than sterically blocking the binding of activator

TFs. Moreover, these findings are consistent with the hypothesis that low affinity Sens sites are

required to allow the abdominal Hox and Pax2 activators to stimulate RhoBAD expression.

Hence, two features of RhoA are critical to yield segment-specific RhoBAD activity in abdomi-

nal C1-SOP cells: 1) low affinity Sens and Pax2 sites are required, and 2) the TFBSs overlap to

ensure independent binding of activator versus repressor complexes.

Inverse correlation between PWM information content and accuracy

Since CRM studies have increasingly found that low affinity sites are required for accurate out-

put, we next assessed the utility of PWMs to predict such sites for Sens and Pax2. As described

Low-affinity sites and enhancer specificity
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Fig 5. Overlapping activator and repressor binding sites are required for abdomen-specific RhoA activity. (A)

Sequences of tested RhoA variants. RhoA-RDM contains random nucleotides downstream of the Hox site. RhoA-SM
contains mutations that decrease Sens binding, and RhoA-SM/SWT,RhoA-SM/SS and RhoA-SM/SM add either a low

affinity (WT), high affinity (SS), or mutant (SM) Sens site downstream of the Hox site. (B-C) Quantification of β-gal

immunostaining intensities in C1-SOPs in RhoBAD-LacZ versus RhoBAD-RDM-LacZ (B) or RhoBAD-SM-LacZ (C).

Each box summarizes measurements from a single embryo. Two-tailed Welch’s T-test was used to compare

RhoBAD-SM and RDMmutants to wildtype, n = 12 (WT) and 18 (RDM) in (B) and n = 12 (WT) and 15 (SM) in (C).

(D) EMSAs comparing binding of purified Sens to RhoA probes (0, 57, 114, and 228 ng of Sens). (E) EMSAs assessing

competition between purified Sens (114 or 228 ng) against purified AbdA (189 ng) and Exd/Hth (59.2 ng) on RhoA-SS
and RhoA-SM-SS. (E’) Close-up view of Exd/Hth/Hox and Exd/Hth/Hox/Sens complexes on DNA probes. Schematics

denote the formation of each transcription factor complex. (F-I) Lateral view of stage 11 RhoBAD-SM-lacZ (F),

RhoBAD-SM/SWT-lacZ (G), RhoBAD-SM/SM-lacZ (H), and RhoBAD-SM/SS-lacZ (I) embryos immunostained for β-

gal. Intensity of β-gal stain is represented by heat-map at left. “A1” indicates first abdominal segment. Note, no

RhoBAD-SM/SS activity is detected in the PNS and the activity that is observed is in cells of the gut. (J) Quantification

of β-gal intensities in thoracic and abdominal C1-SOPs of noted RhoBAD-lacZ embryos. Each box represents

measurements from a single embryo. Statistical analysis was done using Kruskal-Wallis test followed by post-hoc

pairwise Mann-Whitney U test with Bonferroni correction, n = 25 (SM), 23 (SM/SM), 22 (SM/SWT), and 24 (SM/SS).

For all statistical comparisons, n.s. p� 0.05; � p< 0.05, �� p< 0.001, ��� p< 0.0001.

https://doi.org/10.1371/journal.pgen.1007289.g005
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above, PWMs derived from SELEX-seq [23] assays for Sens and Pax2 failed to score RhoA
above a 0.8 RLL threshold (Fig 2A). Additional published PWMs derived from bacterial-

1-hybrid (B1H) assays (FlyFactorSurvey project) are available for Sens and Pax2 [24]. In B1H

assays, “hits” are selected when a TF binds a sequence and activates survival gene expression in

the presence of an inhibitor, such that increasing inhibitor concentrations select for higher

affinity TFBSs [24]. For Sens, B1H assays were previously performed under “high" and “low”

stringency conditions, whereas a single Pax2 B1H assay was conducted under low stringency

(Fig 6A, top panel) [24]. Comparing the B1H and SELEX-seq PWMs revealed similar motifs,

but with differences in their degree of degeneracy (Fig 6A and 6B, top panels). “Degeneracy”

can be defined as the inverse of information content, which is measured in bits and repre-

sented by letter height in a sequence logo. We used each PWM to score RhoA and found that

only the "low" stringency B1H derived PWMs successfully scored the Pax2 and Sens sites

above the 0.8 RLL threshold (Fig 6A and 6B, top panel).

