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Shear‑mediated sol‑gel transition 
of regenerated silk allows 
the formation of Janus‑like 
microgels
Zenon Toprakcioglu1 & Tuomas P. J. Knowles1,2*

Microcapsules and microgels consisting of macromolecular networks have received increasing 
attention due to their biomedical and pharmaceutical applications. Protein microgels and in particular 
silk-based microcapsules have desirable properties due to their biocompatibility and lack of toxicity. 
Typically such structures formed through emulsion templating are spherical in geometry due to 
interfacial tension. However, approaches to synthesis particles with more complex and non-spherical 
geometries are sought due to their packing properties and cargo release characteristics. Here, we 
describe a droplet-microfluidic strategy for generating asymmetric tubular-like microgels from 
reconstituted silk fibroin; a major component of native silk. It was determined using fluorescence 
microscopy, that the shear stress within the microchannel promotes surface protein aggregation, 
resulting in the asymmetric morphology of the microgels. Moreover, the structural transition that 
the protein undergoes was confirmed using FTIR. Crucially, the core of the microgels remains liquid, 
while the surface has fully aggregated into a fibrillar network. Additionally, we show that microgel 
morphology could be controlled by varying the dispersed to continuous phase flow rates, while it was 
determined that the radius of curvature of the asymmetric microgels is correlated to the wall shear 
stress. By comparing the surface fluorescence intensity of the microgels as a function of radius of 
curvature, the effect of the shear stress on the amount of aggregation could be quantified. Finally, the 
potential use of these asymmetric microgels as carriers of cargo molecules is showcased. As the core of 
the microgel remains liquid but the shell has gelled, this approach is highly suitable for the storage of 
bio-active cargo molecules such as antibodies, making such a delivery system attractive in the context 
of biomedical and pharmaceutical applications.

In nature, proteins are utilised by a plethora of organisms for the formation of biomaterials necessary for a wide 
range of functions. As a well studied example, the glands of arthropods such as the silkworm Bombyx mori1, 
have the ability to induce a protein phase transition from a liquid, largely disordered random coil structure, into 
a solid fibre which is β-sheet heavy2–4. This phase transition is thought to be triggered by the shear force that 
the worm applies when it extrudes the protein from its gland2,5–7. Understanding the phase transitions involved 
in fiber formation8 is of key importance in the context of improving material fabrication and producing next-
generation bioinspired materials. Native silk from Bombyx mori, consists mainly of two proteins; fibroin and 
sericin9. Even though extraction of fibroin from this protein mixture is quite crude, reconstituted silk fibroin 
(RSF) has been extensively studied in the context of forming biofilms10 and other biomedically related tissue 
engineering applications11–13. Moreover, due to its biocompatibility, degradability and lack of toxicity, coupled 
with its robustness and remarkable mechanical properties, RSF is already being used as a biomaterial in nosoco-
mial environments14–17. A possible route of forming such essential functional materials can be achieved through 
the use of microfluidics.

Microfluidics, and in particular droplet-based approaches, have gained much interest in the area of material 
related applications. Materials such as hydrogels/microcapsules18,19 or micro-gels20–23 can be formed through the 
use of droplet-microfluidics24. In this platform, two immiscible phases (typically an oil phase and an aqueous 
phase) intersect, which results in the formation of micrometer-sized droplets. Polymer or protein molecules are 
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encapsulated within the aqueous phase and once water-in-oil droplets are generated, the propensity of these 
systems to self-assemble into supra-molecular structures is utilised and microcapsules can thus be formed. 
Such microfluidically made materials can potentially display different and/or beneficial properties as compared 
to their bulk counterparts25–28. More recently, however, there has been an increased interest in the formation 
of protein-based capsules for biomedically related applications20–22. Since protein microgels are biodegradable, 
biocompatible, non-toxic and immunogenic, they represent ideal candidates for the storage and delivery of cargo 
molecules9. For this reason, microfluidically-inspired formation of silk materials is continually growing, and 
ranges from spinning artificial fibers29,30, to forming micro31,32 and nanogels31–33 but even to stabilising enzyme 
loaded droplets34.

