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The gut microbiome regulates a relationship with the brain known as the
gut–microbiota–brain (GMB) axis. This interaction is influenced by
immune cells, microbial metabolites and neurotransmitters. Recent findings
show gut dysbiosis is prevalent in autism spectrum disorder (ASD) as well
as attention deficit hyperactivity disorder (ADHD). There are previously
established negative correlations among vitamin D, vitamin D receptor
(VDR) levels and severity of ASD as well as ADHD. Both vitamin D and
VDR are known to regulate homeostasis in the brain and the intestinal
microbiome. This review summarizes the growing relationship between vita-
min D/VDR signalling and the GMB axis in ASD and ADHD. We focus on
current publications and summarize the progress of GMB in neurodevelop-
mental disorders, describe effects and mechanisms of vitamin D/VDR in
regulating the microbiome and synoptically highlight the potential appli-
cations of targeting vitamin D/VDR signalling in neurodevelopment
disorders.
1. Introduction
The term ‘microbiome’ refers to the collective genomes of the microbial commu-
nities (bacteria, viruses and fungi) in all niches of the human body, whereas
‘microbiota’ refers to the microorganisms living in specific locations, such as
the gut microbiota. There has been increasing emphasis on the role of the micro-
biota in physiology, suggesting that the microbiota can be considered as another
‘human organ’. The gut microbiota is affected by intrinsic (i.e. genetics, age)
and extrinsic (i.e. diet, medications) factors [1]. There is emerging evidence
that this invisible ‘organ’ is a key driver of human health and disease [2].

The GMB axis describes the bidirectional relationship between the central
nervous system (CNS) and gut microbiome, and this relationship is thought
to be involved in neurodevelopmental disorders [3]. GMB functions are carried
out through immune cell activity, metabolite synthesis and neurotransmitter
production [3]. ASD and ADHD could be described as gut–brain disorders
due to the potential role of gut microbiota [4]. The fifth edition of the Diagnostic
and Statistical Manual (DSM-5) defines ASD diagnosis as reduced social-
emotional reciprocity and nonverbal communication, whereas ADHD is
characterized by hyperactivity and inattentiveness [5].

Vitamin D and VDR have novel functions beyond their classical roles in
bone development. VDR activates innate immunity and affects intestinal devel-
opment patterns. In the adult, vitamin D has regulatory roles in mucosal
immunity, host defense and inflammation via VDR. This interaction involves
host factors and the gut microbiome [6–11]. Vitamin D/VDR signalling is
another pillar supporting the potential role of the GMB axis in the aetiology
of ASD and ADHD [12,13]. The purpose of this review is to summarize the
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progress of GMB in neurodevelopmental disorders, describe
roles of vitamin D/VDR in regulating the microbiome, and
discuss and highlight the potential role of vitamin D/VDR
signalling in the gut–brain–microbiota in ASD and ADHD.
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2. Gut microbiota in neurodevelopmental
disorders

An adult gut is inhabited by approximately 1013 to 1014 micro-
organisms, which collectively exceed the number of human
cells in the entire body [14]. Beginning at birth, the gut micro-
biota acts as an organ by influencing other organs through
breakdownof nutrients, biosynthesis ofmetabolites andmodu-
lation of immune system [15]. Themicrobiota can influence the
CNS directly or indirectly. Direct connections include its role in
tryptophan metabolism resulting in production and release of
neuroactive metabolites, such as serotonin, in the systemic cir-
culation. Indirect connections include modulation of CNS
inflammation, alteration of nutrient absorption and modifi-
cation of metabolism of exogenous drugs [16]. Mice models
have shown gut microbiota may change in neurological dis-
orders, such as Parkinson’s disease [17], Alzheimer’s disease
[18] and amyotrophic lateral sclerosis [19].

Gut microbiota alterations may be associated with
cognitive as well as social deficits. In a cohort of 89 one-year-
olds, a relative overabundance of the genus Bacteroides was
associatedwith higher scores onMullen’s Early LearningCom-
posite at age two [20]. Investigators examined if gut microbiota
from infancy influenced neurodevelopment later (preschool
age). In fecal samples collected between ages 3 and 6 months,
abundance of the order Clostridiales was associated with
poorer communication scores in the Ages and Stages Question-
naire 3 (β, –1.12; 95% CI, −2.23 to −0.01; p = 0.05), personal and
social scores (β, –1.44; 95% CI, −2.47 to −0.40; p = 0.01) at age
three [21].

The relationship between GI health and ASD individuals
is growing. A longitudinal study of 124 children with ASD
and 242 controls revealed that children with ASD had an
increased incidence of constipation ( p = 0.003) compared
with controls [22]. In a cohort of 164 individuals with ASD,
49% exhibited common GI abnormalities such as constipation
(26%) and diarrhoea (22%) [23]. The mechanism behind GI
impairments has not been established. GI irregularities may
be caused by microbial dysbiosis which is an imbalance of
microbes in the gut microbiota that could alter the integrity
of the intestinal barrier [24]. Srikantha et al. [3] predicted
intestinal permeability caused by a reduction of barrier-
forming tight junctions could be a potential biomarker in
ASD pathology. However, the mechanism behind this
hypothesis is unexplored.

