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Abstract: Plant samples are potential sources of physiologically active secondary metabolites and
their classification is an extremely important task in traditional medicine and other fields of research.
In the production of herbal drugs, different plant parts of the same or related species can serve as
adulterants for primary plant material. The use of highly informative and relatively easily accessible
tools, such as liquid chromatography and low-resolution mass spectrometry, helps to solve these
tasks by means of fingerprint analysis. In this study, to reveal specific plant part features for 20 species
from one family (Apiaceae), and to preserve the maximum information content, two approaches are
suggested. In both cases, minimal raw data pretreatment, including rescaling of time and m/z axes
and cutting off some uninformative regions, was applied. For the support vector machine (SVM)
method, tensor unfolding was required, while neural networks (NNs) were able to work directly
with squared heatmaps as input data. Moreover, five data augmentation variants are proposed, to
overcome the typical problem of a lack of data. As a result, a comparable F1-score close to 0.75
was achieved by SVM and two employed NN architectures. Eight marker compounds belonging
to chlorophylls, lipids, and coumarin apio-glucosides were tentatively identified as characteristic of
their corresponding sample groups: roots, stems, leaves, and fruits. The proposed approaches are
simple, information-saving and can be applied to a broad type of tasks in metabolomics.

Keywords: Apiaceae; raw LC-MS data; neural networks; support vector machine; augmentation

1. Introduction

Herbal extracts contain dozens and even hundreds of endogenous secondary plant
metabolites [1]. The strategy that is commonly applied to control the authenticity and
quality of such products includes HPLC-UV quantification of the main constituents (quality
markers). However, due to the complexity of their chemical composition, a more compre-
hensive approach that uses “chromatographic fingerprints” has also been employed [2].
Due to the extent of the variability among the same type of plant material, the fingerprints
should be informative enough to allow distinguishing samples from different groups [1].
Such fingerprint chromatograms are accepted by several regulatory authorities, including
the WHO and FDA [3,4]. The performance of a chromatographic fingerprint depends on
the separation degree and concentration distribution of the chemical components; there-
fore, its information content is limited. Thus, two-dimensional (2D) fingerprinting has
been introduced to better address the chemical complexity of the herbal preparations [5,6].
Moreover, hyphenated chromatographic and spectrometric approaches, such as HPLC-
DAD [7–14], GC-MS [15,16], and HPLC-MS [17,18], can greatly enhance the potential of
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chromatographic fingerprinting. However, in this case, one has to operate with raw analysis
data in 3D space.

The first obvious way to deal with such complex data is to reduce it to a simple
chromatographic fingerprint. This can be done by two approaches. First, by selecting target
peaks at several wavelengths and removing the baseline differences, thus obtaining a com-
bined chromatogram as a result [7–9]. The second option is to select several most-inhabited
wavelength signals and concatenate them into one fingerprint vector with rejection of
the initial retention time (RT) axis [10]. A more sophisticated way is to perform fusion
profiling and extract as many relevant peaks as possible [11]. As an alternative, several
chromatographic fingerprints at different wavelengths can be evaluated separately [12],
but this is impractical in view of further statistical data analysis.

The second way is to work with a whole three-dimensional HPLC fingerprint spectrum
represented as an image [13,14]. In this case, unconventional for analytical chemistry, image-
processing techniques can be introduced to conduct qualitative or quantitative analysis.
For example, different image moments, including Chebyshev moments, were employed
to assess ginsenoside contents in P. notoginseng [13] and to classify Pudilan Xiaoyan tablet
samples from several pharmaceutical companies [14].

Similar to DAD, a mass spectrometric detector provides an additional dimension for
HPLC fingerprints and also provides an opportunity to identify the compounds with the
most characteristic peaks. In case of MS detection, total ion current (TIC) chromatograms
are often employed to construct simple 1D fingerprints [15,17]. This, however, does not
lead to a prominent increase in informativity. Alternatively, a number of chromatographic
peaks with different RT and base m/z signals can be extracted as a new feature space, which
has now also become the most widespread approach in plant metabolomics studies [18].
Such peak tables can even be fused with similarly treated HPLC-DAD data to construct
combined fingerprints with increased information content [16].

Building up an m/z—RT peak table for a whole dataset is not a trivial task and requires
sophisticated mathematical algorithms to be employed to deal with the retention time shift,
noise signals, and artifacts [19]. Therefore, the aforementioned image approach can be
applied to extract the unique features directly from raw LC-MS or GC-MS data, bypassing
this highly complex preprocessing step. In this case, supervised machine learning methods
can be applied to provide a basis for sample discrimination. To our best knowledge,
there has been no attempt regarding direct pattern recognition for plant material samples;
however, this strategy has been employed to distinguish different types of cancer [20,21].