A critical aspect of any system as a vehicle for release purposes, is monodispersity. This parameter is crucial 
for modulating the kinetics for molecular delivery. As microfluidics offers control over capsule morphology, 
generating microgels using these approaches offers advantages such as reproducibility, systematicity and scal-
ability. However, most of these systems are utilised to form spherical micro23 or nanocapsules35, where the 
whole structure is solid. This leads to molecules encapsulated within the microgels having reduced diffusional 
movement and molecular release can only effectively occur once the whole capsule has degraded. Generating 
core-shell microgels, and in particular tubular structures, is thus preferential as these capsules have enhanced 
release capabilities due to their asymmetry, however, their production remains more challenging to achieve.

In order to address the fundamental issue of generating core-shell microcapsules with various morpholo-
gies, we have explored a droplet-microfluidic platform that enables the formation of asymmetric, tubular-like 
microgels which are capable of protecting and storing valuable cargo molecules. Using cryo-SEM and FTIR, 
we confirm that the protein silk fibroin self-assembles under shear flow within the micro-channels, resulting in 
only the surface of the capsule aggregating, while the core of the capsule still remains liquid. We report that by 
measuring the fluorescence intensity of Thioflavin T (ThT), which increases its quantum yield when it binds to 
β-sheet structures, and by measuring the radius of curvature, the shear stress within the microfluidic channels 
was correlated to the amount of surface aggregation. Finally, the potential use of the asymmetric microgels for 
delivery applications, such as for antibody studies, is showcased by encapsulating colloidal molecules within the 
asymmetric capsules and monitoring the diffusion of these particles, further corroborating that the core is still 
liquid even though the surface is solid. Furthermore, by altering the geometry of the microfluidic junction, janus 
particles were formed which can potentially be used in directed motion applications. Moreover, by generating 
double emulsions with the asymmetric microgels encapsulated within the hierarchical droplets, we show that 
control over parameters such as tubular aspect ratio or number of internal microgels, can further tailor release 
kinetics and thus renders such microgels as ideal candidates for storage and release of cargo molecules.

Results and discussion
The effect of shear on aggregation and on microgel morphological variations was first investigated. It is known 
that when protein solution travels through a microfluidic channel, it experiences shear. In fact, it has been 
reported that shear can induce protein aggregation36,37, and this effect is particularly prominent with silk-based 
proteins38. Both the spider and silkworm are capable of pulling and extruding (respectively) liquid protein from 
their glands and through the use of shear, a phase transition occurs which aggregates the protein into its well-
known solid form. However, in the context of drug delivery, it would be particularly interesting to be able to 
utilise this and form capsules where the outer shell has aggregated and is solid, but internally there is still a liquid 
phase, i.e. a core-shell structure. To that end, and knowing that silk is shear sensitive, a high concentration of 
reconstituted silk fibroin (40 mg/mL) was passed through a microfluidic chip with a single junction, a schematic 
of which is shown in Fig. 1a, in order to generate asymmetric microgels.

It is known that the velocity profile within a channel has a parabolic curve39, Fig. 1b, and that the shear stress 
is the derivative of the velocity multiplied by the viscosity, with respect to the direction of flow movement, Fig. 1c. 
This is represented by the following equation, τ = η

∂(u)
∂(y) , where η is the dynamic viscosity of the flow, u is the 

flow velocity of the fluid and y is the height above the boundary.
Therefore, it is clear that the shear stress is higher at the walls of the channel. When a droplet containing 

protein solution is pushed through such a channel, the shear force that the protein solution experiences within 
the droplet is highest at the walls and subsequently a reasonable assumption would be that protein aggregation 
would initiate there. A planar schematic representation of a droplet travelling through such a microfluidic chan-
nel is shown in Fig. 1d, where protein aggregation can be seen to initiate at the walls of the device. However, in 
a 3-dimensional microfluidic channel, the droplet experiences a shear force from all areas it is in contact with, 
and therefore, protein aggregation occurs all around the aqueous droplet. This is schematically represented in 
the right panel of Fig. 1d, where the red area corresponds to protein aggregates, and the blue area in the middle 
of the core-shell structure, is the non self-assembled, still liquid, aqueous phase.