ASD may be induced by maternal immune activation.
Meta-analysis of over 40 000 ASD cases in 15 studies found
a 1.13 OR (95% CI: 1.03–1.23) increase in ASD risk following
maternal infection during pregnancy [25]. Notably, the effects
of infection may persist following birth. When measured at
age 2–5 years, 97 ASD-diagnosed children born to mothers
with infection during pregnancy had the serum inflamma-
tory cytokines IL-1β, IL-6, IL-12 and TNF-α elevated by
76%, 72%, 14% and 28%, respectively, compared with healthy
controls, with higher levels correlated to worse disease symp-
toms [26]. The same cytokines are implicated in inflammatory
bowel diseases [27]. IL-6 leads to expansion of CD4T-cells
leading to chronic inflammation in the gut [27]. IL-1β induces
production of inflammatory cytokines and promotes further
expression of IL-6 by enterocytes [28]. Lastly, IL-12 is
the chief cytokine for Th1/CD8T-cell differentiation [29].
Biologics against IL-12 (ustekinumab) and TNF-α (adalimu-
mab) are routinely used to treat inflammatory bowel
disease, but their usefulness in altering the course of ASD
has not been investigated, probably due to high cost and
immunosuppressive side effects [30].

In mice, maternal administration of the viral mimic polyri-
boinosinic-polyribocytidylic acid (poly(I:C)) induces infection.
In these offspring, IL-1β, IL-6 and TNF-α are found elevated in
the fetal brain andASD symptoms result [31].When vitaminD
is co-administered with poly(I:C) in mice, ASD-related deficits
in social interaction, stereotyped behaviour and emotional
learning and memory were abolished. However, there was
no change found in concentration of inflammatory cytokines
in the brains of mothers or pups, indicating that vitamin D
functions through a different pathway [32]. An important
interaction that remains to be explored concerns the duelling
inflammatory state brought on by dysbiosis and other con-
ditions (e.g. maternal immune activation). For example, an
increase in Clostridium difficile, a pathogenic microbe [33], in
the infant gut has been associated with formula feeding [34].
While most colonization with C. difficile remains subclinical,
an increase in C. difficile composition is associated with atopic
conditions in childhood C. difficile levels persisted when
measured months later. Indeed, breast milk feeding for at
least six months is protective against ASD [35]. Vitamin D in
breast milk [36] may contribute to gut microbiome growth
during infancy. Future work may focus on comparing the rela-
tive effect of a spike in inflammation versus sustaineddysbiosis
because both have been shown to increase the incidence
of ASD.

Some growing ideas to reduce GI irregularities and ASD
severity including supplementation of probiotics or prebiotics
and fecal microbiome transplant (FMT) have been examined
in ASD clinical trials [37]. Probiotics are presumably thought
to enhance GI health by reducing gut barrier permeability
[38]. A probiotic (Vibosome containing Lactobacillus and Bifi-
dobacterium) was administered to 13 ASD children (ages 3–12
years) to treat GI symptoms for a 19-week trial period. The
Vibosome treatment showed significant improvement in GI
complaints ( p = 0.02) [39]. Another possible solution for
ASD-GI comorbidities could be administration of vitamin
D, because ASD individuals are often dietarily deficient
[12]. The potential of vitamin D to improve behavioural
ASD symptoms has been established. A clinical trial of vita-
min D supplementation (2000 IU per day) in ASD children
(n = 42; ages 2.5–8 years) for 12 months found that sup-
plementation reduced behavioural irritability ( p = 0.01) [40].
However, to our knowledge, no study has specifically exam-
ined the GI effects of vitamin D supplementation in ASD
individuals. Prebiotic supplementation studies in ASD-GI
comorbidities are growing. ASD children (n = 30) were
given a prebiotic supplementation (B-GOS) to investigate
the influence on stool and bowel movement as well as
social behaviour scores in ASD individuals. The data were
not reported, and researchers report no trend of GI discom-
fort reductions following B-GOS intervention [41]. A
growing public interest in both pre- and probiotics led to a
randomized clinical trial that investigated the effect of a pro-
biotic containing Bifidobacterium infantis plus prebiotic bovine
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colostrum product (BCP) mixture in ASD children (n = 8;
aged 3.9–10.9 years old) with constipation, diarrhoea and/
or irritable bowel syndrome. Participants were treated with
BCP only and the combination mixture of B. infantis plus
BCP for 12 weeks. Overall, 75% (6/8) reported greater GI
improvement with BCP only treatment compared with 25%
(2/8) improvement via combination treatment. A reduced fre-
quency of diarrhoea (BCP: p = 0.021 versus combination: p =
0.021) and normal stool consistency (BCP: p = 0.042 versus
combination: p = 0.015) was observed in ASD individuals
[42]. An open-label clinical trial assessed if FMT from healthy
controls (n = 20) to ASD-diagnosed children (n = 18) rectified
constipation, diarrhoea, indigestion and abdominal pain in
ASD individuals for 18 weeks. After daily maintenance
doses for seven to eight weeks, the study found that 80% chil-
dren with ASD had decreased GI symptoms ( p < 0.001) and
reduced ASD severity ( p = 0.002) [43]. A follow-up of this
cohort 2 years later showed that treatment subjects saw
further improvement of GI and ASD symptoms [44]. The
FMT treatment had a long-term effect compared with probio-
tic and prebiotic treatments. The solution for ASD-GI
treatments will keep expanding.