To more broadly assess the ability of each PWM to predict both high and low affinity sites,

we analyzed published protein-binding microarray (PBM) data for vertebrate homologs of

Pax2 and Sens (Danio rerio Pax2b and Homo sapiens Gfi1b) [29, 30]. These homologs share

88% and 85% sequence identity with the Pax2 and Sens binding domains, respectively; and

thus, are likely good models for Pax2 and Sens binding specificities [23, 29]. A key advantage

of PBM assays is binding strength (as measured by fluorescence intensity) positively correlates

with binding affinity, thereby permitting scoring probes across a range of affinities. We scored

bound probes of different fluorescent intensities using the B1H and SELEX PWMs, and used

the Area-Under-the-Receiver-Operating-Characteristic (AUROC) to measure the ability of

each PWM to discriminate bound probes (binned by fluorescence intensity) from non-specific

sequences. For non-specific sequences, we randomly selected a matched number of probes

from the bottom 50% fluorescence. Note, when AUROC values approach 0.5, the PWMs no

longer reliably distinguish bound probes from non-specific sequences. This assessment sur-

prisingly shows that the more degenerate PWMs (“B1H Low Stringency”) are not only more

accurate in identifying low-affinity probes, but are also significantly more accurate in identify-

ing high-affinity probes (Fig 6A and 6B, bottom panels).

The above findings suggest that DNA libraries that include low affinity TFBSs (i.e. B1H low

stringency assays) produce lower information content PWMs with increased accuracy. To

more thoroughly assess how the affinity of binding sites used to generate PWMs affects TFBS

accuracy, we developed a method to sub-group B1H hits based on predicted affinity and com-

pare the performance of PWMs generated from each sub-group (Fig 7). For this analysis, we

hypothesized that B1H hits containing highly represented sequences are more likely to contain

high affinity sites. Indeed, the number of times an 8-mer appears among all B1H hits correlates

with the 8-mer E-scores derived from PBMs for related homologues (Spearman’s rank correla-

tion >0.8) (S11 Fig). Therefore, we divided the 542 B1H hits for Sens and the 43,112 B1H hits

for Pax2 into quartiles based on 8-mer frequency and derived 100 PWMs from each quartile

by iteratively sampling 50 B1H hits from each quartile followed by the MEME algorithm [31]

to generate PWMs (Fig 7A, see Methods for details). In such a manner, B1H hits within higher

quartiles contain more highly represented sequences, and thus, generate PWMs with greater

information content (Figs 7A and S12). As a control, we created a set of 100 PWMs by itera-

tive sampling 50 B1H sequences from the unfiltered dataset (“control PWMs”). To determine

how well PWMs from each quartile predict TFBSs compared to the control PWMs, we as-

sessed their ability to score RhoA (Fig 7B), discriminate B1H hits from shuffled sequences (Fig

7C), and score PBM probes bound by the vertebrate Gfi1b and Pax2 factors (Fig 7D). We

found that relatively low-information content PWMs from Quartile 2 performed significantly

better than the control PWMs when scoring the RhoA sequence (Fig 7B). In contrast, PWMs
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Fig 6. Inverse correlation between PWM information content and the ability to identify low-affinity Pax2 and Sens TFBSs. (A, B)

Top Panel: Published Sens and Pax2 PWMs placed in order from lowest to highest information content (left-to-right). PWMs were

derived from published B1H (low and high stringency) and SELEX-seq assays [23, 24]. Flanking low information positions were

removed to make all PWMs the same length (shaded boxes). Total information content (bits) of the trimmed PWMs is indicated above

Low-affinity sites and enhancer specificity
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generated using highly represented sequences (Quartiles 3 and 4) scored RhoA significantly

worse than Quartile 2 and control PWMs. Moreover, a similar trend was found when assessing

the accuracy of PWMs to discriminate B1H hits from shuffled sequences (Fig 7C) or when

scoring PBM probes binned based on fluorescent intensity (Fig 7D). For example, Quartile 3

and 4 PWMs for both Pax2 and Sens have lower AUROC values for discriminating B1H hits

from shuffled sequences and for discriminating even the most highly bound PBM probes com-

pared to lower information content PWMs derived from either Quartile 2 or control PWMs

(Fig 7C and 7D). It should be noted, however, that the very low information content PWMs

from Quartile 1 do not perform as well, as evidenced by wider variance for RhoA score predic-

tions (Fig 7B) and significantly lower AUROC values (Fig 7C and 7D).

Lastly, we investigated the ability of PWMs from each quartile to predict DNA binding

events in cells using ChIP-seq data. While high quality ChIP-seq data are not available for

Pax2 in either vertebrates or Drosophila, several published ChIP-seq experiments have been

conducted for Gfi1 and Gfi1b in mammalian cells [32–40]. Using 10 published H. sapiens and

M. musculus Gfi1 and Gfi1b ChIP-seq datasets, we assessed the ability of Sens PWMs to dis-

criminate ChIP-seq peak sequences from an equal number of random, non-repetitive genomic

DNA sequences. Initially we analyzed all called ChIP-seq peaks in each dataset and found that

Quartile 2 PWMs out-performed all other PWMs in 7 of the 10 ChIP datasets, whereas all of

the PWMs performed poorly (AUROC close to 0.5) on the remaining 3 ChIP datasets (S13

Fig). We next asked if the PWMs derived from higher affinity B1H hits (Quartile 3 and 4

PWMs) would perform better when analyzing only the strongest ChIP peaks. Therefore, we

binned the top one thousand ChIP peaks from two representative ChIP-seq datasets [32, 33]

based on fold enrichment and analyzed the bins separately. As expected, there is a general

trend for all the PWMs to perform better as fold enrichment of ChIP peaks increases (Fig 7E).