Convolutional neural networks (CNNs), shallow neural networks (NNs), and support
vector machines (SVMs) have been employed to learn patterns directly from the GC-MS
abundance matrix [20]. The authors of this study applied an original approach, dividing
the initial data into small segments that are sufficiently large to include a volatile chemical’s
entire peak. Each segment included abundances for all 411 m/z values and was represented
as a grayscale or RGB image for one-channel and three-channel input, respectively. To
increase the robustness of the training, data augmentation was applied by shifting along the
RT dimension and randomly increasing abundancies in the 10% range. CNN demonstrated
higher performance with respect to NN and SVM, which detected a high number of
false positives. SVM can perform better if more preprocessing is applied to the data [16].
A 3D CNN was successfully applied in the analysis of raw (“unassigned”) HPLC-MS
data for cancer phenotype classification [21]. Each file was represented as 98 images
with dimensions of 512 × 512 pixels with color-coded intensities, thereby achieving a
classification accuracy for several types of cancer of slightly above 90%.

There are plenty of examples where tissue-specific secondary metabolites have been
found for one plant by analyzing untargeted MS data [22–24]; however, the number of
studies where such differences are found for plant parts from different species is limited.
NMR-based metabolomic analysis was applied to distinguish the roots/rhizomes and aerial
parts of three Actaea species [24]. The application of such fingerprint methods is important
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since in quality control of botanical products, different plant parts can be considered as
adulterants of the main material [24,25].

In the previous study [26], we compared the application of several unsupervised
methods, including parallel factor analysis (PARAFAC), principal component analysis
(PCA), independent component analysis (ICA), non-negative matrix-factorization (NMF),
and unsupervised feature selection (UFS), for treatment of HPLC-MS data with minimal
preprocessing. In the extracts from leaves of 19 plants belonging to the Apiaceae family,
the characteristic coumarin markers and other secondary metabolites, which may serve
as potential quality markers, were selected. In this work, we studied the possibilities
of using convolutional NN with cross entropy as a loss function, Siamese NN (SNN)
with triplet loss function, and SVM in the processing of HPLC-MS fingerprints. The
developed approach was applied to distinguish different plant parts from the Apiaceae
family. Residual convolutional NN was chosen as the basic architecture for applied NN as
they had already been used for mass-spectrometry data [21,27].

2. Experimental
2.1. Materials and Reagents

HPLC-grade acetonitrile from Panreac (Barcelona, Spain) and MeOH > 99.9% purity
from Burdick & Jackson (Muskegon, Ml, USA) were used. Formic acid > 99.9% purity
was purchased from Acros (Geel, Belgium) and ammonium formate ≥ 99.0% purity was
obtained from Sigma-Aldrich (Steinheim, Germany). Deionized water was prepared with a
Milli-Q system from MilliporeSigma (Burlington, MA, USA).

2.2. Sample Preparation

Plant material was collected in Iran, Portugal, Kyrgyzstan, and Uzbekistan in 2013–2019
and housed in Moscow University Herbarium (MW) and partially in the private collection
of Dmitry Lyskov. Apart from additional parts of 19 plants studied earlier [26], it included
fruits and roots of Prangos chelantofolia, two new plant samples of Bilacunaria microcapra,
and one additional plant sample of Ferulago phialocarpa. Each specimen was separated
into its available parts (roots, leaves, stems, and fruits) according to their physiological
shape. Thus, the final set of samples contained 11 roots, 15 stems, 20 leaves, and 16 fruits
and flowers (Table 1). All samples were dried and ground to a fine powder for analysis.
The fine powder was weighed (10 mg), suspended in 1 mL of 75% (v/v) methanol, and
ultrasonically extracted for 30 min at 50 ◦C. All extracts were prepared in triplicate. The
obtained extracts were centrifuged, and then 10-times diluted with 10% aqueous acetonitrile
prior to HPLC-MS analysis.

2.3. Instrumentation

The samples were analyzed by using a Thermo Scientific Dionex Ultimate 3000
(Waltham, MA, USA) system with an AB Sciex Qtrap 3200 (Concord, ON, Canada) mass
spectrometer. A C18 column (Acclaim RSLC 2.1 × 150 mm, 2.2 µm) was used to perform
the chromatographic separation of 5 µL of each sample injected into a gradient system at
a flow rate of 350 µL/min. The oven temperature was 35 ◦C The mobile phase consisted
of 0.5% formic acid in water (A) and acetonitrile (B). The starting eluent was 10% B. Its
proportion was held constant for 3 min, increased linearly to 95% from 3 to 20 min, held
constant at 95% until 22 min, returned to the initial composition (10% B) at 22.2 min, and
then held constant for 4.8 min to re-equilibrate the column.