Ming et al. hypothesized that altered microbiome compo-
sition and increased GI dysfunction may be present in
ADHD children [45]. The link between ADHD and gut micro-
biota is still growing and the current results are varied. The gut
microbiota of 14 male ADHD patients (mean age: 11.9 years)
and 17 male controls (mean age: 13.1 years) were analysed
via next generation 16S rDNA sequencing and examined for
diversity and biomarkers. Microbial (α) diversity was signifi-
cantly decreased (pShannon = 0.036) in ADHD patients
compared with controls while β diversity varied between
patients and controls (pANOSIM = 0.033, pADONIS = 0.006, pbeta-
disper = 0.002). At the family level, Bacteroidaceae was
overabundant in ADHD patients. The authors suggested the
genus Neisseria and elevated levels of Bacteroides spec. could
be associated with juvenile ADHD [46]. External validity is
limited by the small sample size in the Prehn-Kristensen
study. A different clinical study found that the genus Bifidobac-
terium was abundant ( p = 0.034) in the gut of ADHD
individuals (n = 19) compared with healthy controls (n = 77).
Additionally, a predicted enzyme involved in the synthesis of
a dopamine precursor (phenylalanine), cyclohexadienyl dehy-
dratase (CDT)was significantly increased (p = 0.038) in ADHD
patients compared with controls. Bifidobacterium abundance
may contribute to the observed differences of CDT in a mul-
tiple regression analysis ( p < 0.001). This finding suggests a
hallmark of ADHD, diminished neural reward anticipation (a
known functional target of dopamine), may be correlated
with overabundance of Bifidobacterium in the gut which was
positively associated with elevated CDT levels [47].

Studies regarding gut microbiome rebalance in ADHD are
limited. A 10-week pilot study investigated the effects of a
probiotic mixture (vitamins, minerals, amino acids and anti-
oxidants) on fecal microbiome content in diagnosed ADHD
children (n = 17; aged 7–12 years). There was no variability
among treatment group and placebo in an ADHD scale
(ADHD-IV-RS). The treatment group had significantly higher
α diversity (p = 0.005) comparedwith controls, changes in Acti-
nobacteria (W = 6, clr f statistic = 7.5), reduced Bifidobacterium
(adj p < 0.05) and an inverse relationship between Bifidobacter-
ium and ADHD-IV-RS (p = 0.04) [48]. These results are
promising yet a salient bias is the small sample size.
Additionally, the finding raises the question, could oneprobiotic
be more influential in the mixture? Vitamin D as cholecalciferol
(200 IU) was included in probiotic mixture. This finding sup-
ports the influence of Bifidobacterium involvement in ADHD as
well as probiotics as a possible treatment.

ADHD is also associatedwith inflammation dysregulation.
In comparison to studies regarding ASD, many fewer studies
have been performed correlating maternal infection and
ADHD. However, one large cohort study found maternal gen-
itourinary infection was associated with an increase in risk for
ADHD (OR= 1.29). Pre-eclampsia was also implicated (OR =
1.19), and both together conveyed highest risk (OR= 1.53)
[49]. Comparing a cohort of children with diagnosed ADHD,
children with mothers suffering infection displayed more
severeADHD symptoms than thosewith unstressed or healthy
mothers [50]. However, the mechanism of this increased risk is
not the same as inASD, as studies have not identified a specific,
definitive correlation between inflammation and ADHD
[51–53]. Maternal smoking (pooled RR = 1.58) and obesity
(OR= 1.62) are the most widely acknowledged external links
to ADHD [54]. It is vital to note that genetics plays a profound
role in the pathogenesis of ADHD, with heritability estimated
at over 75% [55]. It is interesting to consider whether the gut
microbiota of individuals who are predisposed to ADHD,
but show no symptoms, may be protective. The ideal study
would sample the microbiota of non-ADHD children of
parents with ADHD, but does not exist. In fact, very few
studies of ADHD include parents with ADHD, possibly
becausewidespread recognition and pharmaceutical treatment
of ADHD largely began in the last 25–30 years [56]. Fetal alco-
hol syndrome, caused by maternal alcohol use in utero, may
produce an ADHD-like phenotype [57]. Neonates born to
mothers who drank any alcohol had a 2.5-fold increase in
risk of newborn infection and a 3.4-fold increase in risk if the
mother drank heavily [58].Wewere unable to find a study link-
ing fetal alcohol syndrome and themicrobiome. As adults with
ADHD continue to have children, investigation of the protec-
tive effects of the gut microbiota on ADHD risk will become
more possible.
3. Vitamin D/vitamin D receptor signalling
in neurodevelopmental disorders

