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Abstract

Assessing prevalent comorbidities is a common approach in health research for identifying

clinical differences between individuals. The objective of this study was to validate and com-

pare the predictive performance of two variants of the Elixhauser comorbidity measures

(ECM) for inhospital mortality at index and at 1-year in the Cerner Health Facts® (HF) U.S.

database. We estimated the prevalence of select comorbidities for individuals 18 to 89

years of age who received care at Cerner contributing health facilities between 2002 and

2011 using the AHRQ (version 3.7) and the Quan Enhanced ICD-9-CM ECMs. External

validation of the ECMs was assessed with measures of discrimination [c-statistics], calibra-

tion [Hosmer–Lemeshow goodness-of-fit test, Brier Score, calibration curves], added pre-

dictive ability [Net Reclassification Improvement], and overall model performance [R2]. Of

3,273,298 patients with a mean age of 43.9 years and a female composition of 53.8%, 1.0%

died during their index encounter and 1.5% were deceased at 1-year. Calibration measures

were equivalent between the two ECMs. Calibration performance was acceptable when pre-

dicting inhospital mortality at index, although recalibration is recommended for predicting

inhospital mortality at 1 year. Discrimination was marginally better with the Quan ECM com-

pared the AHRQ ECM when predicting inhospital mortality at index (cQuan = 0.887, 95% CI:

0.885–0.889 vs. cAHRQ = 0.880, 95% CI: 0.878–0.882; p < .0001) and at 1-year (cQuan =

0.884, 95% CI: 0.883–0.886 vs. cAHRQ = 0.880, 95% CI: 0.878–0.881, p < .0001). Both the

Quan and the AHRQ ECMs demonstrated excellent discrimination for inhospital mortality of

all-causes in Cerner Health Facts®, a HIPAA compliant observational research and privacy-

protected data warehouse. While differences in discrimination performance between the

ECMs were statistically significant, they are not likely clinically meaningful.
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Introduction

With data on over 47 million unique patients who received care at nearly 500 US care facilities

since 2000, the Cerner Health Facts1 (HF) electronic health record database is a rich source

of data available for epidemiological and health services research [1]. In addition to demo-

graphic and payer data, HF contains longitudinal diagnostic, procedure, pharmacy, and labo-

ratory information on individuals receiving care within Cerner data networks.

To date, the predictive performance of commonly used comorbidity risk adjustment meth-

ods have yet to be corroborated in HF. Measures of comorbidity are useful tools for controlling

for variation in overall patient health or adjusting for case-mix in epidemiological studies

using electronic health data [2–5]. They are also used in observational drug effectiveness,

health services, and outcomes studies when the unit of analysis cannot be appropriately ran-

domized [6–10]. Measures of patient comorbidity have shown to be good predictors of short-

and long-term mortality, hospital costs, length of stay (LOS), and readmission [11–14]. Failure

to take patient comorbidity into account may lead to biased analyses, possibly due to con-

founding or systematic differences in health status among populations. Validated comorbidity

measures may be used to address this issue.

In its simplest form, measures of comorbidity are aggregates of diagnostic codes used to

identify the prevalence of predetermined health conditions in individuals documented in health

data sources such as electronic health records. Of the many comorbidity measures validated for

use with electronic health data, the original Elixhauser [15] comorbidity measures (ECM) are

frequently reported as having greater predictive performance for short- and long-term mortality

than competing models [11, 12, 16, 17]. The ECM target 30 medical, psychiatric, and lifestyle-

related health conditions that are negatively associated with adverse health outcomes: congestive

heart failure, cardiac arrhythmia, valvular disease, pulmonary circulation disorders, peripheral

vascular disorders, hypertension (un/complicated), paralysis, neurological disorders, chronic

pulmonary disease, uncomplicated diabetes, complicated diabetes, hypothyroidism, renal fail-

ure, liver disease, peptic ulcer disease without bleeding, aids/HIV, lymphoma, metastatic cancer,

solid tumor without metastasis, rheumatoid arthritis/collagen vascular diseases, coagulopathy,

obesity, weight loss, fluid and electrolyte disorders, blood loss anemia, deficiency anemia, alco-

hol abuse, drug abuse, psychoses, and depression. A few years after the publication of the origi-

nal ECM, Quan et al. [18] and the Agency for Healthcare Research and Quality (AHRQ) [19]

separately developed revised ECM variants, with Quan and colleagues reporting enhanced

predictive performance for inhospital mortality compared to both the original ECM and the

