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Ancient evolutionary signals of protein-
coding sequences allow the discovery of
new genes in the Drosophila melanogaster
genome
Carlos S. Casimiro-Soriguer, Alejandro Rubio, Juan Jimenez and Antonio J. Pérez-Pulido*

Abstract

Background: The current growth in DNA sequencing techniques makes of genome annotation a crucial task in the
genomic era. Traditional gene finders focus on protein-coding sequences, but they are far from being exhaustive.
The number of this kind of genes continuously increases due to new experimental data and development of
improved bioinformatics algorithms.

Results: In this context, AnABlast represents a novel in silico strategy, based on the accumulation of short
evolutionary signals identified by protein sequence alignments of low score. This strategy potentially highlights
protein-coding regions in genomic sequences regardless of traditional homology or translation signatures. Here, we
analyze the evolutionary information that the accumulation of these short signals encloses. Using the Drosophila
melanogaster genome, we stablish optimal parameters for the accurate gene prediction with AnABlast and show
that this new strategy significantly contributes to add genes, exons and pseudogenes regions, yet to be discovered
in both already annotated and new genomes.

Conclusions: AnABlast can be freely used to analyze genomic regions of whole genomes where it contributes to
complete the previous annotation.
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Background
Research groups from all over the world are sequencing
whole genomes as a common task, taking advantage of
the current burst in the genomics era [1]. The analysis of
the sequences from those genomes is essential for accur-
ate annotation procedures. However, computational tools
for gene discovery usually miss around 20% of protein-
coding genes when annotating a whole genome, or even
more in the case of eukaryotic organisms [2, 3]. Thus, a

significant number of protein-coding sequences and other
functional genomic elements are missing when using cur-
rently available genomic annotation approaches.
One of the most intensively studied model organism is

the fruit-fly Drosophila melanogaster. Its genome was se-
quenced in 2000, and 13,601 protein-coding genes were
initially annotated, coming from the integration of the two
used gene finders, which respectively predicted 13,189 and
17,464 genes [4]. From this milestone, the number of
fruit-fly genes has changed, and numerous and significant
discrepancies have arisen [5]. But nowadays the FlyBase
database put this number at 14,133 [6], showing that the
number of genes is constantly increasing over time, and a
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greater increase is expected to come from the discovery of
new kinds of genes, such as those shorter than 100 amino
acids, which in the fruit-fly genome could account for
thousands of them [7].
Traditional gene finders are routinely based on both sig-

nificant sequence similarity and sequence signatures such as
those used to define open reading frames (ORF), signals in-
volved in splicing [8], or combined protocols to get better
results [9]. Among the new proposed methods, we have pre-
viously shown that accumulation of low-score alignments,
which would represent footprints of ancient sequences,
highlights present and ancient protein-coding regions which
are hard to discover by conventional methods [10]. Briefly,
this novel computational approach, that we named AnA-
Blast, compares the putative amino acid sequences from the
six reading frames of a genomic sequence against a non-
redundant protein database, and collects the matches, in-
cluding low-score alignments, which we call protomotifs.
These are specifically accumulated in coding but rarely in
non-coding sequences. Thus, the profile of AnABlast with
peaks of accumulated protomotifs, accurately marks puta-
tive protein-coding genes, pseudogenes, and fossils of an-
cient coding sequences, overcoming the effects of possible
sequencing errors and reading frame shifts, since it does not
search for reading frames but sequence coding signals.
We previously showed that this strategy is useful to

discover putative protein-coding regions. It was tested
with both intergenic and intronic sequences from the
fission yeast Schizosaccharomyces pombe, and 18 puta-
tive genes were predicted [10]. But even though these
predictions had computational support and some trans-
lation evidences, prediction parameters were empirically
established by training the algorithm with S. pombe cu-
rated genes. Here, we use the whole well-studied D. mel-
anogaster genome, and its annotated protein-coding

regions to evaluate the method accuracy and determine
optimal AnABlast parameters. The fine-tuning proced-
ure was finally tested with an early version of a protein
database, and we show that many new genes predicted
by this algorithm are really true genes that have been in-
corporated into the current genome annotation of this
organism. We also show that AnABlast is useful to dis-
cover small ORF and fossil sequences that are hidden to
conventional gene finder algorithms, and show how this
new strategy can contribute to discover the complete set
of protein-coding regions of a whole genome.