The mass spectrometer was operated in positive ion mode and set to the total ion
chromatogram (TIC) mode (100–1200 m/z). The optimized MS conditions were as follows:
capillary voltage of 5500 V, declustering potential of 40 V, entrance potential of 10 V, source
temperature of 350 ◦C, nebulizing gas pressure of 30 psi, drying ion source gas pressure of
40 psi, and curtain gas pressure of 15 psi.

HPLC-HRMS analysis was performed on a Bruker Elute LC system coupled on-line
with a Bruker Impact II high-resolution Quadrupole Time-of-Flight Instrument. HPLC
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separation was conducted on a C18 column (Intensity Solo 2.1 × 100 mm, 1.8 µm) at a
gradient flow rate (from 0.200 to 0.480 mL/min). Two solvents were used: (A) 5 mM
ammonium formate and 0.01 % FA in a MeOH:H2O 1:99 mixture; and (B) 5 mM ammonium
formate and 0.01% FA in MeOH. The gradient was as follows: 0–0.1 min 4% B; 0.1–1 min
linear gradient from 4 to 18.3%; 1–2.5 min linear gradient from 18.3 to 50% B; 2.5–14 min
linear gradient from 50 to 99.9% B; 14–16 min 99.9% B; 16–16.1 min linear gradient from
99.9 to 4% B; 16.1–20 min 4% B.

Table 1. List of investigated specimens: 62 plant parts from 20 different species (Apiaceae).

Species Plant Parts (#) Specimen’s Voucher

Prangos pabularia Leaves (1.1), Fruits (1.2), Stems (1.3) MW0858238
Ferulago phialocarpa Stems (2.1), Leaves (2.2) 031-IR-19

Cachrys libanotis Leaves (3.1), Inflorescence (3.2), Roots (3.3) MW0798144
Prangos acaulis Leaves (4.1), Roots (4.2), Fruits (4.3) MW0744005

Prangos ferulacea Stems (5.1), Fruits (5.2) MW0751912
Prangos didyma Fruits (6.1), Stems (6.2) MW0857912

Ferulago subvelutina Stems (7.1), Leaves (7.2), Inflorescence (7.3) 098-IR-19
Prangos ammophila Leaves (8.1), Roots (8.2), Inflorescence (8.3) MW0857867

Prangos trifida Leaves (9.1), Fruits (9.2), Stems (9.3) MW0798580
Ferulago angulata Stems (10.1), Leaves (10.2), Roots (10.3) 085-IR-19

Cachrys sicula Inflorescence (11.1), Leaves (11.2), Stems (11.3), Roots (11.4) MW0798143
Prangos chelantofolia Fruits (12.1), Roots (12.2) MW0753034

Ferulago contracta Leaves (13.1), Stems (13.2) 053-IR-19
Cachrys pungens Fruits (14.1), Leaves (14.2) MW0784701

Bilacunaria microcapra Roots (15.1), Leaves (15.2), Fruits (15.3), Stems (15.4) 018-IR-19
Diplotaenia cachrydifolia Inflorescence (16.1), Leaves (16.2), Stems (16.3), Roots (16.4) 164-IR-19
Bilacunaria microcapra Leaves (17.1), Roots (17.2), Stems (17.3), Fruits (17.4) 162-IR-19
Ferulago phialocarpa Roots (18.1), Leaves (18.2) 169-IR-19

Azilia eryngioides Roots (19.1), Leaves (19.2), Stems (19.3) 167-IR-19
Seseli olivieri Stems (20.1), Leaves (20.2) 173-IR-19

Prangos crossoptera Fruits (21.1), Leaves (21.2) MW0753036
Bilacunaria microcapra Leaves (22.1), Inflorescence (22.2) 028-IR-19

Seseli ghafoorianum Stems (23.1), Leaves (23.2) 124-IR-19

2.4. Software and Packages

Raw LC-MS files from the Sciex instrument were converted into mzXML format
using MSConvert from ProteoWizard Tools. Data analysis was performed in Python 3
using the following modules: pymzML for mzML data files parsing [28]; pytorch for
convolutional neural networks architecture creation and pytorch-metric-learning for SNN
implementation [29]; scikit-learn for SVM and performance metrics [30]; matplotlib [31] and
seaborn [32] for data visualization; OpenCV [33] for data augmentation; and optuna [34]
for the Bayesian optimization algorithm.

2.5. LC-LRMS Data Treatment

The model dataset consisted of 186 samples; that is, three replicates each of the 62 plant
samples, representing 7 genera from the Apiaceae family. Apart from the additional parts of
19 plants studied earlier [26], it also included fruits and roots of Prangos chelantofolia, two new
plant samples of Bilacunaria microcapra, and one additional plant sample of Ferulago phialocarpa.
All samples were analyzed in the same chromatographic conditions by HPLC-LRMS. The
composition of the mobile phase varied over a wide range (10–95% of acetonitrile) during the
gradient program in order to elute both polar and less-polar compounds.