Interestingly, Quartile 2 PWMs out-performed almost all other PWMs in predicting ChIP

peaks, regardless of fold enrichment (Fig 7E). Moreover, PWMs derived from the high-affinity

B1H hits (Quartile 3 and 4 PWMs) had significantly less discriminatory power, even when pre-

dicting the most highly enriched ChIP-peaks. Thus, these findings suggest that, at least for

Sens/Gfi1, using more degenerate PWMs derived from lower affinity sites better predicts

TFBSs from both in vitro (B1H and PBM assays) and in vivoDNA binding data (RhoA and

ChIP-seq).

Discussion

In this study, we used quantitative DNA binding and transgenic assays to interrogate how

Sens and Pax2 TFBSs contribute to cell- and segment-specific CRM activity and thereby EGF

signaling in the Drosophila embryo. Our findings reveal that RhoA requires overlapping low-

affinity TFBSs to accurately regulate transcription in abdominal SOP cells. In addition, we per-

formed a computational analysis to interrogate the effectiveness of different PWMs for distin-

guishing TFBSs from background sequences. Taking the B1H, PBM, and ChIP-seq analysis

together, our results demonstrate that low-information content PWMs better identify Sens

and Pax2 TFBSs. Overall, these findings have important implications for two areas of biology:

each PWM. The Relative Log-Likelihood (RLL) score of each PWM on RhoA is indicated below the PWMs. Bottom Panel: AUROC of

each published PWM for discriminating PBM probes (binned by fluorescence, as indicated on x-axis) from 10 sets of non-specific

probes (matched number of control probes randomly selected from the 50% of probes with the lowest fluorescence). Sens and Pax2

PWMs were tested on PBMs for the vertebrate homologs H. sapiens Gfi1b and D. rerio Pax2b. Statistical comparisons were conducted

using Kruskal-Wallis test. P-values were Bonferroni-adjusted to correct for multiple comparisons (� p< 0.05, �� p< 0.01, ���

p< 0.001).

https://doi.org/10.1371/journal.pgen.1007289.g006
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Fig 7. High information content PWMs are less accurate at identifying TFBSs obtained from both in vitro and in vivo
binding events. (A) Schematic describing how PWMs were created by sub-sampling Sens and Pax2 B1H hits. Each B1H hit
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How CRM composition contributes to transcriptional outcome, and the properties of PWMs

that best predict biologically meaningful TFBSs.

CRM design principles: The role of low affinity and overlapping TFBSs

CRMs consist of TFBSs that integrate numerous inputs to determine transcriptional output.

Three primary models for how CRMs regulate expression have been proposed [3] (A) the

“Flexible Billboard” model posits that each TFBS independently recruits a TF that contributes

to transcription in an additive manner, and thus the arrangement of TFBSs is of little impor-

tance [41]. (B) The “TF Collective” model posits that TFs work cooperatively, but that protein-

protein interactions between TFs allow for flexible TFBS arrangement [42, 43]. (C) The

“Enhanceosome” model posits that TFs form cooperative complexes that are constrained by

the arrangement of TFBSs [44, 45]. While a few CRMs have been categorized according to

these models, it is currently unclear what proportion of CRMs each of these models represent.

Our study reveals that the arrangement of TFBSs is important for the activity of the Rho-
BAD CRM. However, unlike the enhanceosome, which is constrained by cooperative TF com-

plex formation, RhoBAD is instead constrained by competition for overlapping TFBSs. Hence,

uncoupling repressor and activator TFBSs (RhoA-SM/SWT) in Drosophila melanogaster results

in abnormal activity. This finding is consistent with a mechanism of steric exclusion, which

thereby constrains the locations of the TFBSs. In fact, comparative analysis of the RhoA
sequence across numerous Drosophilid species suggests that low affinity and overlapping Sens

and Pax2 TFBSs are a conserved feature of rhomboid regulation (S14 Fig). Moreover, we

found that the affinity of the overlapping sites is tuned to yield appropriate cell- and segment-

specific outputs. Specifically, we show that enhancing Sens affinity to RhoBAD results in the

loss of activation in abdominal segments, whereas increasing Pax2 affinity increases activation

in a subset of ectopic PNS cells. In this way, RhoBAD combines features of two previously stud-

ied CRMs: the sparkling enhancer, which requires low affinity Suppressor of Hairless (Su(H))

sites for cell-specific expression in the Drosophila eye [46], and the shavenbaby enhancer that

requires low affinity Hox sites to generate segment-specific outcomes in the Drosophila abdo-

men [5]. Hence, the overlap of low affinity sites for TFs expressed in the PNS (Sens and Pax2)

and the abdomen (Abd-A) yields both cell- and segment-specific RhoBAD activity.