Results
Searching for protein-coding signals in the fruit-fly
genome
AnABlast is a computational tool that searches for protein-
coding regions in whole genomes by taking into account
low-score alignments shared by multiple unrelated protein
sequences. To this end, AnABlast uses the putative amino
acid sequences translated from a genomic sequence to
search for sequence similarity in a non-redundant protein
database. Alignments obtained from this similarity search
(called protomotifs), including those of a low score, are
then piled up along the query sequence, and peaks accu-
mulating protomotifs above a specific threshold will high-
light potential protein-coding regions and will be
considered coding-signals (Fig. 1). Finally, these coding-
signals can be evaluated: those ones underlying exons from
a protein-coding gene will be true positive predictions,
exons without coding signals will be false negatives, and
coding-signals underlying introns or intergenic regions will
be putative false positives. But it should be noted that the
false positives could potentially underlie new coding se-
quences which escaped to conventional annotation pipe-
lines. Thus, false positives highlighted by AnABlast may

Fig. 1 Schematic diagram showing AnABlast profiles obtained in a theoretical genomic region with a two-exon gene. The peak-height is the
maximum accumulation of protomotifs in a specific genomic position (BLAST alignments including low bit-scores). Peaks with a protomotif
accumulation above a peak-height threshold are considered as putative protein-coding regions (coding-signal). Significant peaks matching a
known exon represents true positive peaks, while those underlying a genomic region without known exons are considered false positive coding-
signals. Well-known exons which do not significantly accumulate protomotifs (peak-height below the threshold) constitute false negatives
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represent genomic regions encoding putative new proteins,
but also non-functional degenerated protein-coding re-
gions, something of particular interest in current genome
research.
To test the capability of AnABlast to discover protein-

coding regions, we used this algorithm to analyze the
whole genome of the fruit-fly D. melanogaster (2012 and
2017 releases). Protein sequences coming from the virtual
translation of the complete fly genome (in all the six read-
ing frames) were subjected to BLAST search against a
non-redundant protein database (UniRef50) under a low
restriction threshold, and the resulting alignments were
accumulated along the query sequence to produce the
AnABlast profile. Then, all well-known exons of this gen-
ome were compared with the set of putative coding regions
identified by AnABlast. As expected, most of the AnABlast
peaks with a high protomotif accumulation matched
annotated exons (putative true positives), but a small frac-
tion of them fell in both intronic and intergenic regions
lacking of any annotated gene, exon or pseudogene (Suppl.
file 1, genomic browser with AnABlast results). These false

positive signals represent a particularly interesting set of
genomic regions, since they could constitute new protein-
coding regions.

Protomotifs underlie into the true reading frame
Protein-coding signals highlighted by AnABlast are
mainly composed by protein sequence alignments of low
score, but also occasionally high score. To test if such
alignments are just random, or they actually match true
protein-coding regions, we studied the distribution of
protomotifs underlying protein-coding regions at differ-
ent BLAST bit-scores, regarding to the different possible
reading frames. Though millions of protomotifs were
scattered throughout the fruit-fly genome within anno-
tated exons, most of them were concentrated in the right
reading frame, with a much lower number found in any
of the other possible five reading frames (Fig. 2).
Thus, protomotifs are mainly accumulated in the true

reading frame in spite of their low score. Interestingly, a
significant number of them accumulate in the right
strand but at a different reading frame. Contrarily, the