The human body intakes vitamin D as cholecalciferol through
fortified dairy and oily fish or through the conversion of
7-dehydrocholesterol by ultraviolet light [59]. Once in the
body, pro-vitamin D is twice hydroxylated into active
1,25-dihydroxy vitamin D (1,25(OH)2, D3), and binds to the
VDR in the cytoplasm. Bound VDR then associates with the
retinoid X receptor, and the entire complex enters the nucleus
to function as a transcription factor. The greater than 900
DNA sequences modulated by the VDR complex are called
vitamin D response elements (VDRE) [8]. Notably, vitamin D
is known to upregulate the expression of its own receptor
[60,61]. VDR functions as a transcription factor [62]. Target
genes of VDR include anti-microbial peptide [17] cathelicidin
precursor (also called LL-37) [63,64], β-defensin, [64] and the
1, 25(OH) 2D3-regulated VDR-specific, Cyp24 hydroxylase
gene. Indeed, approximately 3% of themouse and human gen-
omes are regulated directly or indirectly by the vitamin D
endocrine system, further supporting the possibility of wide-
spread effects of vitamin D and VDR in disease mechanisms
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[65–67]. In the brain, vitamin D/VDR signalling promotes
neuroprotection by increasing intracellular levels of the anti-
oxidants glutathione and superoxide dismutase [68]. Mice
models have shown VDR regulates intestinal homeostasis
and microbiota by maintaining butyrate-producing bacteria
[69], inhibiting inflammation through the autophagy regulator
geneATG16L1 and increasing anti-microbial peptides [70], and
regulating intestinal permeability [71]. Furthermore, human
Vdr gene variation shapes gut microbiome and abundance of
Parabacteroides affected by the VDR signalling in both
human and mouse samples [72].

ASD has been negatively correlated with maternal serum
vitamin D concentration through many phases of develop-
ment. Meta-analysis of eight studies found that an increase
in autism-related traits and diagnosed ASD was correlated
with decreased maternal serum vitamin D concentrations.
Reductions in cognitive ability were most associated with
low concentration in early-mid pregnancy [73]. This associ-
ation appears to weaken later in pregnancy; a cohort of 4229
Dutch mother–child pairs found that low vitamin D status at
mid-gestation and at delivery was associated with ASD symp-
toms but low vitaminD at delivery alonewas not [74]. A cohort
of 468 Indian mothers found no correlation between ASD
symptoms serum vitamin D measured at 30 ± 2 weeks ges-
tation [75]. These data support the idea that the major role of
vitamin D changes throughout pregnancy. vitamin D is
required for calcium metabolism, and its role in bone develop-
ment is greatest during calcification of the fetal skeleton during
the 3rd trimester [76]. Maternal vitamin D is drained during
pregnancy and rebounds slowly unless supplemented. Ade-
quate vitamin D appears most critical early in pregnancy,
which may explain the increased risk (14.4% versus 6.8%) of
ASD recurrence in birth intervals of < 18months versus greater
than 4 years between siblings [77].

Although correlation of maternal vitamin D concentration
with ASD may diminish through third trimester, the mol-
ecule regains foremost importance during the early years of
life. In the infant, serum vitamin D has been negatively corre-
lated with ASD diagnosis [78] and ASD severity, and vitamin
D concentration is lower in ASD siblings compared with neu-
rologically normal siblings [79]. A clinical trial found that 85
children with ASD had an increase ( p = 0.041) in fok1, a VDR
polymorphism, compared with 82 healthy controls. ASD
individuals had decreased serum vitamin D levels which
support the notion that VDR activity is strongly tied to
serum vitamin D levels in ASD patients [80]. Vitamin D
supplementation significantly improves ASD symptoms in
deficient patients [78,81]. Comprehensive meta-analyses sup-
port findings of individual researchers across ethnicities and
nationalities [82]. Thus, the correlation between low serum
vitamin D and ASD is established, and further studies are
best directed toward describing GMB axis.