AHRQ ECM (version 3.0). Studies have not examined whether the Quan variant is superior to

the most recent AHRQ ECM (version 3.7) at predicting inhospital mortality and inhospital

mortality at 1-year despite differences in the ICD-9-CM codes used to identify prevalent health

conditions by each variant. The AHRQ ECM also differs from the Quan ECM by the exclusion

of diagnostic codes making up a cardiac arrhythmia health condition group. Neither the Quan

nor the AHRQ ECMs have been validated in HF.

The objectives of this study were to conduct an external validation and compare the perfor-

mance of the Quan and AHRQ (version 3.7) ECMs for predicting inhospital mortality of all-

causes at index and at 1-year in HF.

Methods

Data source

Study data were derived from inpatient and emergency care encounters in Cerner Health

Facts1 (Kansas City, MO, USA), an administrative health database compliant with the US
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Health Insurance Portability and Accountability Act (HIPAA). Approximately 500 health care

facilities have contributed patient-level clinical encounter data to HF since January 2000. Data

contributors range in size from those with fewer than five beds to those with over 500 and are

located throughout the U.S. with a greater proportion situated in the Northeastern region of

the United States [20]. University affiliated teaching hospitals comprise 40% of data contribu-

tors and they contribute more than 60% of all health encounters. Contributing health care

facilities are categorized by teaching status, population density, bed size, and census region.

HF data includes diagnoses recorded during emergency department (ED) visits, outpatient

care, and hospitalizations, pharmacy orders, surgical procedures, laboratory and microbiology

tests, and clinical procedures [1].

This study was approved by the Office for Research Ethics and Integrity at the University of

Ottawa.

Study population and index encounter

Individuals 18 to 89 years of age at the time of an ED or inpatient encounter at any HF contrib-

uting facility between January 2002 and December 2012 were eligible for inclusion. One ED

or inpatient encounter was randomly selected between January 1st, 2002 and December 31st,

2011 as the index encounter for each individual. Outpatient visits were excluded as possible

index encounters since deaths, the study outcome, are relatively infrequent during outpatient

care [21, 22]. Persons younger than 18 years were excluded due to the relatively lower preva-

lence of Elixhauser health conditions and mortality in this population. Individuals 90 years or

older are assigned to a single category in HF in order to comply with HIPAA requirements

and were excluded to ensure age remained continuous in our analyses. Care recipients who

transferred to or from any other health facility during the index encounter were excluded to

avoid cases with higher potential for missing information [23]. Patient characteristics included

sex, age at the index encounter, health insurance status, and race restricted to Caucasians, Afri-

can Americans, Hispanics, and Asians. Health insurance status was categorized using AHRQ

recommendations [24], including private, Medicaid, Medicare, uninsured [self-pay], other

(TRICARE-CHAMPUS, international plan, research funded, Title V, worker’s compensation),

or missing. For reasons unknown, some HF contributing health care facilities voluntarily with-

hold information on the health insurance status of their patients, which leads to a significant

proportion (>40%) of missing values.

Elixhauser comorbidity measures and variants

The original ECM [15] comprises binary indicators for the diagnosis of 30 clinical conditions,

each defined by a combination of codes according to the International Classification of Dis-

ease, Ninth Edition (ICD-9) [25]. Two variants of the original ECM were compared with the

study sample; the AHRQ’s latest comorbidity software (version 3.7) [19] and Quan et al.’s [18]

Enhanced ICD-9-CM classification of comorbidities. The presence or absence of ECM comor-

bidities was assessed by examining the ICD-9-CM diagnostic codes recorded during the index

encounter.