Characterisation of the asymmetric microgels.  The generation of different microgel morphologies 
was next investigated by varying the flow rate ratio between the aqueous and oil phases. A device consisting of 
height and width dimensions of 50 and 100µm respectively was used to probe microgel morphology. Initially, 
both the oil and aqueous phase flows were kept constant at a rate of 100µL/h , which resulted in elongated 
structures (Fig. 2a). When the oil to aqueous phase flow rate ratio was increased to 4:1, a mixture of tubular and 
spherical micro-gels was formed, Fig. 2b,c, while a further increase in this ratio to 15:1 led to the generation of 
just spherical structures being formed, Fig. 2d. Furthermore, it appears that these structures were not only stable 
just after formation, but remain so for longer than 24 h, as can be seen in Fig. 2e,f. In order to determine the 
structural transitions undergone by the sheared silk fibroin, FTIR measurements were conducted. RSF solution 
was kept in the fridge at 4 ◦C prior to all experiments. The silk fibroin before gelation (blue curve) has peaks at 
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1650 cm−1 and 1545 cm−1 which are characteristic of random coil conformation and correspond to the amide I 
and II bands respectively. As can be seen from the spectrum in Fig. 2g, following droplet generation, the amide I 
peak shifted, suggesting that partial aggregation (and gelation) had occurred (green curve). Moreover, an FTIR 
spectrum following overnight incubation (red curve) was obtained. The amide I and II peaks had further shifted 
to 1630 cm−1 and 1520 cm−1 respectively confirming the transition from random coil to beta sheet structure. 
All samples were incubated at room temperature and all FTIR spectra were conducted at room temperature 
conditions.

In order to provide a systematic control of the RSF solution, FTIR spectra were taken for RSF solution before 
and after incubation at room temperature for 24 h. The peaks of the two spectra at the amide I and II bands are 
almost identical, indicating that the protein did not undergo any structural change (SI Fig. 2a). Moreover, the 
RSF solution was put in an eppendorf tube and imaged just before and after incubation at room temperature for 
24 h. It is clear from these images that the protein has not gelled (SI Fig. 2b).

The surface structure of the asymmetric microgels was visualised using cryo-scanning electron microscopy 
(cryo-SEM). Microgels were formed and immediately de-emulsified (see Methods) before being re-immersed 
into an aqueous phase. The overall tubular/asymmetric morphology can be seen in Fig. 3a–c. A fracture on one 
of the microgels (Fig. 3d) reveals that the surface of the particle has aggregated and formed a fibrillar network, 
while the core of the microgel still contained protein solution. The outline of the microgel remains and can 
clearly be seen. Furthermore, in order to probe the surface of the asymmetric microgels in more detail, high 
magnification images were taken. The micrographs reveal the presence of a dense fibrillar network with fibrils 
pointing outwards (Fig. 3e,f).
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Figure 1.   (a) Schematic representation of the microfluidic device used. (b,c) Schematic representations of the 
velocity profile of the fluid through a microfluidic channel (b) and the corresponding shear stress distribution 
(c). (d) Schematic representation of a droplet (blue) travelling within a microfluidic channel, surrounded by 
the oil phase (yellow) while undergoing shear. The shear stress is highest at the walls of the channel, which is 
where protein aggregation initiates. RSF protein is represented as orange spheres. The panel on the right is a 
3-dimensional schematic of the microfluidic channel. The red area corresponds to the aggregated protein, while 
the blue area in the middle represents the non self-assembled and still liquid aqueous core.
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Effect of flow rate on shear‑induced microgels and quantification of aggregates on microgel 
surface.  The effect that flow rate, and subsequently shear rate and shear stress, have on the morphology of the 
formed droplets was determined and correlated to the amount of aggregates present at the surface. This was done 
by measuring the radius of curvature of the microgels as a function of flow rate. To correlate the flow rate with 
the shear stress at the walls of a rectangular channel, the following relation was used, τ = ηQP�

8A2  , where η is the 
dynamic viscosity of the flow, Q is the flow rate, A is the cross-sectional area of the microfluidic channel, P is the 
hydraulic diameter (or the wetted perimeter) and � is a shape factor defined by � = 24/[(1− 0.351

b
a )(1+

b
a )]

2 , 
where a represents the long side of the rectangle and b represents the short side39.