Fig. 2 Distribution of protomotifs coming from true positive coding-signals separated by the true reading frame of the protein-coding sequences
where they accumulate. The different parts of the figure represent protomotifs accumulated in protein-coding sequences at different BLAST bit-
score starting in a frame + 1, b frame + 2, c frame + 3, d frame − 1, e frame − 2, and f frame − 3. The box size is proportional to the number of
protomotifs in that frame, and the exact number of protomotifs is also shown below the X-axis. The three reading frames coming from the
forward strand are colored in green color, and the three coming from the reverse strand are colored in red color
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other strand shows an enormously reduced number of
protomotifs, with a lower order of magnitude. In fact,
the protomotifs accumulated in the contrary strand
present bit-score values lower than 30, but those accu-
mulated in the true strand present values near to 100.
This result suggests, from an evolutionary point of view,
that new protein-coding genes might putatively come
just from shifting the reading frame in the same strand.

Optimization of AnABlast parameters for the efficient
prediction of protein-coding signal
Until now we have seen how AnABlast coding-signals
mainly match to protein-coding region in the genome, but
we did not use any threshold to evaluate the results and
measure the accuracy in the procedure of gene prediction.
To optimize AnABlast parameters for the identification of
new exons and genes, the distribution of both true and
false positive coding-signals were evaluated at different
peak-height thresholds. AnABlast profiles depend on the

bit-score value used to restrict alignment significance dur-
ing the BLAST search, therefore, in addition to the value
of bit-score 30, previously used by AnABlast [10], the
evaluation was carried out also using the more and less re-
strictive bit-scores of 29 and 31 respectively. Regardless of
the taken score, true positive coding-signals account for
the highest peak-height (Fig. 3), though under more re-
stricted score values (higher bit-score), AnABlast peaks
were more selective and focused into the protein-coding
regions of the genome (higher peak-heights). However,
the absolute number of true protein-coding regions
dropped down with such higher scores, decreasing the
number of peaks underling protein-coding sequences (Fig.
3c). On average, predicted coding-signals falling in non-
coding regions (false positives) have much lower peak-
height values (Fig. 3b). However, the distribution of these
false positives shows outliers with peak-height values in-
distinguishable from the true positive set, which could be
considered as new putative protein-coding regions.

Fig. 3 Peak-height distribution and number of coding-signals found at different bit-score values. Peak-height distributions are separated by a true
positive and b false positive, and they are shown by each database release (2012 and 2017) and three different bit-score thresholds. The outliers
are shown as a chain of points above the boxes. c The number of true and false positive coding-signals at any peak-height with the
corresponding bit-score thresholds (note that it shows number of peaks with peak-heights as low as 20 and higher)
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In a specific genome, the accuracy of the protein-
coding sequence prediction by AnABlast not only de-
pends on the bit-score value, but also on the peak-height
threshold coming from the alignment accumulation.
Under a bit-score value of 30, the optimal peak-height
cutoff depends on the used database and the amount of
sequences that it contains. In this way, when the most
current database from 2017 was used, the false positive
outliers appear from a peak-height of 70, so proposing
that peaks higher than this value could predict new
protein-coding regions. However, when using the 2012
database, this peak-height value was around to 40.
To better test both the precision and recall of AnABlast

in predicting protein-coding sequences, coding-signals
were compared against the gene annotation of fruit-fly
genome and the accuracy of AnABlast prediction in this
set was analyzed. As expected, the recall is higher when
using a more recent database (release 2017, with more
than 21 million proteins) compared to an older one (re-
lease 2012, with around 4.5 million proteins) at the same
peak-height. When using the database of 2017, the preci-
sion has an asymptote at around peak-height equal to 100
with a value of around 90% (only 1 in 10 predictions are
not right), though the recall at this threshold is only of
65% (only 6.5 in 10 of the true protein-coding sequences
are recovered) (Fig. 4a). However, this accuracy is reached
with peak-height equal to 35, when the older release of
the database is used (Fig. 4b).
As described above, the precision varies regarding to