Our studies also have implications for how TFBS affinity can affect the mechanism used by

a TF to ensure appropriate outputs. For example, Sens can repress RhoBAD activity via a high

affinity TFBS, even if it does not overlap the activator sites. This finding indicates Sens uses a

repressive activity that is not solely dependent on steric exclusion of activators. These results

are consistent with studies demonstrating that the mammalian Sens homologues (Gfi1/Gfi1b)

was placed into quartiles based on 8-mer sequence frequency within the pool of B1H hits. 100 PWMs were generated by

iteratively sampling 50 B1H hits from each quartile. 100 PWMs were also generated by sampling 50 B1H hits from the entire

pool (Control PWMs). The range of total information content (I.C.) for PWMs in each quartile are indicated below the

motifs. (B) Relative log-likelihood (RLL) score of each PWM for the RhoA sequence. (C) AUROC of each PWM for

discriminating low-stringency B1H hits from shuffled sequences. (D) AUROC of each PWM for discriminating bound PBM

probes (binned by fluorescence, as indicated on x-axis) from non-specifically bound probes (matched number of control

probes randomly selected from the 50% of probes with the lowest fluorescence). (E) AUROC of each Sens PWM for

discriminating M. musculusGfi1 and Gfi1b ChIP-seq peaks from random, non-repetitive genomic sequences. Gfi1b ChIP-seq

was conducted using multipotent Hematopoietic Progenitor cells (HPC-7) and Gfi1 ChIP was conducted using innate Type-2

Lymphocytes (ILC2) [32, 33]. Analysis was limited to the 1000 peaks with greatest fold enrichment per ChIP dataset, and

ChIP peaks were binned by fold enrichment as indicated on x-axis. For panels C-E, AUROCs represent the median using 10

different sets of negative sequences. All violin plots are scaled to have the same width. Statistical analysis was performed using

Kurskal-Wallis test followed by a post-hoc pairwise Mann-Whitney U test. P-values were Bonferroni-adjusted due to multiple

comparisons arising from groups of PWMs (all panels) and binning of sequences (panels D and E) (n.s. p� 0.05; � p< 0.05;
�� p< 0.01, ��� p< 0.001).

https://doi.org/10.1371/journal.pgen.1007289.g007
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recruit repressive chromatin remodelers, such as HDAC-1 [47]. Moreover, Sens-mediated

repression is dominant over a strong Pax2 TFBS, as demonstrated by the lack of activity of

RhoBAD-PSSS (Fig 4). Hence, a low affinity Sens site and overlap with activator TFBSs are

both required for proper CRM output, suggesting that these requirements constrain the ability

of RhoBAD to tolerate sequence changes.

Building PWMs that accurately predict TFBSs from complex datasets

A common approach to predict functional TFBSs within CRMs has been to use large-scale

in vitro DNA binding data from assays such as B1H, SELEX-seq, or PBM to create models

of TF binding specificity [23, 24, 29, 48–50]. In addition, in vivo approaches, such as ChIP-

seq or DamID assays, have been increasingly used to create PWMs from cells and tissues

[40, 51]. Hence, for many TFs, several PWMs have been generated using data from different

methods (see the CIS-BP database [29]); and for the biologist that wants to predict TFBSs, this

raises the issue of which PWMs are best suited to identify functional TFBSs from genomic

datasets?

Different PWMs for a given TF typically share common core sequences, but often vary in

information content (i.e. degeneracy). A recent study compared a variety of algorithms to gen-

erate PWMs and found that in general those with lower information content performed better

in predicting TFBSs [50]. Consistent with these results, we found an inverse relationship

between PWM information content and accuracy for Sens and Pax2 –TFs from two distinct

families (C2H2 Zinc Finger and Paired-Box TFs, respectively). Moreover, this relationship was

observed with both published PWMs (Fig 6) as well as by selective sampling of B1H hits to cre-

ate hundreds of PWMs (Fig 7). For example, by systematically comparing Sens PWMs gener-

ated using TFBSs of different predicted affinities, we determined that eliminating high affinity

sites resulted in PWMs with increased predictive accuracy for both in vitro (B1H and PBM)

and in vivo (RhoA and mammalian ChIP-seq data) DNA binding events. In contrast, using

only B1H hits predicted to be of high-affinity resulted in over-representation of certain

sequence motifs and, consequently, high-information content PWMs with poor accuracy.