Therefore, by changing the flow rate, the shear stress was systematically varied and the amount of surface 
aggregation could be monitored. The most stable configuration of a water in oil droplet is a sphere. In fact, if the 
droplets only contained an aqueous phase then the interfacial tension would promote the minimisation of the 
surface energy resulting in the droplets adopting a spherical shape. Therefore, any asymmetric microgel must 
contain elements of aggregated protein. Consequently, the radius of curvature is proportionate to the amount 
of aggregates present. Moreover, the more the surface has aggregated, the smaller the radius of curvature. A 
systematic change of the shear flow was thus conducted and the radius of curvature was measured. Examples 
of asymmetric microgel formation through varying flow rates are shown in Fig. 4a–c. Furthermore, a red circle 
around the edge of the microgel indicates how the radius of curvature at that particular area was determined 
for each flow rate system.

The graph of wall shear stress as a function of radius of curvature is plotted in Fig. 4f inset. It is clear that the 
data follow an asymptotic trend, where a high shear stress corresponds to a smaller radius of curvature, which 
in turn suggests a larger amount of aggregates. A double logarithmic plot of the radius of curvature against the 
shear stress, shown in Fig. 4f, indicates a power law with an exponent of 0.22, as obtained by the fit.
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Figure 2.   (a–d) Brightfield images showing the outlet of the microfluidic chip. A 40 mg/ml RSF protein was 
used as the dispersed phase and FC-40 with fluorosurfactant was used as the continuous phase. (a) Elongated 
fibre-like structure when Qdis = 100 µL/h, Qcont = 100 µL/h. (b) Asymmetric, tubular structures when Qdis= 100 
µL/h, Qcont = 400 µL/h. (c) Mixture of tubular and spherical structures when Qdis = 100 µL/h, Qcont = 800 µ
L/h. (d) spherical structures when Qdis = 100 µL/h, Qcont = 1500 µL/h. (e) Darkfield images of tubular structures 
following formation. (f) Darkfield images of tubular structures one week after formation. (g) FTIR spectra of 40 
mg/ml RSF. The blue curve represents the RSF solution at t = 0 h, before any gelation has occurred. The green 
curve represents the micro-gels 1 h after formation, while the red curve corresponds to the micro-gels 24 h after 
formation.
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In order to further investigate how shear affects the protein solution within the droplet, a fluorescent dye 
was added to the aqueous solution. The fluorescent dye Thioflavin T (ThT), has the tendency to increase its 
quantum yield when it interacts with protein aggregates and in particular with β-sheet structures. Therefore, a 
higher fluorescence intensity corresponds to the presence of protein aggregates. Following droplet generation 
through the microfluidic chip, the microgels were collected and imaged using fluorescence microscopy. Figure 4d 
shows characteristic asymmetric silk-based microgels. In Fig. 4d it can be seen that the microgels have a higher 
fluorescence intensity at regions which are not spherical, indicating the presence of a solid, aggregated surface 
and the formation of a shell at that particular area. It should be noted that although ThT does preferentially bind 
to β-sheet structures, it also binds to non-fibrillar protein solutions40. Therefore, the fact that the core displays 
a fluorescence signal is to be expected.

Moreover, it is evident from Fig. 4d that only areas which are asymmetric exhibit a higher fluorescence signal. 
A comparison between the spherical and non-spherical part of the microgel was conducted. A line profile along 
the spherical part (red line) and along the asymmetric part (green line) was taken and is shown in Fig. 4e. From 
the data, which are normalised with respect to the maximum intensity, it is clear that the mean intensity value 
within the droplet is around 0.7. The red curve, which represents the line profile at the circular region follows a 
gradual intensity increase, with a maximum in the middle of the droplet, as is expected. However, the line profile 
along the asymmetric area (green curve) has two prominent peaks, which correspond to the aggregated part of 
the microgel. The relative difference between the mean intensity value within the droplet and at the surface of 

40 µm

4 µm 4 µm

50 µm

50 µm100 µm

a) b)

c) d)

e) f)

Figure 3.   (a–c) Cryo-SEM micrographs of tubular/asymmetric microgels. (d) Micrograph of a fractured 
microgel which shows that the surface has aggregated whereas the core remains liquid. (e,f) High magnification 
cryo-SEM micrographs of the microgel surface. A dense fibrillar network is clearly present.
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the asymmetric part for this particular microgel, is around 25%. Such an analysis was conducted for 10 droplets 
and it was found that the relative change between the asymmetric and circular areas was 27% ± 3%.