Outcomes

The primary study outcomes were inhospital mortality of any causes during the index encoun-

ter and at 1-year. Inhospital mortality at 1-year was defined as a death recorded in a discharge

abstract for an ED visit or an inpatient admission during the year that followed the admission

date of the index encounter. Deaths recorded during the index encounter were therefore

included in the mortality at 1-year outcome.
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Data analysis

The prevalence of comorbidities was described with counts and percentages while fre-

quency differences between the ECMs were compared with McNemar’s test [26]. To quan-

tify the size and the clinical importance of the observed differences in the prevalence of

comorbidities across ECMs, we derived Cohen’s h [27]. Multiple logistic regression was

used to predict the risk of mortality outcomes and output overall measures of model perfor-

mance. External validation of the ECMs in HF was accomplished by deriving measures of

calibration and discrimination for every predictive model, outcome, and sample combina-

tion considered [28, 29]. Model discrimination was assessed using the Area under the

Receiver Operating Characteristic (ROC) curve (AUROC), an indicator of the ability of the

ECMs to discriminate between the mortality statuses [30, 31]. The AUROC is often referred

to as the concordance index number (c-statistic) and ranges between 0.5 [no discrimina-

tion] and 1.0 [perfect discrimination], with values above 0.7, 0.8, and 0.9 considered reason-

able, strong, and exceptional, respectively [32]. The discrimination performance of each

ECM was compared to 1) a baseline model, and 2) the competing ECM. Predictors in the

baseline model were limited to sex and age at the index encounter to align with prior ECM

validation and comparison studies [33, 34]. Differences in the AUROC between the fitted

models were tested using the ROC and ROCCONTRAST statements in SAS [30]. The ROC-

CONTRAST option is an algorithm based on the non-parametric Mann-Whitney statistics

developed by DeLong et al. [35] for comparing the significance of differences between cor-

related ROC curves.

Model calibration measures included the Hosmer–Lemeshow goodness-of-fit test, which

evaluates the degree of agreement between the predicted and observed risk of inhospital mor-

tality [36]. The Hosmer–Lemeshow goodness-of-fit test outputs a Pearson chi-square score

with a corresponding p-value: rejection of the null hypothesis indicates an imperfect correla-

tion between predicted and observed values. Calibration plots displaying predicted inhospital

mortality probabilities on the x-axis and observed inhospital mortality frequencies on the y-

axis were generated to visually inspect calibration performance across risk deciles. The plots

were enhanced using a smoothing spline function. Brier scores, which equate to the mean

squared difference between predicted probabilities and observed outcomes, were included as

measures of model accuracy [with lower Brier scores reflecting greater accuracy] [37].

Explained variation was reported in terms of the adjusted R2.

It has been argued that the AUROC can be of limited value when comparing small incre-

mental differences between predictive models [38]. To quantify the net improvement in pre-

dictive ability of the ECM that achieved the highest level of discrimination over the ECM with

the lowest level of discrimination, we computed the net reclassification improvement (NRI)

measure [39, 40]. Category-free NRI (NRI>0) assesses whether individuals are reclassified cor-

rectly in a prognosis model compared to a reference model. NRI>0 is a quantification of the

net correct changes in model-based probabilities for both events [where improvement equates

to increased probabilities of the outcome] and non-events [where improvement equates to

decreased probabilities of the outcome] [41]. The NRI was implemented without risk catego-

ries because this approach allows for universal comparisons, it is robust against changing

event-rated, and it was the most objective approach available in light of the insufficient evi-

dence for meaningful risk categories for all-cause mortality in the literature [40]. NRI>0 values

were computed using a SAS macro developed by Kennedy et al. [42] and are reported with the

percentage of events and non-events correctly reclassified. Statistical analyses were completed

with SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
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Risk groups

Recent history of hospitalization or emergency department use is associated with increased

risk of hospital readmission and death [43, 44]. To further explore the utility of the ECMs,

measures of discrimination and calibration performance were generated for both high and low

risk patient groups. Individuals with evidence of one or more inpatient stay in the 12 months

preceding the index encounter, or three or more emergency department visits in the 3 months

preceding the index encounter, were defined as high risk. Patients that did not satisfy the high-

risk criteria were assigned to the low risk group.