Thus, regardless of which DNA binding assay (SELEX, B1H, or PBM) is used to generate a

library of sequences, care must be taken to ensure the library is sufficiently diverse to create

PWMs that can accurately identify both low and high-affinity TFBSs. However, our approach

also highlights that increasing PWM degeneracy has its limits, as highly degenerate PWMs cre-

ated using the least-represented sequences (Quartile 1, Fig 7) resulted in highly erratic predic-

tions. This finding may be due to the least represented sequences containing rare binding

events and/or false positive sequences.

While TFs can interact with the genome over a range of affinities [52, 53] and CRMs with

low-affinity sites have been identified [5–9, 45, 54–56], the prevalence of low-affinity interac-

tions between TFs and DNA remains unclear. While our study does not definitively address

this question, our analysis of Gfi1 and Gfi1b (mammalian Sens homologues) in vivo binding

found that the same low information content PWMs that best discriminated RhoA, B1H hits,

and PBM data from random sequences also performed significantly better at identifying

potential TFBSs within ChIP-seq peaks (Fig 7). It should be noted that a consequence of

degenerate DNA binding is that the number of high-affinity TFBSs within a genome are likely

to be greatly outnumbered by the number of low affinity sequences in the genome. Moreover,

protein-protein interactions between TFs can modify binding preferences [48]. Therefore, less

restrictive models of TF binding may have greater accuracy for identifying TFBSs within

ChIP-seq peaks because low affinity sites and modified binding preferences are less penalized

than they are by more restrictive models of TF binding.
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Materials and methods

Generation of transgenic fly lines

RhoBADmutations (see sequences in Figures) were created using site-directed mutagenesis–

primers available on request. Each mutation was cloned into pLacZattB, confirmed by DNA

sequencing, and integrated into the same genomic location (51C) using FC31 (Rainbow

Transgenics Inc.).

Embryo immunostaining

For quantitative expression analysis, all embryos were harvested, fixed, immunostained, and

imaged under identical conditions. Each variant transgene was compared directly with an

appropriate control: RhoBAD-lacZ or RhoBAD-SM-lacZ (in Fig 5J). The primary antibodies

used were: Abd-A (Guinea Pig 1:500, [17]), Sens (Rat 1:125, [57]), β-gal (Chicken 1:1000,

Abcam), and Pax2 (Rabbit 1:2000, [58]). Secondary antibodies conjugated to Alexa-Fluor mole-

cules were purchased from Molecular Probes. Imaging was performed using a Nikon A1 LUNA

inverted confocal microscope. Z-Stacks were mean-projected using Fiji (Bioformats plug-in to

read ND2 files) [59–61]. NIS-Elements software was used to segment and quantify β-gal intensi-

ties in C1-SOPs. Raw measurements used to create graphs are provided in S6 Data.

Protein purification, EMSAs, and predicted binding calculations

His-tagged proteins were purified from BL21 cells using Ni-chromatography as previously

described [62]: Abd-A [63]; Exd/Hth heterodimers [62]; Sens [17]; and Pax2 [22]. Proteins

were confirmed using SDS-PAGE and Coomassie staining and concentrations measured by a

Bradford assay. EMSAs were performed using native polyacrylamide gel electrophoresis [43,

64]. Probes were used at 0.36 μM, and protein concentrations were noted in figure legends.

Acrylamide gels were imaged using the LICOR Odyssey CLx scanner and densitometry was

performed using ImageJ. All quantitative EMSAs were done in triplicate. Predicted binding

(Fig 2C and 2F) was calculated as follows:

Predicted Binding ¼
M

1þ eE� m
ð1Þ

E is the PWM Energy Score for the site; μ is the chemical potential, which was derived by

fitting to data using gradient descent (0.176 for Pax2 and 1.03 for Sens); and M is a scaling fac-

tor (equal to the maximum observed probe bound) [25–27].

Creation of PWMs

Sens and Pax2 PWMs were derived from: (1) B1H PWMs were downloaded from the FlyFac-

torSurvey website (http://mccb.umassmed.edu/ffs/) [24]; (2) SELEX-seq PWMs were down-

loaded as position count matrices (PCMs) from Nitta et al. [23] (S1 Data). PCMs were

converted to PWMs using a custom R script using a pseudo-count of
ffiffiffi
n
p

(where n is the num-

ber of observed nucleotides at a position). Sequence logos were created using the ggSeqLogo

package for R [65].