Finally, by comparing the increase in fluorescence signal of ThT as it binds to β-sheets, the amount of aggre-
gates present at the surface were quantified for each system of microgels formed under different shear stress 
conditions. The graph of surface aggregates formed as a function of the radius of curvature is shown in Fig. 4g. 
The shear stress has thus been correlated to the amount of surface aggregates, and therefore for a given flow rate 
one can predict how many surface aggregates will be formed. It should be noted, that for the ThT concentration 
used in this study ( 50µM ), there is an intrinsic self-fluorescence background and thus appropriate background 
subtractions were made in order to produce Fig. 4g.
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Figure 4.   (a–c) Asymmetric microgel formation due to variations in the flow rate and shear stress. The 
dispersed phase flow rate remained constant at 100µL/h , while the continuous phase flow rate was 200µL/h , 
300µL/h and 500µL/h respectively for each panel. The red circle indicates how the radius of curvature was 
determined for each system with different flow conditions. (d) Fluorescence micrograph of asymmetric 
microgels. The microgels exhibit a higher fluorescence signal at the asymmetric areas. (e) Graph of normalised 
intensity against position along the microgel for the two line profiles of the microgel in (d). The red curve 
corresponds to the line profile along the spherical part of the microgel while the green curve represents the line 
profile at the asymmetric part. (f) Double logarithmic plot of the radius of curvature against shear stress. The 
fit to the data is shown as a solid red line. Inset: Graph of radius of curvature against shear stress. (g) Graph of 
radius of curvature against percentage of aggregates.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6673  | https://doi.org/10.1038/s41598-021-85199-1

www.nature.com/scientificreports/

In order to establish that shear stress rather than other effects, such as the oil interface interacting with the 
protein, are responsible for promoting aggregation, low shear stresses were used. By applying small flow rates 
( Qdis = 10µL/h and Qcont = 50µL/h ) and low protein concentrations (4 mg/mL), then spherical droplets are 
observed, indicating that these are completely liquid as expected since there is very little shear that is not enough 
to induce surface aggregation (SI Fig. 2a). Moreover, ThT fluorescence images shown in SI Fig. 2b have uniform 
intensity overall, further suggesting that the droplets are completely liquid. An additional confirmation that the 
droplets are completely liquid was performed by collecting the droplets and shaking slightly. Droplet coalescence 
was observed suggesting that the surface of the droplets had not gelled. Conversely, when the same experiment 
was conducted for the tubular microgels, no coalescence was seen.

Asymmetric tubular microgels for storage and release of cargo molecules.  Finally, the potential 
use of the asymmetric microgels for storage and release of cargo molecules was investigated. 5µm sized colloidal 
particles were added to the protein solution and following droplet generation, the colloids were encapsulated 
within the microgel. The tubular microgels were then collected and imaged using brightfield microscopy. A 
time-lapse image sequence (Fig. 5a–d and SI Videos 1–3) reveal that even though the surface of the microgels 
has aggregated/gelled, the core remains liquid, which is clear from the diffusion exhibited by the colloidal par-
ticles. The yellow circles in Fig. 5a–d show an example of a colloidal pair, where there is clear diffusion of these 
two particles with respect to each other. Such a system, where the surfaced has gelled but the core remains liq-
uid, can be used for pharmaceutically related applications such as antibody delivery. In this approach, anything 
encapsulated within the core of the microgel is protected, while it is still free to diffuse, making these asymmetric 
capsules ideal for cell related encapsulation studies.

Moreover, an alternative route to controlling molecular diffusion for delivery related applications is through 
the use of double emulsions41–43. Water-oil-water (wow) or oil-water-oil (owo) hierarchical structures have 
previously been shown to be quite effective at tailoring release kinetics of encapsulated molecules21,44,45. To 
that effect, tubular microgels were encapsulated within a wow double emulsion. This was done by using two 
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Figure 5.   (a–d) Time-lapse microscopy sequence of asymmetric core-shell microgels with colloidal particles 
encapsulated within them. The yellow circles show an example of a colloidal pair, where the particles move with 
respect to each other freely within the microgel, indicating that the core is liquid and only the external surface 
has aggregated/gelled. (e–h) Wow double emulsions with asymmetric tubular microgels as the core part of the 
hierarchical structure. For (e–g), the outer phase flow ranged from 400− 600µL/h respectively while the oil 
to protein phase flow rate ratio was kept constant at 4:1. For (h), the oil to protein phase flow rate ratio was 7:1, 
while the outer phase flow rate was 400µL/h . (i–k) Fluorescence microscopy images of janus-like microgels 
formed using a microfluidic device with a 60◦ junction.
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consecutive junctions, where the second junction has a non-planar (3-D) geometry21. At the first junction, the 
protein solution is intersected by the oil phase, leading to the formation of the asymmetric microgels. In the 
second, non-planar junction, the external aqueous phase intersects the microgel in oil resulting in the genera-
tion of the double emulsion. By varying the flow rates, tubular microgels with different aspect ratios, but also 
the number of asymmetric microgels encapsulated within the double emulsion, could be varied and controlled 
systematically. This is shown in Fig. 5e–h, where wow double emulsions with different number of encapsulated 
asymmetric structures as well as varying tubular aspect ratios can be seen.

