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Abstract: Background: Robot-Assisted Minimally Invasive Esophagectomy is demonstrated to
be related with a facilitation in thoracoscopic procedure. To give an update on the state of art
of robotic esophagectomy for cancr a systematic review with meta-analysis has been performed.
Methods: a search of the studies comparing robotic and laparoscopic or open esophagectomy was
performed trough the medical libraries, with the search string “robotic and (oesophagus OR esopha-
gus OR esophagectomy OR oesophagectomy)”. Outcomes were: postoperative complications rate
(anastomotic leakage, bleeding, wound infection, pneumonia, recurrent laryngeal nerves paralysis,
chylotorax, mortality), intraoperative outcomes (mean blood loss, operative time and conversion),
oncologic outcomes (harvested nodes, R0 resection, recurrence) and recovery outcomes (length of
hospital stay). Results: Robotic approach is superior to open surgery in terms of blood loss p = 0.001,
wound infection rate, p = 0.002, pneumonia rate, p = 0.030 and mean number of harvested nodes,
p < 0.0001 and R0 resection rate, p = 0.043. Similarly, robotic approach is superior to conventional
laparoscopy in terms of mean number of harvested nodes, p = 0.001 pneumonia rate, p = 0.003.
Conclusions: robotic surgery could be considered superior to both open surgery and conventional
laparoscopy. These encouraging results should promote the diffusion of the robotic surgery, with the
creation of randomized trials to overcome selection bias.
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1. Introduction

Esophageal cancer represents the seventh most common cause of cancer morbidity
and the sixth cause of cancer-related death [1].

Radical esophagectomy with lymphadenectomy represents nowadays the milestone
for the treatment of esophageal cancer [2]. Since its introduction in the late 1940s, open
esophagectomy has been adopted for a long time, obtaining considerable oncologic re-
sults [3]. In the new era of minimally invasive laparoscopic surgery, minimally invasive
esophagectomy started to be performed in the 2000s, providing the well-known advan-
tages on recovery of the minimally invasive procedures. Safety and efficacy of minimally
invasive esophagectomy has been reported in several experiences [4–7], further providing
similar oncologic results and long term recurrence rate [8–10]. However, on a clinical point
of view, the introduction of minimally invasive esophagectomy in the clinical practice is far
to be considered as a standard of care. Major reason for that should be considered technical
challenges in performing minimally invasive esophagectomy.
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Since its introduction in 2000s, robotic surgery has been adopted to overcome technical
difficulties of laparoscopic surgery. The facilities of the robotic approach lay in the intrinsic
characteristics of the robotic platforms. In fact, the three-dimensional view allowed a
better visualization of the operative field and the EndoWrist® technology with the seven-
degrees movement of the robotic arms allows to perform more accurate movements in
narrow space [11,12]. Even if robotic approach could be considered the gold standard only
for the treatment of the prostate cancer, it has accumulated consensus in many surgical
fields [13–16]. In the setting of minimally invasive esophagectomy, it was first introduced
in 2003 by Kernstine et al. [17], but controversies about the advantages of robotic approach
have to be considered still an open issue.

Interest about the results of robotic surgery, also in comparison with open and laparo-
scopic approach, is fervent worldwide. Results on robotic esophagectomy were accumu-
lated exponentially in the last years providing advantages of robot-assisted surgery.

To delineate the state of art of robotic approach to treat esophageal cancer, we have
designed a systematic review and meta- analysis comparing robotic with both open and
laparoscopic surgery, toward to the identification of a gold standard treatment.

2. Materials and Methods
2.1. Literature Search and Study Selection

This systematic review complied with PRISMA (Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses) reporting standards [18] and was developed in line
with Meta-Analysis of Observational Studies Epidemiology (MOOSE) guidelines [19].

Cochrane Library, EMBASE, PubMed, SCOPUS, and Web of Science were interro-
gated. The search string “robotic and (oesophagus OR esophagus OR esophagectomy OR
oesophagectomy)” was used. Only articles published in English were considered.

Indexed abstract of posters and podium presentations at international meetings were
not included. We did not consider systematic reviews and meta-analyses. However,
the latter were consulted to identify additional studies of interest. The reference lists of
retrieved studies were reviewed. In case of overlapping series in different studies, only the
most recent article was included.

The research question was structured within a PICO (Problem/Population, Inter-
vention, Comparison and Outcome) framework. Population of interest included patients
affected by histologically proven esophageal adenocarcinoma/squamous cells cancer. The
intervention was robotic transthoracic esophagectomy, and the comparator was open
esophagectomy and laparoscopic esophagectomy, respectively.

Outcome measures were divided in short- and long-term outcomes. Short-term
outcomes encompassed postoperative complications rate, in terms of anastomotic leakage,
postoperative bleeding, wound infection, pneumonia, recurrent laryngeal nerves (RLN)
paralysis, chylotorax, reoperation rate and overall mortality, intraoperative outcomes
(mean blood loss, operative time and conversion), oncologic outcomes (harvested nodes,
R0 resection rate) and recovery outcomes (length of hospital stay). Long-term outcomes
included recurrences and 5-year overall survival.

The literature search and study selection were performed independently by two
reviewers. In case of disagreement, a third investigator was consulted and an agreement
was reached by consensus.

2.2. Data Extraction and Risk of Bias Assessment

The following data were extracted from each study: first author, year of publication,
study design, sample size, demographic characteristics, number of patients in each sur-
gical group, gender, mean age, mean BMI (Body Mass Index), ASA (American Society of
Anesthesiologists) Score, tumor stage according to UICC (Union for International Cancer
Control), preoperative radio-chemotherapy rate, mean blood loss, operative time, conver-
sion, anastomotic leakage, postoperative bleeding, wound infection, pneumonia, recurrent
laryngeal nerves (RLN) paralysis, chylotorax, reoperation rate and overall mortality, har-
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vested nodes, R0 resection rate, length of hospital stay, recurrence rate and 5-years overall
survival. In order to assess overall mortality, we considered in-hospital mortality and
30-days and 90-days mortality, performing a sum of these data in each group.