For time axis unification, linear interpolation [35] was used, and the time step size was
chosen as 0.03 min. The final time range was from 1.5 to 24 min. For the mass axis unification,
the intensities for signals with residual masses in the range from −0.35 to +0.65 were summed
and assigned to a cell with the corresponding integer m/z value. Data from all samples were
combined into one tensor with dimensions of 186 × 750 × 1200, which corresponds to the
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number of samples, the number of points on the retention time scale, and the number of
m/z values, respectively. All implemented algorithms are available at the GitHub repository
(https://github.com/turovapolina/CNN-LC-MS, accessed on 19 October 2022).

3. Results and Discussion
3.1. LC-MS Data Pretreatment and Augmentation

In previous work [26], we explored several possible data preparation methods, in-
cluding tensor unfolding and tensor decomposition, in combination with unsupervised
machine learning methods for clustering plant samples from the Apiaceae family. Applica-
tion of unsupervised methods allows to identify the most significant characteristic signals
corresponding to 23 quality markers or potential chemotaxonomic markers. If the purpose
of a study is to identify the unique characteristic markers for different groups of samples,
or to classify unknown samples into predetermined groups (by origin, by quality, by age,
or by part of the plant), then supervised machine learning methods should be employed.
Direct sample classification using methods such as SVM also involves several stages of
data preparation. The data tensor should be unfolded to be analyzed by this approach. The
unfolding procedure takes a tensor of dimensions I × J × K and rearranges it in such a way
that the number of samples, I, remains unchanged, and two other dimensions (m/z and RT)
are combined into a single new dimension, with size J × K. Data vectorization includes the
unification of the time and mass axes for all samples, which in the case of low-resolution
HPLC-MS data involves rounding raw masses to integer values (see Section 2.5). Thus, a
resulting tensor with dimensions of 186 × 750 × 1200 (samples: RT: m/z) was unfolded
into a 186 × 900,000 data matrix prior to SVM analysis.

Raw LC-MS data of each sample can be presented by a heatmap, which could be
considered as a medical image (Figure 1). This leads to the idea of different neural networks
(NNs) employment for sample classification, as it was done for medical images [27,36].
After the time and mass axes were rescaled, heatmaps with new dimensions and a unified
grid were reconstructed for all samples. These heatmaps were cropped to a squared
form (750 × 750) via rejection of the less-important signals in low (100–200 m/z) and high
(950–1300 m/z) m/z regions. Compared to the approaches described in the literature [20,21],
where a series of images was generated for each sample, representation of LC-MS data
in the form of a single image seems promising because it saves spatial information and
preserves the correlation between the adjoined signals in the sample. The squared images
are ideal as input data for a convolutional NN with different losses and architectures.

Augmentation is a standard and effective technique for solving problems such as
a lack of data in deep learning. The most common augmentation methods for 2D data
samples are stretching, squeezing, rotating, denoising, and cropping [36]. For the HPLC-MS
data, augmentation should be used with caution because the axes have different physical
meanings, and, for instance, rotation operations cannot be applied. In our work, we
suggested several augmentation techniques: stretching and shrinkage along the retention
time axis, mass shift, and intensity alteration. A description of the proposed methods of
augmentation and the main parameters are presented in Table 2.

All five augmentation procedures, if applied simultaneously to the initial samples, could
increase the number of samples in the dataset by 15 times. Separately, each procedure simulates
a process that could actually occur during a slight change in the conditions of the HPLC-MS
experiment or during experiment transfer to another instrument. For example, relatively small
mass shifts in the raw data (Figure 2) could affect the signal intensities that are retrieved after
the mass gridding procedure (summing the peaks in the spectrum to integer values).

Thus, the final dataset contained 186 initial images and 2604 samples generated via
augmentation, which were further randomly divided into training (70%) and testing (30%)
fractions (Figure 1), providing that all three replicates of each plant material extract would be
either in the test set or in the training set. The random split procedure was repeated three times
(cross-validation) and each time the model was trained and tested on a new random dataset.

https://github.com/turovapolina/CNN-LC-MS
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Figure 1. LC-MS data preparation pipeline for CNN and SVM application.

Table 2. Description of the procedures employed for data augmentation.