Sensitivity analyses

Admissible index encounters in this study included ED visits and inpatient stays. It is reason-

able to hypothesize that persons admitted for inpatient stays would generally be at greater risk

of inhospital death than persons visiting the emergency department. To investigate potential

differences in ECM performance by index encounter type, complimentary validation analyses

were performed on index encounters recorded as ED visits and inpatient stays separately.

Results

We identified 3,273,298 unique individuals who satisfied our inclusion criteria and received

care at a HF care facility between 2002 and 2011. Mean age was 43.9 years and women were

the majority (53.8%) (Table 1). Individuals were primarily Caucasians (72.3%), with others

identified as African American (21.7%), Hispanic (4.5%), or Asians (1.5%). Index encounters

were reported by health care institutions from the four US census regions: Northeast (36.1%),

Midwest (19.8%), South (32.9%), and West (11.2%). Privately insured individuals comprised

48.3% of non-missing payer class cases. Most patients in the sample were classified as low risk

(92.0%). Approximately two-thirds of index encounters were ED visits (67.4%). A total of

31,298 (1.0%) and 50,215 (1.5%) inhospital deaths of all-cause were recorded during the index

encounter and at 1-year, respectively. As expected, high risk patients had a greater frequency

of inhospital mortality than low risk patients at index [1.9% vs 0.9%, χ2 (1, N = 3,273,298) =

2,792.1, p< .0001], and at 1 year [4.2% vs 1.3%, χ2 (1, N = 3,273,298) = 13,509.1, p< .0001].

In descending order, hypertension, uncomplicated diabetes, chronic pulmonary disease,

and fluid and electrolyte disorders were the most prevalent conditions identified by both

ECMs (Table 2). Excluding HIV/AIDS, differences in prevalence between the ECMs for every

health condition group were statistically significant based on McNemar’s test, p<0.0001. How-

ever, for most of the conditions assessed, the variation in prevalence between the ECMs dif-

fered by less than 1%, with the greatest differences observed for deficiency anemia (2.58%) and

psychoses (1.22%). According to the interpretation criteria suggested by Cohen [27], only the

deficiency anemia group demonstrated a small (h = 0.203) practically meaningful difference in

prevalence by ECM.

Table 3 reports the performance measures of discrimination and calibration for the study

sample and by patient risk groups. When predicting inhospital mortality during the index

encounter, the Quan model (c = 0.887, 95% CI: 0.885–0.889) had negligible but significantly

higher discrimination than the AHRQ (c = 0.880, 95% CI: 0.878–0.882) and baseline (c = 0.820,

95% CI: 0.818–0.822) models, p< .0001. Similar results were obtained for predicting inhospital

mortality at 1-year, the discrimination performance of the Quan model (c = 0.884, 95% CI:

0.883–0.886) marginally exceeded the discrimination performance of the AHRQ (c = 0.880,

95% CI: 0.878–0.881) and baseline (c = 0.826, 95% CI: 0.824–0.827) models, p< .0001. Model

discrimination for the mortality outcomes remained strong (AUROC>0.8) and the observed

advantage of the Quan ECM over the AHRQ ECM was confirmed in both risk group samples.
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ROC plots displaying the minor discrimination advantage of the Quan ECM over the AHRQ

ECM are provided in Figs 1 and 2.

There were no differences in Brier scores between competing ECMs, irrespective of the pre-

dicted outcome. The Brier scores were consistently lower when predicting inhospital mortality

at index than at 1 year. These findings might indicate that the ECMs have better calibration

when predicting the former outcome than when predicting the latter. The calibration plots

reported in Figs 3 and 4 show good agreement between predicted and observed risk of inhospi-

tal mortality at index. However, the level agreement between the predicted and observed risk

of inhospital mortality at 1 year were less satisfactory, suggesting the need for recalibration. As

the observed risk of mortality at 1 year increased, the ECMs increasingly over-predicted the

outcome. Results from the Hosmer–Lemeshow goodness-of-fit test indicated imperfect agree-

ment between expected and observed risk, irrespective of the ECM-outcome combination

Table 1. Patient demographic and index encounter characteristics, N = 3,273,298.