To generate PWMs in Fig 7, B1H hits were (1) assigned an affinity score (defined below),

(2) placed into quartiles, (3) 50 B1H hits were sampled from each quartile and (4) MEME was

used to generate PWMs using the following parameters: -dna -nmotifs 1 –revcomp -mod oops
[31]. These parameters indicate that (a) a DNA sequence has been inputted into MEME, (b) a

single motif should be found, (c) the reverse complement is analyzed, and (d) the motif occurs

only once per sequence. Steps 3 and 4 were repeated 100 times to generate 100 PWMs from
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each quartile. FlyFactorSurvey B1H hits are 25-mer (Pax2) or 27-mer (Sens) sequences. To cal-

culate a predicted affinity score, each B1H hit was separated into un-gapped 8-mers and the

number of occurrences of each 8-mer in the total pool of B1H hits was determined; the pre-

dicted affinity score is equal to the maximum occurrence of all 8-mers composing a B1H hit.

Scoring sequences with PWMs

Using custom R scripts, we scored RhoA, B1H, PBM, and ChIP-seq sequences using the rela-

tive log-likelihood method [66], as follows:

Relative Log Likelihood ¼
x � Smin
Smax � Smin

x ¼ log � likelihood score

Smin ¼ minimum possible score

Smax ¼ maximum possible score

ð2Þ

For all sequences, a sliding window was used to score the forward and reverse strands, and

the score assigned is equal to the highest score produced. To allow partial matches to the

PWM on the edges of sequence, two ambiguous nucleotides (i.e. “NN”) were added to both

ends of each scored sequence. These ambiguous nucleotides receive a score of 0.

Assessing PWMs

PWMs were assessed by their ability to discriminate known binding sites (score B1H hits,

ChIP peaks, and high fluorescence PBM probes) from control sequences. This ability to

discriminate was measured by the Area-Under-the-Receiver-Operating-Characteristic

(AUROC)–a commonly used metric of the ability of a predictor (i.e. a PWM) to differentially

score two sets of items (i.e. differentially score B1H hits, ChIP peaks, and high fluorescence

PBM probes from control sequences). The more effectively a PWM scores can distinguish

sequences containing binding sites from control sequences (regardless of the absolute score

the PWM assigns to the sequences) the greater the AUROC value. In all instances, we assessed

the AUROC using 10 sets of control sequences and assigned the median AUROC value to the

PWM. Control sequences were the same number and length as the positive sequences.

B1H hits (“Unique Raw Sequence”) were downloaded from FlyFactorSurvey (http://mccb.

umassmed.edu/ffs/) [24]. Control B1H sequences were created through mono-nucleotide

shuffling.

H. sapiens and M. musculusGfi1 and Gfi1b ChIP-seq peaks were downloaded from the

NCBI GEO database as BED files [32–40]. Peaks were trimmed to the central 100 bp. For each

ChIP dataset, control sequences were generated by randomly selecting an equal number of

genomic loci that did not overlap with peaks in the ChIP dataset and did not overlap with

UCSC Repeatmasker regions [67]. For two ChIP datasets (GSE50806 [32] and GSM552235

[33]) the same analysis was repeated using the top 1000 peaks, as defined by the MACS2 “fold

enrichment” score [68] (Fig 7). Fold enrichment was calculated by downloading raw reads

(SRA projects SRP029908 [32] and SRP002575 [33]); assessing read quality with FASTQC [69]

(S2–S5 Data); mapping to the mm10 genome using Bowtie 2 [70]; and calling and scoring

peaks using MACS2 [68].

PBM data were downloaded from CIS-BP (D. rerio Pax2b, M1499_1.02) and UniPROBE

(H. sapiens Gfi1b, UP00592) [29, 30]. AUROC analysis was done on PBM probes binned by

fluorescence (top 0.25%, top 0.5%-0.25%, top 1%-0.5%, top 2.5%-1%, top 5%-1%, top 10%-
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5%). For each bin, control sequences were generated by randomly selecting PBM probes in the

bottom 50% of fluorescence.

Data processing and plotting

Data processing was conducted in R using Bioconductor, Tidyverse, and AUC packages, and

plotted using ggplot2, ggpubR, and gridExtra packages [71–77].

Supporting information

S1 Fig. The RhoA Exd, Hth, and AbdA binding sites match well with their corresponding

PWMs. PWMs were downloaded from the FlyFactorSurvey website and aligned to the RhoA
sequence. The RLL score for each RhoA transcription factor site is listed.

(TIF)

S2 Fig. Comparative DNA binding analysis of Pax2 and Sens to RhoA and B1H-derived

binding sites. EMSA analysis for the binding of Pax2 (A-B) and Sens (C-D) to wildtype RhoA
probes or RhoA probes in which the Sens or Pax2 binding sites have been replaced with B1H

hits. Sequence IDs correspond to sequences in Fig 2A and 2D. (A, C) EMSAs performed,

respectively, with 48 ng of Pax2 or 106 ng of Sens in triplicate. These EMSAs were quantified to

produce graphs in Fig 2C and 2F. (B, D) Uncropped versions of gels shown in Fig 2B and 2E.