Study quality assessment of the included studies was performed with the Newcastle
Ottawa Scale (NOS) [20]. This scoring system encompasses three major domains (selection,
comparability and exposure), with scores between 0 (lowest quality) to 9 (highest quality).
In case of Randomized Controlled Trial (RCTs), the risk of bias was evaluated according to
the Cochrane Collaboration Tool for assessing risk of bias [21]. According to this scoring
system, seven domains were evaluated as “Low risk of bias” or “High risk of bias” or “Un-
clear” according to reporting on sequence generation, allocation concealment, blinding of
participants, blinding of outcome assessment, incomplete outcome data, selective outcome
reporting, and other potential threats to validity.

2.3. Statistical Analysis

Statistical analysis was performed using Comprehensive Meta-Analysis (Version 2.2,
Biostat Inc, Englewood, NJ, USA, 2005). In order to provide a complete update on robotic
surgery for esophageal cancer, two different group analyses were performed: robotic vs.
laparoscopic and robotic vs. open approach.

Furthermore, for each meta-analysis, two subgroup analyses were performed dividing
the studies according to the surgical procedure (Ivor-Lewis esophagectomy or McKeown
esophagectomy). Finally, a sensitivity analysis excluded studies applying a hybrid ap-
proach (robotic abdominal phase and laparoscopic/open thoracic phase) and studies which
did not specify the surgical procedure.

The odds ratio (OR) along with 95% confidence interval was used as effect estimate for
dichotomous outcomes. In case of rare events, the risk difference (RD) with corresponding
95%CI were calculated, maintaining analytic consistency and including all available data,
in accordance with Messori et al. [22]. In case studies reporting median, range and sample
size, or studies reporting median and quartile ranges, the means and standard deviations
were estimated according to Shi, Luo and Wan [23–25]. In studies reporting mean values
without standard deviation, the latter was imputed, according to Furukawa et al. [26].
The overall effect was tested using Z scores and significance was set at p < 0.05. The
summary estimate was computed under a random effects assumption as per DerSimonian
and Laird [27]. A conservative random effect model was chosen a priori in consideration
of foreseen heterogeneity among the included studies. The heterogeneity among the
studies was quantified by the I2 statistic, with I2 values < 25%, between 25–50%, and >50%
indicating respectively low, moderate, and high heterogeneity [28,29]. The presence of
publication bias was investigated through a funnel plot where the summary estimate of
each study (OR) was plotted against the standard error as a measure of study precision. In
addition to visual inspection, funnel plot symmetry was tested using the Egger’s linear
regression method [30]. p values ≤ 0.05 were considered statistically significant.

3. Results
Study Selection

The electronic search returned a total of 2113 results. After duplicates removal,
543 studies entered first-level screening. A total of 507 studies were excluded for the
following reasons: 44 were written in a language other than English, 10 were case re-
ports/case series, 97 were reviews, 46 were non-comparative studies, 293 were off-topic
and 18 did not provide any usable data. Thus, 35 studies were included in the final analysis,
out of which 20 compared robotic vs. laparoscopic surgery, 11 compared robotic vs. open
esophagectomy and 4 reported on a three-arms comparison (robotic vs. laparoscopic vs.
open) [20–54]. From the latter [54], it was possible to extract only data about the comparison
between robotic and laparoscopic esophagectomy. Record selection is illustrated in the
PRISMA flowchart (Figure 1). Inter-rater agreement was perfect (κ = 1).
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Figure 1. PRISMA Flowchart.

4. Robotic Versus Laparoscopic Esophagectomy
4.1. Study Characteristics

All were prospective (n = 5) or retrospective studies (n = 18) [20–23,29,32,33,37,40,42–
46,48,51,53], reporting on 11,779 patients, of whom 3832 underwent robotic esophagectomy
and 7947 laparoscopic esophagectomy. The characteristics of the included studies are
summarized in Table 1.
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Table 1. Characteristics of the included studies comparing robotic and laparoscopic approach.

Study Study
Design

N. of Enrolled Patients Mean
Age

Mean
BMI

ASA Score (%) Tumor Stage (%)
Tumor Localization (%)

RAMIE MIE I II III IV 0 I II III IV

Ali et al., 2020 retro 1543 5118 63.71 NR NR NR NR NR NR NR NR NR NR NR NR NR NR
Chao et al., 2018 retro 34 34 55.12 NR NR NR NR NR 0.00 47.10 0.00 52.90 0.00 29.40 50.00 20.60 0.00
Chao et al., 2020 retro 39 67 55.60 22.34 NR NR NR NR 0.00 0.00 7.55 92.45 0.00 22.65 48.08 29.27 0.00
Chen et al., 2019 retro 54 54 61.80 22.85 NR NR NR NR NR NR NR NR NR NR NR NR NR
Deng et al., 2018 prosp 52 52 60.95 NR NR NR NR NR 0.00 12.50 45.15 37.50 0.00 16.35 60.60 22.10 0.95
Duan et al., 2020 retro 109 75 60.45 NR NR NR NR NR NR NR NR NR NR NR NR NR NR
Gong et al., 2020 retro 91 144 NR NR NR NR NR NR 0.00 18.59 33.33 20.83 2.57 3.53 33.01 38.78 0.00