Characteristic N (%)

Sex

Female 1,761,525 (53.8)

Male 1,511,773 (46.2)

Age (Years)

Mean ± SE 43.9 ± 0.01

Race

Caucasian 2,366,665 (72.3)

African American 711,051 (21.7)

Hispanic 146,877 (4.5)

Asian 48,705 (1.5)

Insurance Status

Private 795,449 (24.3)

Medicare 370,701 (11.3)

Medicaid 248,009 (7.6)

Uninsured 378,536 (11.6)

Other 139,745 (4.3)

Missing 1,340,858 (41.0)

Risk Group

Low 3,010,916 (92.0)

High 262,382 (8.0)

Inhospital Mortality

Deaths 31,298 (1.0)

Inhospital Mortality at 1-Year

Deaths 50,215 (1.5)

Care Setting, Index Encounter

ED Visit 2,204,680 (67.4)

Inpatient Stay 1,068,618 (32.6)

Census Region

Northeast 1,180,270 (36.1)

Midwest 648,644 (19.8)

South 1,077,965 (32.9)

West 366,419 (11.2)

Abbreviations: ED, emergency department; SE, Standard error.

https://doi.org/10.1371/journal.pone.0174379.t001
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assessed. This is expected given the large study sample and previously reported simulation

results from Kramer et al. [36] showing the Hosmer-Lemeshow test to be particularly sensitive

to sample size: even with a minor deviation (0.4%) from perfect fit between expected and

observed risk, studies with sample sizes of 50,000 or more observations rejected the null

hypothesis 100% of the time.

Explained variation (R2) was consistently higher, by approximately 1 to 2% with the Quan

ECM compared to the AHRQ ECM across patient groups and mortality outcomes. Measures

of discrimination (AUROC), calibration (Brier scores), and overall performance (R2) were

consistently better in the low risk patient group compared to the high risk patient group.

Net reclassification improvements were observed by the Quan ECM over the AHRQ ECM

for the full sample, in high and low risk patients, and in patients with index encounter limited

to inpatient stays. However, the magnitude of these improvements was low to moderate,

between 0.35 to 0.62, on a possible NRI range of -2 to 2. The positive NRI scores observed, and

Table 2. Prevalence of comorbid conditions by ECM variant, N = 3,273,298.