(TIF)

S3 Fig. Comparative DNA binding analysis of Pax2, Sens, and Exd/Hth/AbdA to RhoA var-

iant sequences. EMSA analysis for the binding of Exd/Hth/Hox (A), Sens (B), or Pax2 (C) to

probes carrying each RhoA variant shown in Figs 3 and 4. The protein concentrations used in

were as follows: Exd/Hth: 59.2 ng; AbdA: 94.5 and 189 ng; Sens: 0, 23.5, 57, 114, and 228 ng;

Pax2: 0, 10.25, 20.5, 41, and 82 ng. These panels show the complete gels, whereas relevant por-

tions of these gels are shown in Figs 3 and 4.

(TIF)

S4 Fig. Comparison of Sens levels of non-C1-SOPs in RhoBAD-WT and RhoBAD-PS
embryos. Each boxplot represents Sens levels in non-C1 Sens+ nuclei per embryo. Note, no

significant difference in Sens levels were observed between reporter genotypes. Statistical anal-

ysis was conducted using the Welch’s T-test to compare mean reporter activity per embryo

between the two genotypes.

(TIF)

S5 Fig. Comparison of AbdA, β-gal, and Sens levels in C1-SOPs of RhoBAD-WT and Rho-
BAD-SS embryos. Each boxplot represents the indicated AbdA, Sens, and β-gal levels in either

thoracic or abdominal C1-SOPs. Note, no significant difference in Sens or AbdA levels were

observed between reporter genotypes. Statistical analysis was conducted using the Welch’s T-

test to compare mean reporter activity per embryo between the two genotypes.

(TIF)

S6 Fig. Comparison of AbdA and β-gal levels in C1-SOPs of BAD-WT and BAD-PM
embryos. Each boxplot represents the indicated AbdA and β-gal levels in either thoracic or

abdominal C1-SOPs. Note, there is a significant difference in abdominal β-gal levels, but no

significant difference in AbdA levels between reporter genotypes. Statistical analysis was con-

ducted using the Welch’s T-test to compare mean reporter activity per embryo between the

two genotypes.

(TIF)
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S7 Fig. Comparison of AbdA, β-gal, and Sens levels in C1-SOPs of BAD-WT and BAD-PSSS
embryos. Each boxplot represents the indicated AbdA, Sens and β-gal levels in either thoracic

or abdominal C1-SOPs. Note, there is a significant difference in abdominal β-gal levels, but no

significant difference in AbdA or Sens levels were observed between reporter genotypes. Statis-

tical analysis was conducted using the Welch’s T-test to compare mean reporter activity per

embryo between the two genotypes.

(TIF)

S8 Fig. Comparison of AbdA and β-gal levels in C1-SOPs of BAD-WT and BAD-RDM
embryos. Each boxplot represents the indicated AbdA and β-gal levels in either thoracic or

abdominal C1-SOPs. Note, no significant difference in levels were observed between reporter

genotypes. Statistical analysis was conducted using the Welch’s T-test to compare mean

reporter activity per embryo between the two genotypes.

(TIF)

S9 Fig. Comparison of AbdA, β-gal, and Sens levels in C1-SOPs of BAD-WT and BAD-SM
embryos. Each boxplot represents the indicated AbdA, Sens and β-gal levels in either thoracic

or abdominal C1-SOPs. Note there is a significant difference in β-gal levels, but no significant

difference in AbdA or Sens levels were observed between reporter genotypes. Statistical analy-

sis was conducted using the Welch’s T-test to compare mean reporter activity per embryo

between the two genotypes.

(TIF)

S10 Fig. Comparison of AbdA, β-gal, and Sens levels in C1-SOPs of BAD-SM, BAD-SM/
SM, BAD-SM/SWT, and BAD-SM/SS embryos. Each boxplot represents the indicated AbdA,

Sens and β-gal levels in either thoracic or abdominal C1-SOPs. Note, although BAD-SM/SM,

BAD-SM/SWT, and BAD-SM/SS have small, but statistically significant, differences in AbdA

and Sens levels in C1-SOPs relative to BAD-SM; the only genotype to have substantial and sta-

tistically significant decrease in β-gal levels was BAD-SM/SS. Statistical analysis was conducted

using the Kurskal-Wallis test followed by a post-hoc pairwise Mann-Whitney U test. P-values

were Bonferroni adjusted for multiple comparisons.