Grimminger et al., 2019 prosp 25 25 62.05 25.55 NR NR NR NR 0.00 0.00 0.00 0.00 0.00 0.00 14.00 89.00 0.00
Harbison et al., 2019 retro 100 625 64.00 27.63 17.38 0.00 77.66 4.97 NR NR NR NR NR NR NR NR NR

He et al., 2018 retro 27 27 61.30 21.70 NR NR NR NR 0.00 0.00 0.00 0.00 0.00 7.40 61.10 31.45 0.00
Meredith et al., 2020 prosp 144 95 50.97 21.84 0.35 35.94 42.15 0.67 0.00 15.70 25.11 35.37 2.22 NR NR NR NR

Motoyama et al., 2019 retro 21 38 64.10 NR NR NR NR NR 0.00 38.80 15.14 45.71 0.00 25.78 38.80 35.42 0.00
Park et al., 2016 retro 62 43 65.08 23.42 30.50 65.72 3.84 0.00 0.00 58.08 25.79 15.24 0.94 14.29 22.85 62.86 0.00

Shirakawa et al., 2020 retro 51 51 68.00 21.95 21.60 64.70 13.70 NR NR NR NR NR NR 18.60 46.10 25.50 3.90
Suda et al., 2012 prosp 16 20 65.39 20.78 NR NR NR NR 2.78 33.33 11.11 50.00 2.78 11.11 52.78 36.11 0.00

Tagkalos et al., 2020 prosp 40 40 62.50 26.00 NR NR NR NR NR NR NR NR NR NR NR NR NR
Tsunoda et al., 2021 retro 45 45 NR NR 9.00 89.00 2.00 0.00 0.00 51.00 19.00 23.00 7.00 14.50 28.00 57.50 0.00
Weksler et al., 2012 retro 11 26 62.64 27.66 NR NR NR NR 27.02 32.39 16.23 24.35 0.00 NR NR NR NR
Weksler et al., 2017 retro 569 569 41.90 NR NR NR NR NR 4.70 22.73 19.33 17.53 2.40 NR NR NR NR

Xu et al., 2020 retro 292 292 64.63 23.09 17.50 76.05 6.50 0.00 0.00 38.90 20.90 39.05 1.15 7.50 73.30 19.20 0.00
Yang et al., 2020 retro 271 271 63.45 23.20 1.50 89.50 9.05 0.00 0.00 28.20 33.75 26.95 11.05 12.70 62.75 24.55 0.00

Yerokun et al., 2016 retro 170 170 62.95 NR NR NR NR NR 0.00 0.00 0.00 0.00 0.00 2.95 51.15 45.90 0.00
Zhang et al., 2019 retro 66 66 62.15 23.00 42.45 52.25 5.30 0.00 6.10 27.25 43.20 23.45 0.00 0.00 21.95 28.05 0.00

BMI: Body Mass Index; RAMIE: Robot-Assisted Minimally Invasive Esophagectomy; MIE: Minimally Invasive Esophagectomy; RCT: Randomized Controlled Trial; NR: not reported.All studies reported on the
surgical approach, adopting totally robotic or totally laparoscopic approach, except for the study by Yerokun et al. [55] and Harbison et al. [33], in which a hybrid approach was used and for the study by
Weksler et al. [52], in which information on surgical procedures was insufficiently provided.
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Ivor-Lewis procedure was performed in four studies [39,49,51,56], McKeown esophagec-
tomy in ten studies [34,42,43,53,54,57–61] while nine studies did not specify the interven-
tion [31–33,40,47,48,50,52,55].

4.2. Risk of Bias Assessment

All studies had NOS quality scores greater than 6, indicating fair methodological
quality. Specifically, thirteen studies had NOS quality score = 7; ten studies had NOS
quality score = 8. The NOS quality score is represented in Supplementary Table S1. No
RCTs comparing robotic and laparoscopic transthoracic esophagectomy were published.

4.3. Short Term-Outcomes

Intraoperative outcomes are shown in Figure 2. Operative time was reported by 15 Au-
thors [23,25,26,28–31,35,37,40,45,46,49,54,57] on 2690 procedures (which of 1089 robotic
and 1601 laparoscopic), demonstrating a lower operative time in the laparoscopic group
(MD = 31, p = 0.003, 95%CI 10.743; 52.478), with a significant heterogeneity among
the studies (I2 = 93.720%, p < 0.0001). Estimated blood loss was analysed by 14 Au-
thors [21,23,28,29,33,37–39,42,48,50,51,53,57], on 1977 procedures (which of 995 robotic and
982 laparoscopic), demonstrating no significant differences between the two approaches
(MD = 1.673, p = 0.805, 95%CI −11.638; 14.985), with no heterogeneity among the studies
(I2 = 0%, p = 0.760). Number of conversion was reported by 5 Authors [33,47,50,56,57] on
1591 procedures (which of 533 robotic and 1058 laparoscopic), with no significant differ-
ence between the two groups (RD = −0.007, p = 0.662, 95%CI −0.036; 0.023), but with a
significant heterogeneity among the studies (I2 = 61.532%, p = 0.034).