Condition Quan, N (%) AHRQ, N (%) McNamar’s Test

P Value

Cohen’s h

Hypertension 572,139 (17.48) 573,457 (17.52) < .0001 0.001

Chronic Pulmonary Disease 256,170 (7.83) 248,676 (7.60) < .0001 0.009

Diabetes Uncomplicated 226,807 (6.93) 227,815 (6.96) < .0001 0.001

Fluid and Electrolyte Disorders 187,321 (5.72) 186,282 (5.69) < .0001 0.001

Cardiac Arrhythmia 174,656 (5.34) na na na

Depression 113,659 (3.47) 89,410 (2.73) < .0001 0.043

Congestive Heart Failure 99,280 (3.03) 90,775 (2.77) < .0001 0.015

Alcohol Abuse 89,460 (2.73) 86,307 (2.64) < .0001 0.006

Hypothyroidism 85,493 (2.61) 83,926 (2.56) < .0001 0.003

Obesity 79,680 (2.43) 80,996 (2.47) < .0001 0.003

Other Neurological Disorders 76,237 (2.33) 97,360 (2.97) < .0001 0.040

Drug Abuse 61,260 (1.87) 59,029 (1.80) < .0001 0.005

Renal Failure 60,238 (1.84) 57,231 (1.75) < .0001 0.007

Solid Tumor without Metastasis 56,376 (1.72) 56,519 (1.73) < .0001 0.000

Valvular Disease 51,250 (1.57) 21,907 (0.67) < .0001 0.087

Peripheral Vascular Disorders 41,651 (1.27) 43,410 (1.33) < .0001 0.005

Diabetes Complicated 34,016 (1.04) 34,111 (1.04) < .0001 0.000

Liver Disease 31,307 (0.96) 21,910 (0.67) < .0001 0.032

Psychoses 29,656 (0.91) 69,664 (2.13) < .0001 0.102

Coagulopathy 27,019 (0.83) 27,330 (0.83) < .0001 0.001

Rheumatoid Arthritis/collagen 24,143 (0.74) 22,407 (0.68) < .0001 0.006

Metastatic Cancer 22,836 (0.70) 23,004 (0.70) < .0001 0.001

Weight Loss 21,219 (0.65) 19,429 (0.59) < .0001 0.007

Pulmonary Circulation Disorders 21,084 (0.64) 20,894 (0.64) < .0001 0.001

Deficiency Anemia 19,745 (0.60) 104,246 (3.18) < .0001 0.203*

Paralysis 13,707 (0.42) 19,001 (0.58) < .0001 0.023

Blood Loss Anemia 10,884 (0.33) 24,487 (0.75) < .0001 0.058

Peptic Ulcer Disease excl. bleeding 8,251 (0.25) 507 (0.02) < .0001 0.076

Lymphoma 6,778 (0.21) 6,920 (0.21) < .0001 0.001

AIDS/HIV 4,246 (0.13) 4,246 (0.13) 1.000 0.000

* Described as a small effect size according to the interpretation criteria suggested by Cohen (1988).

https://doi.org/10.1371/journal.pone.0174379.t002
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the apparent greater predictive performance of the Quan ECM, were driven principally by

improvements in model specificity (the correct reclassification of non-events). In every sam-

ple-outcome combination examined, the percentage of events correctly reclassified by the

Table 3. Measures of discrimination and calibration performance by ECM and mortality outcome.

External Validation

Inhospital Mortality at Index Inhospital Mortality at 1 Year

Quan AHRQ Quan AHRQ

All Patients N = 3,273,298 AUROC a (95% CI) 0.887

(0.885,0.889) G
0.880

(0.878,0.882) G
0.884

(0.883,0.886) G
0.880

(0.878,0.881) G

HL Test b 485.5* 459.8* 890.1* 879.1*

Brier Score c 0.009 0.009 0.014 0.014

R2 d 24.9 23.1 25.1 24.0

NRI>0 e (95% CI) 0.6115 (0.6006,0.6224)* 0.5234 (0.5149,0.5318)*

Reclassification, E—

NE F
-18%–79% -27%–80%

Deaths (%) 31,298 (1.0) 50,215 (1.5)

High Risk Patients h N = 262,382 AUROC a (95% CI) 0.870

(0.865,0.874) G
0.861

(0.857,0.866) G
0.834

(0.830,0.837) G
0.830

(0.826,0.833) G

HL Test b 106.6* 96.7* 271.5* 261.1*

Brier Score c 0.018 0.018 0.037 0.037

R2 d 22.7 21.4 20.7 20.0

NRI>0 e (95% CI) 0.4725 (0.4450,0.5000)* 0.3566 (0.3384,0.3747)*

Reclassification, E—

NE F
-15%–62% -28%–64%

Deaths (%) 5,035 (1.9) 11,043 (4.2)

Low Risk Patients h

N = 3,010,916

AUROC a (95% CI) 0.886

(0.884,0.889) G
0.879

(0.877,0.881) G
0.885

(0.883,0.886) G
0.880

(0.878,0.882) G

HL Test b 378.0* 410.6* 619.4* 616.2*

Brier Score c 0.008 0.008 0.012 0.012

R2 d 24.8 22.9 25.0 23.8

NRI>0 e (95% CI) 0.6183 (0.6064,0.6302)* 0.5384 (0.5288,0.548)*

Reclassification, E—

NE F
-18%–80% -27%–80%

Deaths (%) 26,263 (0.9) 39,172 (1.3)

* P-value < 0.001. E = Events. NE = Non-events.
a Area under the Receiver Operating Characteristic (ROC) curve (AUROC). AUROC is a measure of discrimination ranging from 0.5 (zero discrimination) to