(TIF)

S11 Fig. Analysis of 8-mer occurrences within Bacterial-1-Hybrid (B1H) sequences and

relationship to affinity. (A, B) Histograms displaying the distribution of 8-mer occurrence

scores of B1H hits for Sens (FlyFactorSurvey ID Sens_SOLEXA_5) and Pax2 (FlyFactorSurvey

ID Sv_SOLEXA_5), respectively. The 8-mer occurrence score is defined by the most frequently

occurring 8-mer within each B1H hit. Numbers above the bars indicate the number of unique

8-mers within each bar. (C, D) Scatter plots demonstrating positive relationship between

8-mer occurrence score (log-transformed) of each B1H hit and the second-highest 8-mer PBM

E-score per B1H hit. E-scores for Pax2 and Sens were derived from D. rerio Pax2b PBM

(CISBP Accession M1499_1.02) and M. musculus Gfi1 PBM (Uniprobe Accession UP00591),

respectively. R-value shown is the Spearman’s rank correlation and p-value of correlation is

noted. The blue line (slope = 1, y-intercept = 0) is shown as a reference of a perfect correlation.

(E, F) Boxplots demonstrate the distribution of second-highest E-scores per B1H hit in each

8-mer occurrence score quartiles. Note that as quartile of 8-mer occurrence score decreases,

the distribution of E-score also decreases. Kruskal-Wallis test was used to do one-way variance

test (indicated on plots). Each quartile was compared to the entire pool of B1H hits using t-test

and p-values were Bonferroni adjusted for multiple comparisons.

(TIF)
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S12 Fig. Comparison of information content of Pax2 and Sens PWMs generated by sub-

sampling quartiles of B1H derived sequences. Information content of Pax2 (A) and Sens (B)

PWMs generated from FlyFactorSurvey B1H data [24]. For Fig 7, each B1H sequence was

assigned an affinity score derived from the occurrence of 8-mers relative to the whole pool of

B1H sequences (see Methods for details). The B1H sequences were grouped into 4 quartiles

based on this affinity score and 100 PWMs were generated by iteratively sampling 50 B1H

sequences from each quartile. At top, we show a representative PWM logo from each Quartile.

Note that as the 8-mer occurrence score increases, the information content of the derived

PWMs also increases (bottom).

(TIF)

S13 Fig. Performance of B1H-derived Sens PWMs on Gfi1/Gfi1b ChIP datasets. B1H

sequences [24] for Sens were binned into quartiles based on predicted affinity and 100 PWMs

were generated from each quartile along with 100 additional PWMs generated by sampling the

entire B1H dataset (the same Sens PWMs shown in Figs 7 and S12). The ability of these PWMs

to discriminate Gfi1 and Gfi1b ChIP-seq peaks from an equal number of random genomic

regions was assessed using the AUROC metric. The NCBI GEO accession number for each

ChIP dataset is given above each plot: GSM1229967 [32], GSM1278242 [34], GSM1448829 [35],

GSM1692853 [36], GSM1692854 [36], GSM1708653 [37], GSM1721242 [38], GSM2231903

[39], GSM2231904 [39], GSM2423488 [40]. All violin plots are scaled to have the same width.

Statistical analysis was performed using Kurskal-Wallis test followed by a post-hoc pairwise

Mann-Whitney U test. P-values were Bonferroni-adjusted due to multiple comparisons arising

from groups of PWMs (n.s. p� 0.05; � p< 0.05; �� p< 0.01, ��� p< 0.001).

(TIF)

S14 Fig. Conservation of low PWM scores for the Pax2 and Sens binding sites in RhoA
across Drosophilids. (A) Alignment of RhoA sequence among 22 Drosophilid species (derived

from UCSC Multiz track alignment) [78]. (B) The low Sens PWM score for the RhoA Pax2

binding site is conserved. (C) The low Pax2 PWM score for the RhoA Sens binding site is con-

served.

(TIF)

S1 Data. Original position-weight and position-frequency matrices downloaded from Fly-

FactorSurvey and Nitta et al, 2015.

(TXT)

S2 Data. FastQC analysis of sequencing reads for Gfi1 ChIP-seq in mouse innate type-2

lymophcytes (ILC-2) (SRP029908, Spooner et al, 2013).

(HTML)

S3 Data. FastQC analysis of sequencing reads for Gfi1b ChIP-seq in mouse haematopoietic

progenitor cell line (HPC-7) (SRP002575, Wilson et al, 2010).

(HTML)

S4 Data. FastQC analysis of sequencing reads for Gfi1 ChIP-seq in mouse granulocyte-

monocyte progenitors (SRP059846, Olsson et al, 2016).

(HTML)

S5 Data. FastQC analysis of sequencing reads for Gfi1b ChIP-seq in mouse erythroleuke-

mia cells (SRP045060, Stadhouders et al, 2015).

(HTML)
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S6 Data. Raw measurements used for creating plots in Figs 2 to 5.

(XLSX)
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