Statistical analysis for postoperative complications are shown in Figure 3. Anastomotic
leakage was analysed by 18 Authors [22,23,28,29,32,33,37–39,42,43,45,48,50,51,53,54,57] on
3482 procedures (1471 robotic and 2011 laparoscopic), with no statistical differences be-
tween the two approaches (OR = 0.936, p = 0.612, 95%CI 0.724, 1.210) and no significant
heterogeneity among the studies (I2 = 0%, p = 0.871). Postoperative bleeding was reported
by 4 Authors [33,34,57,61] on 1556 procedures (489 robotic and 1067 laparoscopic), demon-
strating no significant differences between the two groups (OR = 0.952, p = 0.882, 95%CI
0.494, 1.831) and no significant heterogeneity among the studies (I2 = 0%, p = 0.898). Post-
operative wound infection was analysed by 10 Authors [32,38,49,51,53,54,56,57,60,61] on
2189 procedures (1088 robotic and 1101 laparoscopic), with no significant differences be-
tween the two approaches (RD = −0.001, p = 0.885, 95%CI −0.010; 0.009) and no significant
heterogeneity among the studies (I2 = 7.881%, p = 0.370). Pneumonia was reported by
15 Authors [27,29,32,38–40,42,43,45,48,50,51,53,54,57] on 2586 procedures (1276 robotic and
1310 laparoscopic), with a lower number of pneumonias in the robotic group (RD = −0.038,
p = 0.003, 95%CI −0.064; −0.013) and no significant heterogeneity among the studies
(I2 = 0%, p = 0.726).
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Figure 3. Robotic versus laparoscopic surgery: postoperative complications. (a) anastomotic leakage; (b) postoperative
bleeding; (c) wound infection; (d) pneumonia; (e) RLN paralysis; (f) chylothorax; (g) mortality.

RLN paralysis was reported by 14 Authors [23,29,32,33,37,38,40,42,45,48,50,51,53,57]
on 2370 procedures (1153 robotic and 1217 laparoscopic), with no significant differences
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between the two approaches (OR = 0.760, p = 0.258, 95%CI 0.473, 1.223), but with a
significant heterogeneity among the studies (I2 = 69.109%, p < 0.0001). Chylothorax
was analysed by 13 Authors [23,27,29,32,38,43,45,48,50,51,53,54,57] on 2433 procedures
(1207 robotic and 1226 laparoscopic), with no significant differences between the two groups
(OR = 0.816, p = 0.564, 95%CI 0.409, 1.627), and no significant heterogeneity among the stud-
ies (I2 = 0%, p = 0.954). Mortality was analysed by 17 Authors [22,23,28,31,32,36,38,41,43–
46,48,50,51,53,54] including 3727 patients (1604 robotic and 2123 laparoscopic) with no
differences between the two groups (RD = −0.003, p = 0.352, 95%CI −0.011; 0.004) and
no significant heterogeneity among the studies (I2 = 0%, p = 0.962). It was not possible to
assess the reoperation rate because no studies reported this data.

Oncologic outcomes are shown in Figure 4. Mean number of harvested nodes
was reported by 17 Authors [31,34,38,40,43,48,49,52–61] on 10,707 procedures (which of
3566 robotic and 7141 laparoscopic), demonstrating a higher number in the harvested
nodes during the robotic approach (MD = 1.307, p = 0.001, 95%CI 0.553; 2.060), with a
significant heterogeneity among the studies (I2 = 74.857%, p < 0.0001). The number of com-
plete resection (R0 resection) was reported by 12 Authors [32,38,48–50,52,53,56–58,60,61]
on 2940 procedures (which of 1469 robotic and 1471 laparoscopic), with no significant
differences between the two procedures (RD = 0.005, p = 0.473, 95%CI −0.009; 0.019), and
no significant heterogeneity among the studies (I2 = 20.790%, p = 0.258).
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Length of hospital stay was represented in Figure 5. This data was reported by 16 Au-
thors [20–23,28,36–38,41,43,45,46,48,50,51,54], on 9642 patients (2713 robotic and 6749 la-
paroscopic), demonstrating no differences between the two approaches (MD = −0.476,
p = 0.289, 95%CI −1.241; 0.289), with a significant heterogeneity among the studies
(I2 = 72.303%, p < 0.0001).
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6. Subgroup Analysis
6.1. Fully Robotic vs. Fully Laparoscopic Procedures

Excluding the two studies in which the surgical procedures was not clearly de-
scribed [52] or in which a hybrid approach was adopted [33,55], this subgroup analysis
included 21 studies [31–34,38,40,42,43,47–51,53,54,56–61].

It was not possible to obtain data about blood loss, wound infection, postoperative
pneumonia, RLN paralysis and chylothorax because the above-mentioned study did not
report these data.

Of the remaining outcomes, the subgroup analysis confirmed the results of the main
analysis in terms of operative time (lower in the laparoscopic group, MD = 32, p = 0.004,
95%CI 9.983; 53.978), conversion (RD = −0.011, p = 0.495, 95%CI −0.043; 0.021), anastomotic
leakage (OR = 0.945, p = 0.693, 95%CI 0.711; 1.254), bleeding (OR = 0.587, p = 0.555,
95%CI 0.100; 3.443), mortality (RD = −0.004, p = 0.283, 95%CI −0.012; 0.003), harvested
nodes (MD = 1.748, p < 0.0001, 95%CI 0.795; 2.701), R0 resection (RD = 0.005, p = 0.528,
95%CI −0.011; 0.022) and hospital stay (MD = −0.462, p = 0.318, 95%CI −1.369; 0.444).

6.2. McKeown Esophagectomy

After excluding four studies about Ivor-Lewis procedure [38,49,51,56] and other nine
in which Ivor-Lewis and Mckeown were not separately analysed [31–33,40,47,48,50,52,55],
ten studies [34,42,43,53,54,57–61] were included in the subgroup analysis according to
Mckeown procedure.

Of intraoperative data, no difference was found between robotic and laparoscopic
approach in terms of estimated blood loss (MD = −1.370, p = 0.876, 95%CI −18.547; 15.808,
respectively). Interestingly, in this subgroup analysis there was no difference in term of
operative time (MD = 11.262, p = 0.334, 95%CI −11.595; 34.118), conversely to the main
analysis. It was not possible to extract data about conversion because only one study was
about McKeown esophagectomy.