the bit-score threshold used, and a higher precision and
lower recall are reached when more restrictive values are

used. So, to ensure a high accuracy we chose bit-score
30 and a peak-height threshold of 100. By using these
parameters, we expect that AnABlast could discover new
unknown protein-coding genes and exons inside the
10% putative false positives. However, with the older
database, with a number of sequences almost five times
lower, we should take a peak-height threshold of 35. All
of this gives a great number of AnABlast coding-signals
matching with protein-coding region spread over the
fruit-fly chromosomes, and between 4500 and 7000 (de-
pending of the used database) candidates to be new
protein-coding sequences (Table 1; Suppl. file 3). These
restricted parameters allow finding more than 30,000
exons from the current fruit-fly annotation.

AnaBlast is able to discover current genes using an old
database
The number of annotated protein-coding sequences is
continuously revisited in annotated genomes, and new
genes, exons and pseudogenes continuously appear as a
consequence of experimental results and new in silico ap-
proaches. For instance, when the FlyBase database re-
leased in 2012 is compared to the current 2017 release, it
can be found that 38 protein-coding genes, 91 exons from
well-known genes, and 74 pseudogenes entered into the
database later than 2012. This dataset of true protein-
coding sequences absent in the 2012 allows us to carry
out a simulation to estimate the efficiency of AnABlast in
discovering new protein-coding sequences. Remarkably,
when using the 2012 FlyBase database, with the parame-
ters previously suggested (bit-score 30 and peak-height

Fig. 4 Recall and precision of AnABlast at different bit-score thresholds. Values were calculated when using the databases: a release 2017, and b
release 2012. The black dot marks the precision value at bit-score 30, and the unfilled dot marks the recall. The complete results and values for all
the used parameters can be found in Suppl. file 2
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35), we found that AnABlast highlights the majority of the
protein-coding sequences from this dataset (Table 2).
More than 60% of the protein-coding genes are found,
and also the 80% of the pseudogenes were predicted by
AnABlast. These results improve when using a less re-
stricted peak-height value. In the case of new exons, their
small length (some of them are coding for only a few
amino acids) makes extremely difficult the in silico identi-
fication. However, up to 11% of them were also discovered
by AnABlast, increasing up to 60% when changing the de-
fault peak-height to 26, which present a precision of 70%
(Table 2; Suppl. file 4). Overall, it is important to highlight
that the most of these new protein-coding sequences pre-
dicted by AnABlast were not found by the widely used
gene finder AUGUSTUS [11].
The identification of very small genes is still challen-

ging for in silico strategies, including AnABlast. One of
the new genes that AnABlast failed to identify in the
2012 database (CG45546) is coding for a short protein
of 93 amino acids (Fig. 5a). Interestingly, AnABlast effi-
ciently identified it when using the 2017 database, due
to the fact that this sequence and its putative homologs
were now included in the database, increasing the peak-
height to a significant level. This gene is still lost by AU-
GUSTUS, even when using the current database release.
To discard that these coding-signals underlined by AnA-
Blast occur by chance, the reverse sequence of this gene
was used as a negative control. When this control is ana-
lyzed, AnABlast profiles present no accumulation of pro-
tomotifs (Fig. 5a, below). Furthermore, we shuffled the
sequence of the gene, and the 85% of the simulations
did not present any protomotif, and the remaining 15%
gave peak-height values lower than 18 (Suppl. file 5).