Finally, by slightly changing the device geometry so that the angle at the junction is 60◦ rather than 90◦ , 
janus-like microgels could be formed (Fig. 5i–k). Moreover, it can be seen that the microgels have a higher fluo-
rescence intensity at regions which are not spherical, indicating the presence of a solid, aggregated surface and 
the formation of a shell at that particular area. Such structures have particular promise as “smart materials” and 
have significant advantages in directed motion as the two parts of the particle posses different physical/chemi-
cal properties which can be utilised. Furthermore, as the production of protein-janus particles is challenging, 
this microfluidic approach to generating monodisperse silk-based janus microgels can be quite advantageous.

Conclusions
The generation of protein-based microcapsules for delivery related applications is of continuous interest. How-
ever, systematic control over microgel morphology can be challenging. Proteins such as silk, have the remark-
able property of undergoing a phase transition from solution to solid under shear flow. Our results demonstrate 
that the shear force within a droplet-microfluidic device can result in the formation of asymmetric tubular-like 
microgels. Using a combination of FTIR and cryo-SEM, it was confirmed that the surface of the microgel has 
aggregated/gelled whereas the core still remains liquid. Furthermore, by varying the disperse and continuous 
phase flow rates, the shear stress could be altered and the subsequent change in microgel morphology could be 
measured. Additionally, it was determined that the radius of curvature has an asymptotic relation with the shear 
stress. Moreover, using a fluorescent dye which increases its quantum yield when it binds to β-sheet structures, 
we were able to quantify the amount of aggregates present at the surface, correlate that to the radius of curvature 
and, more importantly, to the shear stress. Finally, the potential use of the asymmetric microgels as vehicles for 
delivery applications was investigated. Colloidal particles were encapsulated within the tubular microgels and 
were imaged using a high speed camera. The colloids were able to move freely within the microgel, further cor-
roborating that the core of the capsule remains liquid. As a final example of a way to tailor molecular diffusion 
for delivery applications through the introduction of an oil layer, the asymmetric microgels were encapsulated 
within a double emulsion. By varying the appropriate flow rates, both the tubular aspect ratio and number of 
encapsulated microgels could be specifically controlled. Moreover, the potential use of these microgels to form 
janus particles for release related applications is demonstrated. Such asymmetric protein microgels which have a 
hard shell but a liquid core, have the ability to protect valuable cargo molecules and thus have future applications 
in the pharmaceutical and biomedical fields.

Materials and methods
Device fabrication.  In order to generate water-in-oil droplets, a soft photolithographic process was 
employed to fabricate the microfluidic devices used. The height and width of the device used to produce the 
tubular microgels were 50 and 100µm respectively. In brief, a 50µm thick photoresist layer (SU-8 3050, Micro-
Chem) was spin-coated onto a silicon wafer and soft-baked for 15 min at 95 ◦C . The photo-mask was placed onto 
the wafer, which in turn was exposed to UV light. This was postbaked for 5 min at 95 ◦C . In order to remove 
excess photoresist, the master was developed in propylene glycol methyl ether acetate (PGMEA, Sigma-Aldrich). 
For the double emulsion experiments, a two-step photolithographic process was used21.

In order to fabricate microfluidic devices, a 10:1 elastomer PDMS to curing agent (SYLGARD 184, Dow 
Corning, Midland, MI) mixture was used. This was cured for 3 h at 65 oC . The hardened PDMS was cut, peeled 
off the master and holes of 0.75 mm were punched into the PDMS. This was then bonded onto a glass slide by 
treating with a plasma bonder (Diener Electronic, Ebhausen, Germany).