Of postoperative complications, the subgroups analysis confirmed no significant
differences were between the two approaches in terms of anastomotic leakage (OR = 0.928,
p = 0.659, 95%CI 0.667, 1.291), bleeding (OR = 0.587, p = 0.555, 95%CI 0.100; 3.443), wound
infection (RD = −0.001, p =0.878, 95%CI −0.009; 0.011), RLN paralysis (OR = 0.994, p = 0.981,
95%CI 0.609, 1.623), chylothorax (OR = 0.880, p = 0.753, 95%CI 0.397; 1.949) and mortality
(RD = −0.004, p = 0.285, 95%CI −0.013; 0.004). Similarly, a significant difference was
confirmed in terms of postoperative pneumonia between the two groups in favour of
robotic surgery (RD = −0.035, p = 0.028, 95%CI −0.066; −0.004).

Confirming the data of the main analysis, robotic surgery was associated with a higher
number of harvested nodes (MD = 1.445, p = 0.001, 95%CI 0.572; 2.318), while no differences
were found in terms of R0 resection and recurrences (RD = 0.004, p = 0.593, 95%CI −0.010;
0.017 and OR = 1.018, p = 0.925, 95%CI 0.701; 1.478, respectively).

Finally, no significant differences were found in terms of length of hospital stay
between the two approaches (MD = −1.058, p = 0.316, 95%CI −3.125; 1.009).

6.3. Ivor-Lewis Esophagectomy

The subgroup analysis on Ivor-Lewis esophagectomy included four studies [38,49,51,56].
The sub-analysis of intraoperative data confirmed that there was no difference between

the two approaches in terms of estimated blood loss (MD = 11.916, p = 0.513, 95%CI −23.794;
47.626, respectively). On the contrary, subgroup analysis showed no difference in terms of
operative time (MD = 39.990, p = 0.112, 95%CI −9.367; 89.347) between the two approaches.
It was not possible to extract data about conversions because only one study was about the
Ivor-Lewis procedure.

Of postoperative complications, no significant differences were found in terms of anas-
tomotic leakage (OR = 0.956, p = 0.907, 95%CI 0.446; 2.049), wound infection (RD = −0.014,
p = 0.531, 95%CI −0.059; 0.030), RLN paralysis (OR = 1.553, p = 0.524, 95%CI 0.401; 6.022),
chylothorax (OR = 0.267, p = 0.255, 95%CI 0.028; 2.597) and mortality (RD = −0.006,
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p = 0.652, 95%CI −0.031; 0.019), confirming the data of the main analysis. Interestingly,
rate of postoperative pneumonia (RD = −0.042, p = 0.123, 95%CI −0.096; 0.011) did not
differ between the two approaches. No data were extracted about postoperative bleeding
because no studies about Ivor-Lewis esophagectomy reported this data.

About oncologic outcomes, no difference was found in terms of R0 resection (RD = 0.024,
p = 0.473, 95%CI −0.042; 0.091) and differently to the main analysis, no difference was
found on number of harvested nodes (MD = 4.091, p = 0.077, 95%CI −0.450; 8.631). No
data were extracted about recurrence because of the absence of studies about Ivor-Lewis
esophagectomy analysing this aspect.

No differences in terms of length of hospital stay was found between the two ap-
proaches (MD = −0.001, p = 0.993, 95%CI −0.274; 0.272).

6.4. Publication Bias

Forest plots were symmetrical across outcomes and the Egger’s test was not suggestive
of publication bias, except for the mean number of harvested nodes and operative time,
in which visual inspection suggested an asymmetric distribution of studies around the
mean and the Egger’s test confirmed significant publication bias (p = 0.01 and p = 0.006,
respectively). Funnel plots are provided in Supplementary Figures S1–S4.

7. Robotic Versus Open Esophagectomy
7.1. Study Characteristics

Seven retrospective [35,41,44,45,52,61,62] and four prospective cohort studies [37,39,46,63],
and two RCTs were identified [11,64], reporting on 4485 patients, out of whom 1919 underwent
robotic esophagectomy and 2566 open esophagectomy. The characteristics of the included
studies are detailed in Table 2.

About surgical intervention, all the surgical interventions of the included studies
were performed with a fully robotic approach, except for the study by Rolff et al. [45],
in which an hybrid procedure (robotic approach to the abdomen and open approach
to the thorax) was used. Two articles reported on Ivor-Lewis procedure [37,39], one on
McKeown esophagectomy [61] while ten did not provide relevant data to allow subgroup
analysis [11,35,41,44–46,52,62–64].
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Table 2. Characteristics of the included studies comparing robotic and open approach.

Study Study
Design

N. of Enrolled Patients Mean
Age

Mean
BMI

ASA Score (%) Tumor Stage (%)
Tumor Localization (%)

RAMIE OPEN I II III IV 0 I II III IV

Espinoza-Mercado
et al., 2019 retro 406 406 64 NR NR NR NR NR 14.65 25.75 37.8 21.3 0 NR NR NR NR

Gong et al., 2020 retro 91 77 NR NR NR NR NR NR 2.974 33.33 39.88 21.42 2.38 26.18 37.50 31.54 0.91
Jeong et al., 2016 retro 88 159 NR 22.66 NR NR NR NR 41.19838 42.53 13.12 2.78 0.35 NR NR NR NR

Mehdorn et al., 2020 prosp 11 11 63.8 27.4 0 31.85 68.15 0 13.65 9.1 36.4 27.3 4.55 NR NR NR NR
Meredith et al., 2020 prosp 144 475 64.46 28 0.38 49.62 49.20 0.70 9.66 34.78 41.24 12.27 44.43 NR NR NR NR