The observed effect of maternal serum vitamin D
concentration is varied in ADHD. In a cohort study, which
stratified maternal serum vitamin D into high (greater than
50.7 nmol l−1) and low (less than 38.4 nmol l−1) groups, the
high concentration group showed a reduced incidence of
hyperactivity–impulsivity symptoms (IRR = 0.63, 95% CI =
0.39–0.99) and total ADHD-like symptoms (IRR = 0.60,
95% CI = 0.37–0.95) when observed at age 4 [83]. A cohort of
1650 mother–child pairs found an 11% decrease in total
ADHD-like symptoms for each 10 ng ml−1 increase in serum
vitamin D at age 4–5 years [84]. In a different experiment,
researchers measured the serum VDR levels of 80 children
(40 ADHD diagnosed and 40 healthy controls) ranging from
6–12 years old. SerumVDR levels were significantly decreased
(pless than 0.001) in ADHD children compared with controls
(1.69 ± 0.22 ng ml−1 versus 2.08 ± 0.42 ng ml−1, respectively)
[85]. On the other hand, a longitudinal study of 965 pairs
found no association between serum vitamin D and diagnosed
ADHDwhen offspring were followed from birth to 21 years of
age [86], and a comparison of cord blood from 202 ADHD-
diagnosed patients and healthy controls found no correlation
of vitamin D concentration [87]. The tentative consensus is
that maternal serum vitamin D is associated with ADHD-like
behavioural issues at young ages but not with the clinical
diagnosis of ADHD.

A stronger correlation exists between low serum vitamin D
in the growing child and ADHD. Meta-analysis of available
studies showed that concentration decreases of 6.75 ng ml−1

from average has a 2.57 OR (95% CI = 1.09–6.04). Similarly,
prospective studies show that low perinatal vitamin D concen-
trations increase risk of diagnosis later in life (RR: 1.40; 95%
CI = 1.09–1.81). This meta-analysis must be interpreted with
caution, as removal of one study abolishes the correlation
[88]. Considering the risk of ASD and ADHD observed with
vitamin D deficiency, vitamin D may join folate as
recommended supplementation in women preparing for preg-
nancy. In a different experiment, researchers measured the
serum VDR levels of 80 children (40 ADHD diagnosed and
40 healthy controls) ranging from 6 to 12 years old. Serum
VDR levels were significantly decreased (p < 0.001) in ADHD
children compared with controls (1.69 ± 0.22 ng ml−1 versus
2.08 ± 0.42 ng ml−1, respectively). The results for these
experiments suggest ADHDmay have an effect on VDR levels.
4. Gut microbiota and neurotransmitters in
autism spectrum disorder and attention
deficit hyperactivity disorder

Gut microbiota controls neurobehaviour via modulating brain
insulin sensitivity and metabolism of tryptophan, the precur-
sor of serotonin [89]. Increased influx of tryptophan into the
brain by HFD could be related to increased blood insulin
levels. The neurotransmitter serotonin is low in the brain of
ASD individuals [90]. Positron emission tomography scans of
autistic children (average age 6.6 years) and their non-autistic
siblings (average age 9.9 years) revealed asymmetric changes
in serotonin production in the frontal cortex and thalamus of
the autistic children [91]. Serotonin synthesis is limited by the
enzymes tryptophan hydroxylase 1 (TPH1) in the periphery
and TPH2 in the brain and enteric nervous system. The balance
of TPH1/2 is under transcriptional control byaVDRE.Vitamin
D upregulates transcription of TPH2 and downregulates
transcription of TPH1, suggesting that vitamin D deficiency
may contribute to lower serotonin levels in the brain [90].
In vitro, 24 h culture of glioblastoma, HCT-116 and HEK-293
cells with vitamin D produced dose-dependent upregulation
of TPH2 transcription [92]. In rats, vitamin D supplementation
after birth caused a dose-dependent increase in TPH2
expression in the prefrontal cortex [93]. Lastly, vitamin D sup-
plementation in rats represses the transcription of serotonin
transporter and monoamine oxidase mRNA and therefore
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raises serotonin levels in the brain by modulating both
production and breakdown [94].

The BALB/cmice containing a loss-of-functionmutation in
TPH2 showed a 20% decrease in TPH2 mRNA and 28% fewer
TPH2 immunolabelled neurons compared with TPH2 wild-
type C57BL/6 J mice [95]. Russo et al [96] found that BALB/c
mice quantitatively exhibited reduced social behaviour and
increased anxious behaviour compared with C57BL/6 J mice.
Intriguingly, this study found that in either strain, TPH2
activity was not significantly correlated to the changes in socia-
bility or anxiety. Finally, complete TPH2 knockout in mice
generates a psychologic phenotype characteristic of ASD [97].
To our knowledge, no in vivo experiment linkingmaternal vita-
min D and offspring TPH1/2 expression has been attempted.