Some new exons are also found and highlighted within
well-annotated genes. One of these exons was found in the
Ory gene (CG40446). The exon appearing in the 2017 data-
base is found by AnABlast using the 2012 release and a
peak-height higher than 35 (Fig. 5b). Interestingly, AnA-
Blast produced two weak peaks within an intronic sequence
of this gene, with a peak-height around 50, very similar to
others in the 3′ end. Conventional search for homologous
sequences to these AnABlast coding-signals revealed simi-
larity with retrotransposons from invertebrate organisms,
suggesting that this genomic region is coding for ancient
proteins of a mobile element. In addition, a high peak over-
lapping with an exon in the 5′ end is also emerging in the
reverse strand, which represents a tri-nucleotide region
coding for amino acid repeats in all the reading frames.
This artefact is characteristic of nucleotide repeats, and it
can be avoided by enabling the low-complexity filter in the
similarity search step with BLAST.
In addition to new genes and exons, AnABlast was

able to discover 59 pseudogenes which did not appear in
the used 2012 database (Table 2). This shows the ability
of AnABlast for discovering protein-coding regions re-
gardless of the presence of a complete open reading
frame. One of these pseudogenes (CR44906), included in
FlyBase in 2013, is clearly highlighted by AnABlast in
the reverse strand of the 2012 database (Fig. 5c). Re-
markably, another coding-signal is found in the forward
strand, upstream of this pseudogene. In deep analysis of
this sequence revealed that it encodes the transposase of
an annotated transposable element. The presence of nu-
merous expression sequence tags (EST) support the ex-
pression of this sequence. However, this transposase is
not yet annotated in FlyBase database.

Table 1 Number of true and false positives predicted by AnABlast using the 2012 and 2017 databases, and separated by
chromosomes. The peak-height threshold used was 40 (2012) and 100 (2017)

Chromosomes

Coding-signals 2 L 2R 3 L 3R 4 X Y Total

True positives (2012) 6691 7515 6954 9085 387 6211 81 36,924

False positives (2012) 1035 1390 1384 1517 40 1143 483 6992

True positives (2017) 6139 6798 6164 8325 379 5390 72 33,267

False positives (2017) 535 1068 947 913 41 443 518 4465

Table 2 Genomic elements from the database release 2017 discovered using the database release 2012, separated by peak-height
threshold. Note that ‘< 5’show the false negatives (when less than 5 protomotifs were found), and the last column show the most
significant true positives

Sequence type Annotated (2017) Found by AUGUSTUS
gene finder

Peak-height
(< 5)

Peak-height
(< 26)

Peak-height
(26–35)

Peak-height
(> 35)

Protein-coding gene 38 9 0 (0%) 14 (37%) 1 (2%) 23 (61%)

Exon 91 9 12 (13%) 55 (60%) 14 (16%) 10 (11%)

Pseudogene 74 15 0 (0%) 7 (9%) 8 (11%) 59 (80%)
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Putative new protein-coding sequences in the present
database
Finally, according to the efficient identification of protein-
coding sequences highlighted by AnABlast, it is expected
that after a future further characterization, a considerable
fraction of the false positive sequences predicted when the
2017 database is used become true positives. One of these
candidates is found 3′ upstream to the genes CG44014
and CG44013, coding for uncharacterized proteins bear-
ing a calycin domain related to extracellular proteins and
involved on lipid transport. AnABlast suggests a signifi-
cant coding-signal in this region (Fig. 6). The putative pro-
tein sequence encoded by this AnABlast region has no
homologues in other organisms, but it is located in an
evolutionary conserved region, again matching with EST
signals which also support the putative expression of this

genomic region. A list of false positives which could likely
propose new putative protein-coding sequences is avail-
able in Suppl. file 3, and in tracks FP (False Positives) in
Suppl. file 1.