Type of Augmentation Description Variation Range
(Step Size)

Real Process during
Experiment

Augmentation
Coefficient

Chromatogram stretching
along the entire retention

time axis (A)

Each mass-chromatogram was stretched by
adding of new time points with

intermediate signal intensity values
±30 (10) timepoints * Wrong pump calibration

(incorrect flow rate) Nsamp × 6

Gradient chromatogram
stretching along the

retention time axis (B)

Each mass-chromatogram was split into 15
segments (50 timepoints) and similar

stretching procedure was applied to each
segment with increasing number of

inserted timepoints

From 1 to 7 points for
each segment

Wrong gradient program
or insufficient flow from

organic phase pump
Nsamp

Gradient chromatogram
shrinkage along the

retention time axis (C)

Each mass-chromatogram was split into 15
segments (50 timepoints) and shrinkage
procedure was applied to each segment

with increasing number of inserted
timepoints

From 1 to 7 points for
each segment

Wrong gradient program
or insufficient flow from

water phase pump
Nsamp

Mass shifts (D)

Each raw m/z value in each spectrum is
shifted to a specific ∆. This ∆ is smaller for

low masses and bigger for high masses
(linear dependence).

(1) From ±0.1 Da to
±0.6 Da(2) From ±0.2

Da to ±1 Da

Wrong quadrupole
calibration Nsamp × 4

Intensity alteration (E) All signal intensities are either reduced or
enhanced by a specified value ±5% (5%) Problems with ESI source

or detector gain variations Nsamp × 2

* One timepoint = 0.03 min.

3.2. Data Analysis Using the SVM

SVM was chosen as a base method for sample classification [16,20]. This method is
suitable for the analysis of data with a large number of features due to its simplicity and
tendency not to overfit. In addition, it is possible to extract the feature importance per class
from the SVM model by using a linear kernel function.
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Figure 2. Visualization of the four employed data augmentation techniques: RT shift (A); gradient
RT shift (B); mass shift (C); intensity alteration (D). Augmented data are shown in orange, whereas
original data are shown in blue.

Due to the large variation in chemical composition among the plant samples belonging
to the same genus, and thus the strong class imbalance, it was impossible to classify samples
in accordance with their taxonomy; indeed, the aim of the study was to test the ability of
the developed approach to be employed for plant part differentiation. There were four
classes in the dataset: roots, stems, leaves, and fruits/flowers. The F1-score, accuracy, and
precision were used for evaluation of the algorithms (Table 3).

Table 3. Results of the Apiaceae plant part classification by SVM after data augmentation.

Augmentation Type Precision (mean ± SD) * Recall (mean ± SD) F1-Score (mean ± SD)

No augmentation 0.72 ± 0.07 0.68 ± 0.08 0.68 ± 0.08
Chromatogram stretching (A) 0.75 ± 0.10 0.72 ± 0.12 0.73 ± 0.12

Gradient stretching (B) 0.74 ± 0.07 0.70 ± 0.10 0.70 ± 0.09
Gradient shrinkage (C) 0.73 ± 0.06 0.70 ± 0.09 0.69 ± 0.10

Mass shifts (D) 0.74 ± 0.04 0.69 ± 0.06 0.70 ± 0.05
Intensity alteration (E) 0.72 ± 0.01 0.68 ± 0.03 0.68 ± 0.03

Full augmentation (A–E) 0.77 ± 0.02 0.75 ± 0.03 0.74 ± 0.03

* Calculated from five cross-validation runs.

The highest accuracy (0.77) was achieved by SVM with full augmentation of the initial
dataset, which demonstrates the benefits of using the proposed augmentation procedures
for LC-MS data. Moreover, each augmentation procedure applied have not distorted the
consistency of the data and, therefore, have not affected the classification accuracy.

3.3. Class-Important Features from the SVM Model Results

After classification using the SVM method, an algorithm for extracting the important
features per class was proposed. The features’ weight matrix for each class was extracted,
features were ranked by weight value, and the first 2000 with the maximum weight were
selected. Further, each selected feature from each class was tested for the appearance
of the corresponding signal on the chromatograms of samples that do not belong to the
considered class. The intensity of the signal at the point with the corresponding coordinates
(RT—m/z) was compared to the average value of the intensities in the mass spectrum at
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this time point, which approximately corresponded to 7–10 in terms of the S/N ratio. If the
signal intensity did not exceed five times the corresponding average intensity value, then it
was considered that the peak is absent in the sample. In the final list of unique significant
features, isotopic signals with the same retention times as well as signals with the same
m/z at neighboring time points were consolidated.

Via application of the proposed algorithm, eight characteristic signals of the four sam-
ple groups were selected. It should be noted that some non-unique class features that could
be found at trace levels (S/N above 3 and below 10) in several samples from other groups
were chosen. However, the selectivity of the suggested algorithm could be illustrated
by the overlaid extracted ion chromatograms (Figure S1). To preliminary annotate the
corresponding compounds, HPLC-HRMS and MS/MS experiments (Figures S2–S18) were
performed for the selected signals or related precursor ions (see Section 2.3).