Droplet formation.  neMESYS syringe pumps (Cetoni, Korbussen, Germany) were used to control the flow 
rates within the microfluidic channels. The dispersed phase consisted of a 40 mg/mL protein solution, and in 
the case of fluorescence based experiments Thioflavin T (Siga Aldrich) was added. Moreover, G5000 particles 
(Thermo Scientific) were used for colloidal experiments. The continuous phase was comprised of fluorinated oil 
(Fluorinert FC-40, Sigma Aldrich) containing 2% w/w fluorosurfactant (RAN Biotechnologies). All bright field 
images were acquired using a Mikotron high speed camera.

Silk fibroin preparation and purification.  Silk fibroin protein was extracted from Bombyx mori silk 
cocoons (Mindsets (UK) Limited) through the following protocol9. Initially, the cocoons were cut into pieces 
and placed in a beaker containing a solution of 0.02 M sodium carbonate. This was then boiled for 30 minutes, 
ensuring that the sericin that is present within the silk fibres, dissolved, while the insoluble fibroin remained in 
the beaker. The fibroin was then removed from the beaker, rinsed with cold water three times and left overnight 
to dry out.

A 9.3 M lithium bromide solution was prepared and added to the dried silk fibroin in a 1:4 ratio of silk fibroin 
to lithium bromide. The mixture was heated to 60 ◦C and left for 4 h, resulting in the silk fibroin dissolving in the 
lithium bromide. LiBr was removed from the solution by placing the mixture in a 3 kDa dialysis tube. This in 
turn was placed in a beaker containing ultrapure water, while the use of a large magnetic stir bar with a magnetic 
stir-plate was employed to ensure mixing. The water was changed a total of 6 times in 48 h.
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Finally, the silk fibroin solution was removed from the dialysis tube and placed in Eppendorf tubes. These 
were then centrifuged at 9000 r.p.m. at 4 ◦C for 20 minutes in order to remove small impurities. The process 
was repeated twice and the final solution was stored at 4 ◦C . All experiments were conducted within 2 weeks of 
extracting and purifying the silk fibroin to ensure no gelation had occurred.

Microgel de‑emulsification.  Droplets were de-emulsified and separated from the continuous oil phase 
by applying the following protocol. A 20% 1H, 1H, 2H, 2H-perfluoro-octanol (PFO, Alfa Aesar) in FC-40 oil 
solution was prepared and added to the emulsion. An equal volume of deionised water was then added to the 
emulsion. The samples were centrifuged for 2 minutes at 1000 rpm resulting in separation of the phases, with 
the supernatant containing the micro-gels. The supernatant was collected, and the whole washing process was 
repeated an additional two times.

Fluorescence microscopy and image analysis.  The structural change of the protein solution was 
monitored and studied by looking at the change in intensity of ThT dye at 480 nm. A ThT concentration of 50 
µ M was used for all experiments. An inverted Zeiss microscope was employed to detect the fluorescence signal 
of the fluorophore thioflavin T. Appropriate filters that had an excitation wavelength of 440 nm and emission 
wavelength of 480 nm were used. All image analysis including measurements of radius of curvature and intensity 
were performed using ImageJ software.

Cryo‑scanning electron microscopy (cryo‑SEM).  For cryo-sem, the sample was first mounted onto 
a mutli-pin specimen mount. This was then placed in liquid nitrogen to rapidly freeze, thus ensuring that the 
micro-gels remained intact. The samples were fractured using a knife and 4 nm of platinum was sputter coated 
onto the sample. Images were obtained using a Zeiss EVO HD15 operating at 6 kV to minimise beam damage.

Fourier Transform Infrared Spectroscopy (FTIR).  The conformational changes of silk fibroin (both 
bulk and micro-gels) were performed by using an FTIR equinox 55 spectrometer (Bruker). For the bulk meas-
urements, the samples were loaded onto the FTIR sample holder and were analysed by subtracting a water refer-
ence. Conversely, for the micro-gel measurements, an emulsion of water droplets in FC-40 was used as a refer-
ence. In all measurements conducted, a carbon dioxide atmospheric compensation was made by subtracting this 
from the FTIR spectra. All FTIR measurements were conducted at room temperature.
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