Discussion
Currently, gene finder algorithms have a limited recall
and usually lose the 10–20% of the true coding regions
[3], especially those lacking homologs and/or having
non-conventional characteristics such as small ORFs or
pseudogenes. It leads to the necessary development of
new algorithms based on different ideas [12, 13]. In this
context, we proposed a new in silico strategy, named
AnABlast that uses low-score alignments coming from
multiple non-redundant proteins [10]. As shown in this
study, in agreement with previous reports [14–16], these

Fig. 5 AnABlast profile for three regions of the fruit-fly genome. Green color represents protomotif accumulation in the forward strand, and red
color in the reverse strand. a Different analysis for the gene CG45546 region, from top to bottom: using database release 2012, 2017 and using
the reverse sequence as random query; b region including part of the gene Ory (CG40446), together with the exons annotated in both database
releases (the red arrow marks two peaks corresponding to an ancient mobile element); c region of the pseudogene CR44906, including
surrounding genes and a transposable element in the 5′ end. An additional track with EST signals (Expressed Sequence Tags) is shown, which
suggests expression for the transposable sequence
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alignments (protomotifs) do not accumulate randomly
but in true genomic protein-coding regions (Supplemen-
tary file 1; Fig. 3). So, it is expected that future growth in
the protein database will increase the protomotif accu-
mulation in true protein-coding regions, but none accu-
mulation would appear in non-coding regions.
By using the D. melanogaster genome as a model sys-

tem, we set optimal parameters for using AnABlast as a
new protein-coding finder in whole sequenced genomes.
But, AnABlast has not the aim of annotating an entire
genome, since it allows the identification of only 60–
85% of the actual genes annotated in a genome (Table
2). However, the accumulation of protein sequences
using a non-redundant database and low bit-scores in
the BLAST search enables AnABlast to discover new
genes that scape to conventional strategies, producing a
precision up to 90% with exons, genes and pseudogenes
among the identified protein-coding signals (Fig. 4).
Thus, AnABlast is particularly useful to re-search for
new genes in already annotated genomes. Another ad-
vantage of the AnABlast strategy is the fact that proto-
motifs are accumulated within the true reading frame,
and not scattered throughout the genome (Fig. 2). Im-
portantly, coding signals are also identified by AnABlast
in the coding strand, but at different reading frames. It
rarely occurs in any of the three reading frames coming
from the reverse strand, suggesting that new protein-

coding exons or genes may emerge by frameshift muta-
tions in preexisting ORFs [17]. In fact, the peak-height
distribution matching ORFs in true genes has the high-
est value, followed by peaks identified in the next frame,
which suggests that new protein-coding regions may
emerge by point deletions in the original frame. This ob-
servation agree with previous evidences in mammals
suggesting a higher frequency of evolutionary fixation
for deletion than for insertion mutations [18, 19], a trend
that have also been found in the D. melanogaster gen-
ome [20]. Remarkably, AnABlast coding-signal are
sometimes found in the ends of well-known genes, over-
lapping with the right reading frame and suggesting than
C-terminus and N-terminus of genes are subjected to
evolutionary contractions and expansions that are effi-
ciently identified by AnABlast [10].
The discovery of protein-coding genes by AnABlast is in-

dependent of the appearance of an open reading frame, a
feature that allows finding sequences without canonical
structures, such as pseudogenes and transposable se-
quences. Disabled or unitary pseudogenes originated from
inactivated genes are particularly difficult to identify due to
its high sequence divergence after long-term evolution [21].
Since AnABlast searches for the accumulation of footprints
of common ancient protein sequences (low-score patterns),
this strategy is particularly useful in underlying fossil se-
quences in which significant homology is lost (Fig. 5c).

Fig. 6 AnABlast profile for a region with a putative new gene. The profiles were created with both 2012 and 2017 release databases, and they are
shown together with the gene, the EST track and one additional track taken from the UCSC browser representing the evolutionary conservation
of the sequence versus 27 different insect genomes, which shows a high conservation for the proposed new gene
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Another important challenge to the whole annotation
of genomes is the discovery of short ORFs [7]. These
short protein-coding sequences were missed in the past,
since it is difficult to distinguish between functional
open reading frames and non-functional ones arisen by
chance [22]. Albeit less efficiently, AnABlast is also use-
ful for assisting in this task (Fig. 5a). Altogether, we en-
courage the use of AnABlast as a good in silico method
that complement current gene finder algorithms and
conventional genome annotation tools.