Osaka et al., 2018 retro 30 30 62.5 NR NR NR NR NR 26.65 45 18.3 10 0 26.65 48.35 26.35 0
Pointer et al., 2020 retro 222 222 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

Rolff et al., 2017 retro 56 160 64.65 26.51 27.03 50 23.22 0.51 NR NR NR NR NR NR NR NR NR
Sarkaria et al., 2019 prosp 64 106 61.89 29.12 0 14.16 79.38 6.48 22.48 32.52 24.83 8.24 0 0 1.18 63.54 41.54
Weksler et al., 2017 retro 569 569 63 NR NR NR NR NR 20.4 32.15 27.7 14.35 35.55 NR NR NR NR

Yun et al., 2020 prosp 130 241 62.92 23.21 NR NR NR NR 20.74 19.16 20.51 3.78 0 43.62 31.80 5.92 4.54

BMI: Body Mass Index; RAMIE: Robot-Assisted Minimally Invasive Esophagectomy; RCT: Randomized Controlled Trial; NR: not reported.
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7.2. Risk of Bias Assessment

All studies had NOS quality scores greater than 6, indicating that all these studies had
fair methodological quality. Specifically, seven studies had NOS quality score = 8; six had
NOS quality score = 7. The NOS quality score is represented in Table 2. The two included
RCTs [11,64] had low risk of bias.

7.3. Short-Term Outcomes

Intraoperative outcomes are shown in Figure 7. Operative time was reported by
9 Authors [11,35,37,38,41,45,46,61,63] on 1982 procedure (which of 668 robotic and 1314
open), demonstrating a lower operative time in the open group (MD = 57, p < 0.0001,
95%CI 27.597; 87.684), with a significant heterogeneity among the studies (I2 = 97.190%,
p < 0.0001). Estimated blood loss was analysed by 8 Authors [11,35,39,41,45,46,61,63], on
1960 procedures (which of 657 robotic and 1303 open), demonstrating a significantly lower
blood loss in the robotic group (MD = −118.783, p = 0.001, 95%CI −187.492; −50.073), with
a significant heterogeneity among the studies (I2 = 96.086%, p < 0.0001).
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Postoperative complications are shown in Figure 8. Anastomotic leakage was analysed
by 8 Authors [11,35,39,41,44,46,61,63] on 2188 procedures (823 robotic and 1365 open), with
no statistical differences between the two approaches (OR = 0.953, p = 0.799, 95%CI 0.655;
1.385) and no significant heterogeneity among the studies (I2 = 0%, p = 0.556). Postoperative
bleeding was reported by 4 Authors [11,46,61,63] on 818 procedures (339 robotic and 479
open), demonstrating no significant differences between the two groups (RD = −0.007,
p = 0.372, 95%CI −0.022; 0.008) and no significant heterogeneity among the studies (I2 = 0%,
p = 0.439). Postoperative wound infection was analysed by 6 Authors [11,39,41,44,46,61]
on 1570 procedures (605 robotic and 965 open), with a significant differences between the
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two approaches in favour of robotic surgery (OR = 0.425, p = 0.002, 95%CI 0.245; 0.737) and
no significant heterogeneity among the studies (I2 = 11.051%, p = 0.345). Pneumonia was
reported by 6 Authors [11,35,39,44,61,63] on 1958 procedures (729 robotic and 1229 open),
with a lower number of pneumonias in the robotic group (OR = 0.548, p = 0.03, 95%CI 0.318;
0.944), but with a significant heterogeneity among the studies (I2 = 61.247%, p = 0.024).
Pneumonia rate are expressed in percentage and are available in Supplementary Table S3.

RLN paralysis was reported by 6 Authors [11,35,41,46,61,63] on 1125 procedures
(457 robotic and 668 open), with no significant differences between the two approaches
(OR = 1.352, p = 0.120, 95%CI 0.925, 1.978) and no significant heterogeneity among the
studies (I2 = 0%, p = 0.807). Chylothorax was analysed by 4 Authors [11,46,61,63] on
818 procedures (339 robotic and 479 open), with no significant differences between the
two groups (OR = 1.407, p = 0.273, 95%CI 0.764; 2.589), and no significant heterogeneity
among the studies (I2 = 0%, p = 0.463). Re-operations were reported by 3 Authors [11,38,44]
on 1172 procedures (420 robotic and 752 open), with a significant differences in favour of
robotic surgery approaches (OR = 0.300, p = 0.035, 95%CI 0.098, 0.919) with no significant
heterogeneity among the studies (I2 = 58.531%, p = 0.09). Mortality was analysed by
9 Authors [11,39,44–46,52,61–63] including 4047 patients (1736 robotic and 2311 open) with
no differences between the two groups (OR = 0.971, p = 0.917, 95%CI 0.555; 1.699) and no
significant heterogeneity among the studies (I2 = 72.556%, p < 0.0001).
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Oncologic outcomes are shown in Figure 9. Mean number of harvested nodes was re-
ported by 10 Authors [11,37,38,41,45,46,52,61–63] on 3685 procedures (which of 1555 robotic
and 2130 open), demonstrating a higher number of the harvested nodes during the robotic
approach (MD = −4, p < 0.0001, 95%CI −5.299; −2.888), with a significant heterogeneity
among the studies (I2 = 94.059%, p < 0.0001). The number of complete resection (R0 re-
section) was reported by 7 Authors [11,39,46,52,61–63] on 3387 procedures (which of 1458
robotic and 1929 open), with a significantly higher number of R0 resection in the robotic
group (OR = 1.420, p = 0.043, 95%CI 1.011; 1.994), and no significant heterogeneity among
the studies (I2 = 0%, p = 0.462). Oncologic outcomes are expressed as means and standard
deviation (harvested nodes) and percentage (R0 resection rate) in Supplementary Tables S4
and S5, respectively.
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Length of hospital stay was represented in Figure 10. This data was reported by
9 Authors [11,35,37,41,44–46,62,63], on 2549 patients (1110 robotic and 1439 open), demon-
strating a shorter length of hospital stay in the robotic group (MD = −1.341, p < 0.0001,
95%CI −1.797; −0.885), with a significant heterogeneity among the studies (I2 = 87.169%,
p < 0.0001).
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8. Long-Term Outcomes