TPH2 is also responsible for producing serotonin in the
enteric nervous system (ENS) in the gut. Serotonergic neurons
are the first to develop in the ENSwhere they direct the pattern-
ing of future neurons and neurotransmitter secretors [98].
TPH2 knockout mice show intestinal dysmotility. Serotonin
dysregulation, secondary to vitamin D deficiency, has been
linked to Inflammatory bowel syndrome [41] and inflamma-
tory bowel disease [99,100]. It is possible that serotonin is the
common mediator in the changes seen in each of these
conditions. Overall, the effect of vitamin D in the neurotrans-
mitter axis of ASD is underexplored, and a secondary
process via the microbiome remains plausible.

A hypothesis in the axis of ADHD is alteration of
dopamine (DA) and norepinephrine function. DA functions
in emotional response, reward, motivation, motor activity
and attention, while norepinephrine is a an adrenergic neuro-
transmitter activating the sympathetic nervous system [101].
Decreased dopamine function may be caused by decreased
dopamine release, lower density of dopaminergic neurons
or lower levels by each neuron, or overly rapid clearance at
the site of action. In vitro, adding norepinephrine to culture
of rat mesencephalic cells increased the differentiation of
dopaminergic neurons [102].

Following release into the synaptic cleft, dopamine activity
is terminated via breakdown by monoamine oxidase [103] or
via reuptake into the presynapse by the dopamine transporter
(DAT) or into synaptic vesicles by vesicular monoamine trans-
porter 2 (VMAT2) [104]. The main described pathway of
ADHD involves overabundance of DAT resulting in dimin-
ished duration and intensity of DA action [105]. The ADHD
medication methylphenidate increases DA activity by binding
and inhibiting DAT, while mixed amphetamine salts mainly
inhibit VMAT2. Understanding of ADHD in the context of
theGMBaxis andVDR is limited but growing. In rats,maternal
vitamin D deficiency was associated with increased DAT
density in the nucleus accumbens of female, but not male, off-
spring [106]. A study of 96 children with ADHD found that
vitamin D supplementation (50 000IU/week) for eight weeks
improved ADHD symptoms as assessed by the Conners
Parent Rating Scale [107,108]. Vitamin D supplementation pro-
duced an increase in dopamine, but not serotonin, in children
with ADHD [108].

Norepinephrine is a second neurotransmitter implicated
in ADHD pathogenesis. Analogous to the perturbation seen
with DA, overactivity of the norepinephrine transporter
(NET) causes rapid reuptake of NE into the presynaptic cyto-
plasm [109]. An alternative ADHD treatment, amphetamine,
increases the activity of dopamine and norepinephrine in the
brain by displacing them from synaptic vesicles and into the
synaptic clefts [110]. Although the simplicity of dopamine as
the chief neurotransmitter in reward and motivation in
ADHD has been challenged, the dopamine/NE theory
remains an acceptable mechanism because of the effective-
ness of amphetamine medication [111,112]. Studies have
indicated that up to two-thirds of individuals with ADHD
have a comorbid mental disorder, such as mood or anxiety
disorder, which may be used as a starting point to study
ADHD [113].

In ADHD, alterations in neurodevelopment are evident
in utero. Rats born to vitamin D-deficient mothers display
grossly increased lateral ventricle volume and altered appear-
ance of the dopaminergic substantia nigra [114]. VDR
activation drives the expression of tyrosine hydroxylase, the
rate limiting step in dopamine production [115]. In rats, this
activation takes effect in utero between E12 and E15 which sup-
ports the correlation of maternal vitamin D deficiency in
ADHD [116]. DAT overexpression is still believed to be the pri-
mary axis, but the effect of low serum vitamin D is certainly
strong enough to potentiate or exacerbate the problem.
Future work in the neurotransmission axis of ADHD may
need to be creative and novel in the incorporation of genetics
into experimental conditions.
5. Microbial metabolite in autism spectrum
disorder and attention deficit
hyperactivity disorder

In humans, metabolites such as short-chain fatty acids (SCFA)
are produced via bacterial fermentation in the colon [117], in
contrast withmicewhere fermentation of dietary carbohydrate
takes place in the cecum [118]. SCFA consists of 2–6 carbon
chains which positively alter the gut microbiome by enhancing
anti-inflammatory processes and regulating the enteric neuro-
endocrine system to promote gut homeostasis [4]. Adequate
production of SCFAs has shown positive effects in various dis-
eases including obesity, diabetes, inflammatory bowel diseases
as well as psychiatric and neurologic disorders, which has
become an interesting aspect of GMB interactions [119]. Meta-
bolome profiling in ASD and ADHD cases is ongoing via
clinical trials and mouse models.

Propionate is the SCFAs most produced by ASD prevalent
microorganisms [120,121]. SCFA may exert influence on the
CNS by binding to free fatty acid receptors [107] in the brain.
Propionate bound to the receptor FFAR3 on human brain
entholieum inhibited pathways associated with non-specific
microbial infections via a CD14-dependent mechanism, sup-
pressed expression of LRP-1 and protected the BBB from
oxidative stress via NRF2 signalling [122]. This study was
done in post-mortem brains. The influence of SCFAs on a
normal functioning brain is unknown. By contrast, butyrate
levels in the brain are not naturally high enough to modulate
histone deacetylase inhibition in the gut [123].