1.0 (perfect discrimination).
b Pearson chi-square value derived from the Hosmer–Lemeshow goodness-of-fit test [32].
c Measure of predictive accuracy, greater accuracy is reflected by lower score.
d R-squared, explained variation, displayed in percentage.
e Category-free net reclassification improvement using the AHRQ ECM as the reference model.
f E–NE, percentage of events (E) and non-events (NE) correctly reclassified by the Quan ECM compared to the AHRQ ECM.
g AUROC curve differed significantly from the baseline model limited to age and sex (p < 0.0001), and from the competing ECM (p < 0.0001). Differences

between AUROC curves were evaluated with the Mann-Whitney U test approach developed by DeLong et al. [35]. In the unstratified sample, the baseline

model had an AUROC of 0.820 (95% CI 0.818–0.822) for inhospital mortality at index, and 0.826 (95% CI 0.824–0.827) for inhospital mortality at 1 year. For

high risk patients, the baseline model had an AUROC of 0.770 (95% CI 0.764–0.775) for inhospital mortality at index, and 0.755 (95% CI 0.751–0.759) for

inhospital mortality at 1 year. For low risk patients, the baseline model had an AUROC of 0.821 (95% CI 0.819–0.823) for inhospital mortality at index, and

0.828 (95% CI 0.826–0.830) for inhospital mortality at 1 year.
h High risk patients had one or more inpatient stay in the 12 months preceding the index encounter or three or more emergency department visits in the 3

months preceding the index encounter. Patients that did not satisfy the high-risk criteria were assigned to the low risk group.

https://doi.org/10.1371/journal.pone.0174379.t003

Comparing the performance of Elixhauser comorbidity measure variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0174379 March 28, 2017 8 / 16

https://doi.org/10.1371/journal.pone.0174379.t003
https://doi.org/10.1371/journal.pone.0174379


Quan ECM was negative, possibly indicating reduced sensitivity compared to the AHRQ

ECM. In the sample limited to persons whose index encounter was an emergency department

visit, this reduced sensitivity combined with minimal improvement in specificity by the Quan

ECM compared to the AHRQ ECM resulted in negative NRI.

Sensitivity analyses

Results from the sensitivity analyses are available as supplementary material (S1 Table, S1 and

S2 Figs). As hypothesized, patients whose index encounter was an inpatient stay had a greater

risk of inhospital mortality at index [2.4% vs 0.3%, χ2 (1, N = 3,273,298) = 33,138.7, p<

.0001], and at 1 year [3.6% vs 0.6%, χ2 (1, N = 3,273,298) = 43,585.6, p< .0001] than patients

whose index encounter was an ED visit. Performance measures in the analyses stratified by

index encounter type mimicked the trends reported for the unstratified sample, except for

explained variation which was 48 to 69 percent lower in the ED visit sample than in the inpa-

tient sample. Measures of discrimination (AUROC) and calibration (Brier scores) were supe-

rior in the inpatient sample compared to the ED visit sample.

Discussion

We conducted an external validation and compared the ability of the Quan and AHRQ ECMs

to predict inhospital mortality at index and at 1-year in the Cerner HF database. In a prior

study, the Quan ECM demonstrated superior predictive performance over the AHRQ version

3.0 ECM for inhospital mortality at index in a Canadian population with universal health cov-

erage [18]. The current study expands on prior findings and demonstrates the performance

advantage of the Quan ECM over the AHRQ version 3.7 ECM for inhospital mortality at

index and at 1-year in Cerner Health Facts1. This is the first study to evaluate any diagnostic-

based risk adjustment methods in HF and to confirm the excellent discrimination perfor-

mance of both the Quan and AHRQ ECMs in a multi-payer US health data source. While sig-

nificant, increased discrimination performance of the Quan ECM over the AHRQ ECM did

not exceed 1% for any of the mortality outcomes after the inclusion of baseline variables age

and sex. It is therefore unlikely that the observed differences between the ECMs are clinically

meaningful. The marginal performance improvement in discrimination and explained vari-

ance observed between the ECMs may be a consequence of the large sample available for

Fig 1. AUROC comparisons by ECM for predicting inhospital mortality at index [A] and at 1 year [B].

ROC = receiver operating characteristic, AUROC = area under the receiver operating characteristic.

https://doi.org/10.1371/journal.pone.0174379.g001
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analysis and might not be reproducible in smaller HF subsets or patient subpopulations. In

this study, evidence of superior predictive performance by the Quan ECM was demonstrated

in an undifferentiated patient population, in patient groups stratified by risk of hospital read-

mission and death, and in patients stratified by their index encounter type [ED visits and inpa-

tient stays].