Long-term outcomes are represented in Figure 11. Recurrences was analysed by
2 Authors [63,64] on 480 patients (184 robotic and 296 open), with no significant differences
between the two groups (OR = 0.955, p = 0.853, 95%CI 0.590; 1.547) and no significant
heterogeneity among the studies (I2 = 0%, p = 0.971). The 5-years overall survival was
reported by 4 Authors [11,36,44,64] on 1670 procedures (834 robotic and 836 open), with
no significant differences (OR = 1.018, p = 0.861, 95%CI 0.837; 1.237) and no significant
heterogeneity among the studies (I2 = 0%, p = 0.562).
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9. Subgroup Analysis
9.1. Fully Robotic vs. Open Procedures

To perform this subgroup analysis only the study by Rolff et al. [45] and Weksler et al. [52]
were excluded. Thus, the subgroup analysis included eleven studies [11,35,37,38,41,44,46,61–64].

About intraoperative outcomes, subgroup analysis confirmed a significantly lower
operative time (MD = 61.676, p < 0.0001, 95%CI 28.905; 94.448) in the open surgery group
and lower estimated blood estimated blood loss (MD = −100.742, p = 0.004, 95%CI −169.793;
−31.692) in the robotic group.

About postoperative complications, only data about mortality could be extracted, without
a significant difference between the two approaches (OR = 0.855, p = 0.668, 95%CI 0.418; 1.748).
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Only data regarding harvested nodes could be extracted in terms of oncologic out-
comes in the subgroup analysis, confirming a significant difference between the two
approaches in favour of robotic approach (MD = 3.783, p = 0.002, 95%CI 1.385; 6.180).

Hospital stay was confirmed to be shorter in the robotic group (MD = −1.353, p < 0.0001,
95%CI −1.814; −0.892).

9.2. McKeown Esophagectomy

It was not possible to perform a subgroup analysis because only one study [61]
reported data about the comparison between robotic and open McKeown esophagectomy.

9.3. Ivor-Lewis Esophagectomy

Ivor-Lewis esophagectomy was described by only two studies [37,38]. It was possible
to perform a subgroup analysis about operative time and harvested nodes. Analysis of op-
erative time showed no significant differences between the two approaches (MD = 60.568,
p = 0.367, 95%CI −71.084; 192.219). On the contrary, the analysis on harvested nodes con-
firmed the higher number of this parameter in the robotic group (MD = 10.029, p < 0.0001,
95%CI 8.768; 11.289).

9.4. Publication Bias

Plot analysis showed a symmetrical distribution of the studies evaluating all the
analysed outcomes, without evidence of publication bias by the Egger’s test. Funnel plots
are shown in Supplementary Figures S5–S8.

10. Discussion

The standard treatment of the esophageal cancer is nowadays considered radical
esophagectomy with a complete lymphadenectomy whenever this is feasible [65]. Min-
imally invasive approaches have emerged over the last decades, with the objective to
minimize surgical trauma and optimize postoperative outcomes [65].

Minimally invasive esophagectomy (MIE) has gained momentum because of evidence
suggesting lower postoperative complication rate and similar oncologic results compared
to conventional thoracotomy approaches [66–68].

More recently, Robot-Assisted Minimally Invasive Esophagectomy (RAMIE) was
introduced as an alternative minimally invasive method which may allow improved
view of thoracic structures and increased precision [69]. Nevertheless, the presumed
advantages of the robotic surgery are still under debate [69–71]. In this setting, three
meta-analysis tried to assess if the robotic approach could be considered the best treat-
ment to the esophageal cancer [70–72]. In a network meta-analysis on 98 studies and
32,315 patients, Siaw-Acheampong et al. [70] compared all combinations of open, laparo-
scopic and robotic approaches to transthoracic esophagectomy. Their results demonstrated
that compared with open surgery, both laparoscopic and robotic approaches were associ-
ated with less blood loss, significantly lower rates of pulmonary complications, shorter
hospital stay and higher mean of harvested nodes, concluding that minimally invasive
approaches were related with better postoperative outcomes with no compromise in onco-
logic results. Regarding the comparison between laparoscopic and robot-assisted approach,
Zheng et al. [71] identified fourteen studies with a total of 2887 patients included in the
final an analysis. The Authors demonstrated that RAMIE was associated with a lower
incidence of pneumonia and vocal cord palsy than MIE, but still be associated with longer
operative time. Additionally, Li et al. [72] demonstrated in a meta-analytic comparison
between 866 patients in the RAMIE group and 883 patients in the MIE group that RAMIE
yielded significantly higher number of lymph nodes. Both Authors independently con-
cluded that RAMIE could be a standard treatment for transthoracic approach to esophageal
cancer. From that knowledge, in the last two years fifteen new studies have been published
comparing robotic approach with the other surgical techniques, confirming the fervid
interest in this topic.
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By pooling respectively 11,779 comparing robotic versus laparoscopic and 4485 robotic
versus open esophagectomy we are able to provide pros and cons of the robotic approach.