In order to understand gut microbiome contributions in
developing ASD, researchers transplanted microbiota from
ASD human donors to germ-free mice and found ASD micro-
biota may induce hallmark autistic behaviours. Mice colonized
with microbiota from ASD human donors had a different
microbial composition: a significant decrease in Bacteroidetes,
Bacteroides and Parabacteroides,with an increase in Akkermansia,
Sutterella and Lachnospiraceae. The brains of mice colonized
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with ASD-associated microbiota display alternative splicing of
ASD-relevant genes. Metabolome profiles of mice harbouring
ASD microbiota (n = 20; 4–7 mice per donor) show distinct
metabolites in the colon may modulate ASD behaviour.
The metabolites taurine and 5-aminovaleric acid (5AV)
( p = 0.0243) were significantly reduced in mice harbouring
ASD microbiota compared with control germ-free mice. Meta-
bolome profile differences between mice models may result
from microbial metabolism [124]. This study suggests ASD
causes alterations in distinct bacterial phylum, which may
lead to the production of certain SCFAs. Taurine is essential
for brain development [125], whereas 5AV is described as an
anticonvulsant inmice [126]. Clinical trials regarding endogen-
ous SCFA levels in ASD and ADHD are still being developed.

Multiple clinical trials found variation in fecal SCFAwithin
ASD individuals. A clinical trial comparing the levels of fecal
SCFAs between ASD children (n = 23) and neurotypical
children (n = 31) aged 11–12 years old found ASD children
had higher levels of total SCFAs (136.6 ± 8.7 versus 111.1 ±
6.6 mmol kg−1) compared with neurotypical controls. Specifi-
cally, ASD individuals had higher concentrations of acetate,
propionate, butyrate, isobutyrate, valerate and isovalerate
compared with neurotypical children. Researchers concluded
higher concentrations of fecal SCFAs in ASDmay not be disas-
trous to the health of ASD participants [127]. In fact, the high
concentration in this cohort was not due to different diets.
Additionally, a different clinical assessment of fecal SCFAs in
ASD individuals found ASD individuals (n = 23) had signifi-
cantly higher levels of isopropanol (p = 0.022) in stool
compared with healthy controls (n = 21) individuals aged 4–
17 years old. High levels of isopropanol were hypothesized
to cause GI disturbances like abdominal pain [128]. The
microbes Clostridium beijerinckii and C. aurantibutyricum con-
vert acetone to isopropanol [129,130] yet none of the listed
microbes where detected in the feces of ASD or neurotypical
children [128]. Isopropanol is rapidly absorbed throught the
GI tract [131] yet isoproponal poisioning irritates mucosal sur-
faces and causes GI impairment such as abdomal pain [132].
Isopropanol is also an organic solvent that preserves fecal
SCFA [133]. A 2019 study analysed the relationship between
gut microbiome and fecal SCFAs in Chinese autistic and neuro-
typical children. The presence of SCFAs was altered in ASD
individuals; acetic and butyrate levels decreased while valeric
acidwas increased in the ASD group [134]. A recent study com-
pared fecal SCFA levels between an ASD cohort (n = 26) and
healthy control (n = 24) and found significantly reduced levels
of acetate, propionate and butyrate in ASD individuals [135].

Regardless of the variability of SCFA in the previous
studies, propionic acidaemia (PA) at birth is suggested to
increase ASD risk. PA is a propionate deficiency caused by
reduced propionyl-CoA carboxylase (PCC) activity in the
liver and other tissues. Interestingly, PA and ASD share most
of their core symptoms and multiple case studies report ASD
as a comorbidity to PA [136–138]. However, only a few ASD
cases were associated with PA: PA has been reported in a
7-year-old girl with ASD [139], five ASD patients [137] and
four patients with abnormal PCC and ASD [138]. Overall, the
relationship between SCFA and ASD phenotypes is still
growing. Differentiation in SCFA concentration suggests
the importance to investigate other factors that alter SCFA
concentration within ASD.