Compound 1 possesses a molecular weight of 598 deduced from the protonated
molecule ([M + H]+) peak at m/z 599.1967 (C27H35O15, eluted at 9.0 min), which undergoes
a successive neutral loss of apiofuranose and glucopyranose, which yields two fragment
ion signals at m/z 467 and 305. The fragment ion at m/z 203 corresponds to the side
chain (C5H10O2) cleavage. The remaining fragmentation pattern (Table 4) was typical for
a monosubstituted furanocoumarin [37,38]. The exact position of the sugar chain could
not be assigned, and this compound was tentatively identified as Api(f)-Glc-heraclenol or
its isomer [39]. Compound 2 has a molecular weight 456 determined by the protonated
molecule ([M + H]+) signal at m/z 457.1338 (C20H25O12, eluted at 6.4 min). Similar to
compound 1, the observed fragment ion peaks at m/z 467 and 305 indicated apiofuranose
and glucopyranose cleavage. The fragmentation pattern was in accordance with the one
described for apiosylskimmin [40]. The occurrence of such apioglycosides in roots is
well-known [39,41].

Compounds 3 and 4 possess molecular weights of 606 and 602, deduced from the
protonated molecules ([Mg-M]+) at m/z 607.2184 (C36H31N4O4Mg, eluted at 10.4 min) and
m/z 603.2078 (C33H31N4O6Mg, eluted at 8.9 min), respectively, which was confirmed by
the clear absence of sodium and potassium adducts in this case, and also by the presence of
the corresponding clusters [2M + NH4]+, [2M + Na]+, and [2M + K]+ [42]. These elemental
compositions obviously point to chlorophyll-related species. Further structural elucidation
was not possible due to the low abundances of the fragment ions in their ESI/MS2 spectra.
It should be noted, however, that the relatively high DBE values (i.e., 20–23) are close to
those of protochlorophyllide and its analogues found in steams [43]. Moreover, many tissue-
specific protochlorophyllides can be found in stems, shoots, and algae [44,45]. Therefore,
these two peaks can be considered as potentially novel compounds.

Compounds 5 and 6 possess molecular weights of 624 and 620, deduced from the
protonated molecule ([M + H]+) ion peaks at m/z 625.2662 (C35H37N4O7, eluted at 21.8 min)
and m/z 621.2738 (C36H37N4O6, eluted at 22.3 min), respectively. Although the fragmenta-
tion data is limited because of the low intensity of these two peaks, it could be suggested
that they are also related to the chlorophyll cycle. By comparison with the MS/MS data
from [46], Compound 5 was tentatively identified as 151-hydroxy-lactone-pheophorbide a,
and Compound 6 was tentatively identified as methylpheophorbide b.

Compounds 7 and 8 showed protonated molecules that differ by 2 Da and both
contain a phosphatidylcholine head group, which was deduced from the predominant
fragment ion m/z 184.0741 (C5H15NO4P+). The single fatty acid side chain was observed
as a fragment ion at m/z 339 (and m/z 337 correspondingly for Compound 8). Moreover,
the ion peak corresponding to the loss of H2O was also observed in the MS/MS spectra
(Table 4). Thus, Compounds 7 and 8 were tentatively assigned as oleoyl lysolecithin and
linoleoyl lysolecithin, respectively. Apparently, these wide-spread lipids cannot serve as
unique markers; however, their content in fruit extracts was significantly higher, and their
peaks were correctly identified as characteristic variables.
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Table 4. Characteristic m/z features extracted by SVM and the preliminary identified compounds.

N◦ Retention Time (m/z) [M + H]+, m/z (∆, ppm) * Adduct Ions, m/z Main MS/MS Fragments, m/z Annotation Reference

1 9.0 (305) 599.1967
(C27H35O15, 0.6)

621.1785 [M + Na]+

637.1546 [M + K]+

599−467 = Api(f)
467−305 = Glc

305−269 = 2H2O
305−203 = C5H10O2

203−175 = CO
203−159 = CO2
203−147 = 2CO
159−131 = CO

Coumarin-related signal:
Api(f)-Glc-heraclenol (or its isomer) [39]

2 6.4 (495) 457.1338
(C20H25O12, −1.7)

479.1125 [M + Na]+

495.0900 [M + K]+

457−325 = Api(f)
325−163 = Glc
163−119 = CO2
163−107 = 2CO

Coumarin-related signal:
Api(f)-Glc-hydroxycoumarin

(Apiosylskimmin)
[40]

3 10.4 (607) 607.2184
C36H31N4O4Mg (−2.0)

1186.5182
[2M + NH4]+

1191.4738
[2M + Na]+

1207.4478
[2M + K]+

410.1335
(C21H20N3O6, 2.8)

Chlorophyll-related signal:
Tissue-specific protochlorophyllide

analog
[42]

4 8.9 (603) 603.2078
(C33H31N4O6Mg, −2.6)

1178.4983
[2M + NH4]+

1183.4536
[2M + Na]+

1199.4277
[2M + K]+

440.1416
(C29H18N3O2, −0.8)