Robotic approach appears to provide some advantages over open approach. In fact,
our results showed that robotic approach is clearly superior over open surgery in terms
of intraoperative outcomes (less blood loss p = 0.001), postoperative complications (lower
wound infection rate, p = 0.002; pneumonia rate, p = 0.03; re-operation rate p = 0.03) and on-
cologic outcomes (mean number of harvested nodes, p < 0.0001; R0 resection rate, p = 0.043).
The possible explanation of these better oncologic results could lay in the magnification of
the images and in the finer dissection movements properly related to the robotic technology.
Considering the current literature, these results are completely in accordance with the pre-
vious network meta-analysis by Siaw-Acheampong et al. [70], confirming the advantages
of the robotic approach over open technique. On the contrary, no disadvantages were
associated with the robotic surgery, except for operative time (longer in the robotic group,
p < 0.0001), but with no association with non-surgical postoperative complications. Finally,
we can assess the safety of robotic approach, guaranteed by the absence of significant
differences over open surgery in terms of postoperative complications. Additional conclu-
sion could be provided by the comparison between robotic and conventional laparoscopic
approach. Robotic approach seemed to be superior to conventional laparoscopy in terms
of oncologic outcomes (mean number of harvested nodes obtained, p = 0.001) and postop-
erative complications (incidence of pneumonia after surgery, p = 0.003). Even in this case
robotic surgery has the only disadvantage of operative time (shorter in the laparoscopic
group, p = 0.003), but this data was not associated with increased postoperative morbidi-
ties.Our results are in accordance with the results of the meta-analysis by Zheng et al. [71]
in terms of longer operative time in the robotic group. Similarly pneumonia rate was lower
in the robotic group, and this data has been confirmed by our analysis. Comparing our
results with the results obtained by the meta-analysis by Li et al. [72], it is easy to notice an
accordance in the setting of number of yielded lymph nodes, significantly higher in the
robotic group. On the contrary, Li et al. [72] demonstrated a lower blood loss in the robotic
group, in our meta-analysis there was no significant differences between the two groups.

Finally, it is important to highlight that our results were confirmed by the subgroups
analyses both for robotic versus laparoscopic and robotic versus open comparison.

In fact, excluding hybrid procedures in both main comparisons, and organizing the
studies according to Ivor-Lewis or McKeown procedures, we could confirm the superiority
of robotic approach.

Despite these results, major limitation of this study has to be addressed. As known,
meta-analysis has to be considered the mirror of the current literature and, thus, the major
limitation of our report is that most studies are on a retrospective manner, foreclosing the
possibility to exclude patients selection bias.

We cannot exclude that patients’ allocation into robotic, laparoscopic or open group
would be related to surgeons’ preference and experience, patients’ and tumors’ characteristics.

11. Conclusions

Even if further randomized clinical trials are needed to give definitive conclusions to
include the robotic esophagectomy as the gold standard treatment for esophageal cancer,
we can assess that robotic surgery could be considered associated with several advantages
over both open and laparoscopic surgery.

Take home messages from our analysis are:

• robotic surgery could be considered absolutely safe, being the results about postopera-
tive complications comparable to open and laparoscopic surgery;

• robotic surgery could be considered superior to open approach, being guaranteed less
postoperative complications and superior oncologic results;

• robotic approach appeared to be slightly superor to laparoscopic surgery, providing
less postoperative pneumonia and higher number of harvested nodes;
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• being by our results safety and effectiveness of robotic surgery to treat esophageal
cancer, future perspective is the call to perform randomized clinical trial to confirm
the advantages of robotic surgery. Definitive conclusions cannot be drawn, due to
limitations of the current literature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11070640/s1, Supplementary Figure S1. Funnel plot analysis of the comparison between
robotic and laparoscopic surgery about intraoperative outcomes. (a) operative time; (b) estimated
blood loss; (c) conversion. Supplementary Figure S2. Funnel plot analysis of the comparison be-
tween robotic and laparoscopic surgery about postoperative complications. (a) anastomotic leakage;
(b) postoperative bleeding; (c) wound infection; (d) pneumonia; (e) RLN paralysis; (f) chylothorax;
(g) mortality. Supplementary Figure S3. Funnel plot analysis of the comparison between robotic and
laparoscopic surgery about oncologic outcomes. (a) number of harvested nodes; (b) R0 resection.
Supplementary Figure S4. Funnel plot analysis of the comparison between robotic and laparoscopic
surgery about length of hospital stay. Supplementary Figure S5. Funnel plot analysis of the com-
parison between robotic and laparoscopic surgery about long-term outcomes. (a) recurrences; (b)
5-years overall survival. Supplementary Figure S6. Funnel plot analysis of the comparison between
robotic and open surgery about intraoperative outcomes. (a) operative time; (b) estimated blood loss.
Supplementary Figure S7. Funnel plot analysis of the comparison between robotic and open surgery
about postoperative complications. (a) anastomotic leakage; (b) postoperative bleeding; (c) wound
infection; (d) pneumonia; (e) RLN paralysis; (f) chylothorax; (g) re-operation rate; (h) mortality.
Supplementary Figure S8. Funnel plot analysis of the comparison between robotic and open surgery
about oncologic outcomes. (a) number of harvested nodes; (b) R0 resection. Supplementary Figure S9.
Funnel plot analysis of the comparison between robotic and open surgery about length of hospital
stay. Supplementary Figure S10. Funnel plot analysis of the comparison between robotic and open
surgery about 5-years overall survival. Supplementary Table S1. NOS quality assessment of the
included studies comparing robotic and laparoscopic approach. Supplementary Table S2. NOS
quality assessment of the included studies comparing robotic and open approach. Supplementary
Table S3. Comparison between robotic and open surgery in terms of pneumonia rate.
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