The SCFA levels associated with ADHD pathogenesis is
largely unknown due to difficulty in identifying definite
biomarkers. A pilot study investigated microbial differences
in the microbiome between ADHD and neurotypical adoles-
cent boys. The investigators found a significant difference
between control and ADHD microbial composition. They also
found a relative overabundance of Bifidobacterium predicts
ADHDbyupregulating synthesis of phenylalanine, a precursor
of dopamine, and decreases neural reward anticipation [47].
A potential biomarker includes intermediate products of
tryptophan such as kynurenine, kynurenic acid (KA) and
xanthurenic acid (XA) [6]. These metabolites may influence
the immune system and neurotransmission in ADHD via
inflammatory pathways [140]. VDR deficiency could enhance
kynurenine metabolite levels, which may be implicated in
ADHD pathology, yet the results are inconclusive. A Norwe-
gian study compared serum levels of kynurenines in 133
adult ADHD patients versus adult controls (18–40 years) and
found the ADHD group did not have lower levels of trypto-
phan, kynurenic acid or xanthurenic acid [141]. These findings
contradict a Roman study testing serum kynureninemetabolite
in ADHD children (n = 102), who exhibited increased kynure-
nine (+48.6%) and reduced serum KA (−11.2%) and XA levels
(−12.5%) compared with healthy controls (n = 62) [142]. Limit-
ations in both studies include age, location and serum level
measures, which showed kynurenine metabolite activity
throughout the body instead of the CNS; both studies only ana-
lysed serum levels in ADHD patients. Assessment of intestinal
VDR in ADHD microbiome may highlight VDR influence in
ADHD metabolites. Unlike ASD, the complexity of ADHD is
hard to recapitulate in a mouse model. One study proposed a
that mice lacking Fez1, a gene in the nervous system, which
leads to hyperactivity and impulsivity phenotypes [143]. This
mouse model has common ADHD phenotypes, yet some
areas are unclear. The authors did not assess the gut microbiota
ofFez1-KOmice. Furthermore,ADHDstudies inmetabolitesare
limited. It would be novel to identify the types and levels of
metabolites in ADHD individuals.

Our research has shown that loss of intestinal epithelial
VDR leads to an increase in butyrate-producing bacteria in
intestinal inflammation [70]. It may be further implicated in
the GMB axis of neurologic disorders. Deletion of intestinal
epithelial VDR increased kynurenine, a pathway associated
with inflammatory neurological disorder in a mouse model
[144]. Our recent study has also shown that the mice with
VDR deletion in immune cells displayed significant downre-
gulation of quinolinate and tocopherol pathway-derived
metabolites and increase in nicotinamide. Quinolinate acts
as a neurotoxin, pro-inflammatory mediator and prooxidant
molecule. These changes indicate a potential role of VDR in
neurophysiology. The role of vitamin D/VDR in gut–brain
axis needs further investigation in future research [144].
6. Concluding remarks
ASD is characterized by a multitude of social deficits while
ADHD is characterized by inattentiveness, impulsivity and
hyperactivity [5]. However, changes in social and behavioural
impairments overtime create a predicament in identifying defi-
nite biomarkers for both disorders. Gut microbiome disorders
are observed in ASD and ADHD. Thus, microbial composition
may be an effective biomarker for ASD and ADHD. Our
studies and others have demonstrated that VDR regulates the
gut microbiome by inhibiting inflammation, maintaining
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barrier functions and promoting microbial homeostasis
[70–72]. Susceptibility to ASD is correlated with polymorph-
isms in the VDR gene as well as low vitamin D in the serum.
It is still unclear if reduction of vitamin D/VDR signalling in
the intestinal lumen contributes to the low microbial diversity
seen in the gut of ASD and ADHD individuals. We speculate
that VDR may modify gut microbiota in ASD and ADHD
through GMB axis, such as cytokines, neurotransmitters and
SCFAs (figure 1).

Gut microbial patterns in ASD individuals show
decreased microbial diversity and some GI irregularities.
Vitamin D supplementation reduced irritability in ASD indi-
viduals, yet the influence on GI dysfunction and microbial
composition is limited. Additionally, the influence of vitamin
D supplements via intestinal VDR should be explored to
understand how VDR exerts influence in ASD. Immune
activity in genetic ASD resembles immune activity in inflam-
matory bowel disease yet the influence of VDR in ASD
immune activity is lacking. VDR may alter neurotransmitter
activity in ASD via transcriptional regulation of tryptophan
metabolism, the precursor of serotonin, yet the implications
of VDR in serotonin activity are limited. Additionally, metab-
olites enhanced by VDR loss are unexplored in ASD cases.
Fecal SCFAs concentrations are altered in ASD individuals
yet inconsistencies among studies, suggest that factors, such
as diet, age, location and/or cohort size may contribute to
the observed differences. Characterization of abnormal
SCFAs within ASD warrants further investigation.

There are indirect relationships linking VDR and ADHD
via GMB axis. Activation of VDR drives the expression of a
rate limiting step in dopamine production, tyrosine hydroxyl-
ase. VDR deficiency enhances tryptophan metabolites which
are pronounced in the serum of some ADHD individuals.
The gut microbiota in ADHD revealed an overabundance
of Bifidobacterium which acts as a functional target for
dopamine. Its influence on the GI barrier is unexplored.

Understanding of gut microbiota involvement in ASD
and ADHD is growing. It is highly unlikely that the breadth
of effects of vitamin D/VDR dysregulation is limited to just
these two disorders. The interplay between brain develop-
ment, gut microbiota and the VDR may be implicated in
other CNS diseases.
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