Chlorophyll-related signal:
Tissue-specific protochlorophyllide
analog (e.g., Mg-oxo-purpurin-18)

[42,45]

5 21.8 (625, 627) 625.2662
(C35H37N4O7, −0.8)

647.2492
[M + Na]+

663.2235
[M + K]+

625−607 = H2O
621−565 = C2H4O2

565−537 = CO

Chlorophyll-related signal:
(151-hydroxy-lactone-
pheophorbide a or its

isomer)

[46]

6 22.3
621 (623)

621.2738
(C36H37N4O6, 4.8)

643.2533
[M + Na]+

659.2278
[M + K]+

621−593 = CO
621−561 = C2H4O2

561−533 = CO

Chlorophyll-related signal:
(Methylpheophorbide b or its

isomer)
[46]
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Table 4. Cont.

N◦ Retention Time (m/z) [M + H]+, m/z (∆, ppm) * Adduct Ions, m/z Main MS/MS Fragments, m/z Annotation Reference

7 18.7 (522) 522.3570
(C26H53NO7P, 3.1)

544.3373
[M + Na]+

522−504 = H2O
522−339 = C5H13NO4P

522−184 = C21H38O3
184−166 = H2O

184−124 = C3H10N
184−104 = PO3
104−86 = H2O

Lipid-related signal:
PC (18:1) [47]

8 17.0 (520, 521) 520.3408
(C26H51NO7P, 1.0)

542.3239
[M + Na]+

520−502 = H2O
520−337 = C5H13NO4P

520−184 = C21H36O3
184−166 = H2O

184−124 = C3H10N
184−104 = PO3
104−86 = H2O

Lipid-related signal:
PC (18:2) [47]

* [M-H + Mg]+ for Compounds 3 and 4.
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3.4. Specificity of Selected Markers

The variability in chemical composition of the investigated plants is very high [26].
Even for different plant parts of these species, the total ion current chromatograms revealed
this drastic variation (Figures S19–S22). However, a supervised machine learning approach
allowed us to select the relevant signals from the raw data. In Figure 3, the relative
abundances for 23 earlier selected characteristic compounds found in the leaves of these
plants are compared. Plant part distribution of these compounds shows three main clusters:
two of them correspond to the high content of linear monosubstituted furanocoumarins
(pabulenol, xanthotoxin, etc.) in leaves and fruits and an increased concentration of angular
furanocoumarins, with their pyrano-analogues (cnidiadin, decursin, etc.) in fruits; in
turn, the third one has a similar concentration level as the latter coumarin group in roots
and stems. In contrast, the distribution of the eight specific markers discovered from the
SVM results (see Section 3.3) shows a clear connection with the plant part sample groups
(Figure 3B). This demonstrates the ability of the suggested approach to find the minor
characteristic features hidden behind the very complex and highly variable composition of
plant extracts.

Figure 3. Plant part distribution of coumarins (A) and the annotated compounds (B).
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3.5. Data Analysis Using the Neural Networks

It is important to note that HPLC-MS data tensor unfolding into a long vector of
intensities corresponding to the RT—m/z pairs, deprives the spatial structure of the data. If
all samples in the data are not perfectly aligned, then serious complications will arise during
the construction of the model and the quality of the classification may suffer. Convolutional
neural networks are able to handle a 2D dataset directly and preserve spatial interactions
between adjacent signals by learning the feature representations over small squares of
input data. Each compound’s peak is presented by several timepoints and several isotopes,
which means that the peak is represented by a small area on the heatmap or by several
areas due to unintentional fragmentation or adduct formation happening at the ionization
source. Therefore, the original features, which are adjacent on the sample’s heatmap, can
potentially belong to one marker compound, and using the convolution procedure, they
are combined into higher-order features, which were further used for samples classification.
Feature learning occurs throughout the data matrix, allowing objects to be displaced or
moved across the matrix and still be detected by the network.

Classic ResNet architecture with cross entropy as loss function. The ResNet18 network,
which consists of “residual” blocks, was taken as the basic architecture. This architecture
was developed in 2015 and has been successfully used for image analysis [36].

The input layer of ResNet18 expect data to have square dimensions, which in our case
required cropping of the mass scale from m/z 200 to m/z 950 (see Section 2.5). The next step
was data normalization. Since the network was pretrained on the ImageNet dataset, LC-MS
data were also normalized using the mean and standard deviation of the ImageNet dataset.
A weighted sampler was used for the neural network training process and compensated
class imbalance; therefore, samples from different classes appeared in a batch at the same
frequency.