Conclusions
The present study shows how AnABlast is able to dis-
cover new putative protein-coding genes and exons
where other methods fail. AnABlast is also able to locate
pseudogenes showing evolutionary remnants or even
small ORFs that escape the conventional searches. Pre-
dictions were validated with a strategy that uses a recent
database version, independent of the database used to
carry out the gene finding. This could constitute a useful
protocol to test computational gene finders.
All these features make of AnABlast a meaningful tool

for the exhaustive analysis of genomic data, currently pro-
duced at an increasingly rapid rate. To allow the analysis of
genomic regions, we have built a web application which is
available at http://www.bioinfocabd.upo.es/anablast/ [23],
where researchers can evaluate new protein-coding signals
in their own sequences. Our results aim to analyze new ge-
nomes as well as to revisit annotated ones in order to dis-
cover new hidden genes.

Methods
Search for protein-coding signals
AnaBlast was used to search for protomotifs using the
release 6 from D. melanogaster genome versus the Uni-
Ref50 database from January 2012 (with 4,606,913 se-
quences) and January 2017 (with 21,859.863 sequences),
independently. UniRef50 is a protein database with non-
redundant sequences in 50% identity threshold [24].
Blastx was used to get hits (that we call protomotif) with
a threshold e-value of 10 and a bit-score between 29 and
31, which gave significant results in other projects [10],
though the e-value has been decreased in order to
optimize the analysis of a complete genome.
Protomotifs were classified by reading frame, when

they matched to well-known exons in the genome. The
distribution of protomotifs was made using the ggplot li-
brary of R programming language.
The genome analysis was performed in an HPC clus-

ter, using 100 threads and it lasted around 1 week. The
remaining analysis with sequences up to 10 kb were per-
formed in the web application of AnABlast, which allows
to analyze genomic sequences up to 25Kb, or longer if

the user provides the precalculated BLAST report:
http://www.bioinfocabd.upo.es/anablast/.

Testing protocol
The D. melanogaster genome annotation release dmel-all-
r5.43 from January 2012 was converted to the release
dmel-all-r6.19 from January 2017 using the conversion
tool from the FlyBase database. Genes were compared
with bedtools intersect, obtaining all the new exons,
complete genes, and pseudogenes appearing in release 6
but not in release 5. To a higher constraint, the sequences
were searched in UniProt database to discard previously
described protein-coding genes, and only genes not
appearing in any database release before 2017 were main-
tained. The remaining sequences were taken and used as
the testing dataset. For the testing protocol, Blastx was
run with the genome release 6 and the Uniref50 database
release from January 2012. The sequences from the testing
dataset were taken with 100 nucleotides both in the 5′
and 3′ ends, previous to analyze by AnABlast.
Both tracks for EST sequences and conservation (27

insects conservation by PhastCons) were obtained from
the UCSC browser [25].

Accuracy measurement
A coding-signal is considered to match with an anno-
tated exon when at least the 20% of the exon is covered,
or the 20% of the peak underlies the exon. To check this,
AnaBlast results were converted to bed format and
compared to the GFF file with the annotated genes from
the D. melanogaster release 6. Accuracy was measured
by comparing exons and protein-coding signal from
AnABlast, considering true positives (TP, AnABlast
coding-signals matching to exons, or pseudogenes), false
positives (FP, AnABlast coding-signals matching to in-
trons or intergenic regions), and false negatives (FN,
exons or pseudogenes without AnABlast coding-signals).
Then, precision (specificity of the analysis: percentage of
right predictions in the results) and recall (sensitivity of
the analysis: percentage of right elements which are pre-
dicted) was calculated:

Precision ¼ TP= TPþ FPð Þð Þ � 100

Recall ¼ TP= TPþ FNð Þð Þ � 100

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6632-y.
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