SNN with triplet loss function. In case of the classification problem, when the number
of representatives of each class is small or the difference between classes is minimal, the
use of SNN is relevant. During training, such a network calculates a similarity function
between the objects from the same and different classes. For a model in this task, it was
decided to use a triplet loss function. The architecture of this network was also based on
the classical ResNet18 architecture, which is a network with 18 convolutional layers. The
network was again taken with weights pretrained on the freely available ImageNet dataset.
The dimension of the last fully connected layer was changed from 1000 to 32. The margin
loss for the SNN was defined using a Bayesian optimization algorithm.

The performances of two NNs’ were compared with the SVM classifier on the fully
augmented data. For the controlled conditions, the train and test splits were obtained with
fixed random seed. As can be seen from Table 5, both NNs slightly outperformed the SVM
method in precision, recall, and F1-score. The best F1-score was achieved for the distinction
of leaves and stems samples, most likely because the number of samples with these labels
in the training dataset was the biggest. On the contrary, the number of root samples in the
training set was relatively small, while samples with the fruits label included fruits, flowers,
buds, and other parts of the inflorescence (Table 1). Because of the mentioned reasons, the
F1-score for these two classes was lower. Nevertheless, using the developed LC-MS-based
approach with application of deep learning tools led to the direct classification of different
plant parts from a relatively broad number of studied Apiaceae species.
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Table 5. Results of the classification by different methods.

Results for the Whole Dataset

Metric SVM CNN SNN

Precision 0.77 ± 0.02 0.81 ± 0.05 0.81 ± 0.03
Recall 0.75 ± 0.03 0.77 ± 0.06 0.78 ± 0.04

F1 0.74 ± 0.03 0.76 ± 0.07 0.77 ± 0.05

F1-score for plant parts classes

Part SVM CNN SNN

Roots (33) * 0.55 0.75 0.76
Stems (45) 0.89 0.83 0.89
Leaves (60) 0.94 0.94 0.88
Fruits (48) 0.71 0.77 0.71

* Number of samples with the chosen label in the dataset before augmentation.

4. Conclusions

A scheme for minimal pretreatment of raw LC-MS data prior to SVM and NN applica-
tion was suggested. For SVM, a tensor unfolding procedure was applied, while for the NN
application, each sample was transformed into a squared image (750 × 750) via rejection
of the less-important m/z regions. This approach was applied in the analysis of different
parts of plants in the Apiaceae family. Eight differentiation markers for distinguishing the
roots, stems, leaves, and fruits of 20 species in the Apiaceae family were found by SVM
analysis of unfolded LC-LRMS data and further tentatively characterized by LC-HRMS.
Chlorophyll-related markers were selected for stems and leaves groups, while coumarin
apio-glucosides and lipids were chosen for roots and fruits, respectively. Five approaches
for LC-MS data augmentation that simulate real experimental deviations, including chro-
matogram stretching/shrinkage, gradient stretching, mass shifts, and intensity alteration,
were suggested, and their application slightly increased the classification accuracy for both
SVM and NN. The most accurate results were obtained for stems (0.89) and leaves (0.94) by
using SNN with the triplet loss function.

The results obtained herein demonstrate the potential of using direct LC-MS-based
classification with application of ML methods for distinguishing plant parts as metabolite
sources for further medical use. This approach also can be further extended for classification
of any type of object using raw LC-MS data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12100993/s1, Figure S1. Overlay of mass chromatograms
of (A) roots samples containing compound 1 (8.96 min, m/z 307); (B) all other samples which are not
containing compound 1; (C) stems samples containing compound 3 (10.37 min, m/z 607); (D) all other
samples which are not containing compound 3. Figure S2. MS spectrum of compound 1. Figure S3.
MS/MS spectrum of compound 1 precursor ion, m/z 599. Figure S4. MS/MS spectrum of compound
1 precursor ion, m/z 305. Figure S5. MS spectrum of compound 2. Figure S6. MS/MS spectrum of
compound 2 precursor ion, m/z 325. Figure S7. MS spectrum of compound 3. Figure S8. MS/MS
spectrum of compound 3 precursor ion, m/z 607. Figure S9. MS spectrum of compound 4. Figure S10.
MS/MS spectrum of compound 4 precursor ion, m/z 603. Figure S11. MS spectrum of compound
5. Figure S12. MS/MS spectrum of compound 5 precursor ion, m/z 625. Figure S13. MS spectrum
of compound 6. Figure S14. MS/MS spectrum of compound 6 precursor ion, m/z 621. Figure S15.
MS spectrum of compound 7. Figure S16. MS/MS spectrum of compound 7 precursor ion, m/z 522.
Figure S17. MS spectrum of compound 8. Figure S18. MS/MS spectrum of compound 8 precursor
ion, m/z 520. Figure S19. TIC chromatograms of roots sample. Figure S20. TIC chromatograms of
stems sample. Figure S21. TIC chromatograms of leaves sample. Figure S22. TIC chromatograms of
fruits sample.
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