Visual inspection of the calibration plots for the Quan and AHRQ ECMs revealed notice-

able levels of disagreement between predicted and observed risk of inhospital mortality at 1

year. Lower calibration performance appeared more pronounced in the high risk patient

group compared to the low risk patient group. To improve accuracy, we recommend that

the ECMs be recalibrated specifically for predictions of inhospital mortality at 1 year in HF.

Fig 2. AUROC comparisons by ECM for predicting inhospital mortality at index [A] and at 1 year [B] in

high risk patients, and inhospital mortality at index [C] and at 1 year [D] in low risk patients. High risk

patients had one or more inpatient stay in the 12 months preceding the index encounter or three or more

emergency department visits in the 3 months preceding the index encounter. Patients that did not satisfy the

high-risk criteria were assigned to the low risk group. ROC = receiver operating characteristic, AUROC = area

under the receiver operating characteristic.

https://doi.org/10.1371/journal.pone.0174379.g002
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The observed over-prediction of inhospital mortality at 1 year by the ECMs likely results

from a combination of factors ranging from suboptimal parameter section to outcome

misclassification.

The ICD-9 codes used to assess the prevalence of comorbid conditions by the competing

ECMs resulted in minimal variations in disease frequencies; prevalence differed by less than

1% for the majority of conditions. The exclusion of cardiac arrhythmia from the AHRQ ECM

may be responsible for the observed predictive performance differences. In the Quan ECM,

cardiac arrhythmia was the fifth most prevalent condition and was significantly associated

with increased odds of inhospital mortality at index and at 1-year in the adjusted models

(S2 Table).

This study has limitations. Like other EHR-derived data warehouse used for observational

research that comply with the U.S. HIPAA law and regulations, HF adheres to de-identifica-

tion procedures that prevent further linkage to registries such as the National Death Index and

other health organizations outside the same HIPAA-covered entity. Since deaths were limited

to those recorded during inpatient care and within HIPAA-covered networks, some misclassi-

fication of mortality at 1-year is to be expected from the deaths that occurred outside these set-

tings. The patient de-identification process also implies that the diagnoses and combination of

ICD codes used for estimating ECM prevalence could not be validated using chart re-abstraction

methodology leaving doubts about their sensitivity and specificity in HF. Limiting the assess-

ment of morbidities to a single index encounter, as opposed to including a look back period in

the assessment of a patient’s health, likely resulted in the misclassification of previously diag-

nosed health conditions as absent. Including a look back periods of one to two years generally

improves the detection of prevalent health conditions [45, 46]. One explanation for this improve-

ment is that look back periods limit bias in discharge abstract coding whereby secondary health

conditions tend to be under recorded in patients treated for severe acute conditions and vice

versa [15, 47]. A look back period was not included in this study to increase the comparability of

results with the original Quan [18] paper and because our research group is currently conducting

a parallel study to test the consequences of varying look back periods in HF.

HF was not primarily designed for research purposes [1]. Study findings are therefore

subject to the same risks, biases, and limitations typically associated with research based on

Fig 3. Observed versus predicted risk of inhospital mortality [A] at index and [B] at 1 Year. Perfect

calibration is represented by the full line with a slope of 1 starting at the origin.

https://doi.org/10.1371/journal.pone.0174379.g003
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electronic health data [48, 49]. These include potential for selection bias, missing or incom-

plete documentation, coding errors, misclassifications of diagnostic codes, record linkage

errors due to interoperability issues, and duplication. Finally, recorded comorbid conditions

could not be separated from conditions resulting from complications in care. Thus, it was

impossible to evaluate the effects of excluding complications of care from our models.

The Quan and the AHRQ (version 3.7) ECMs were found to be practically equivalent in

discriminating between short- and long-term inhospital mortality outcomes in HF. While

ECM calibration measures were satisfactory for predicting inhospital mortality at index,

recalibration of the ECMs is recommended to improve the predictive accuracy for inhospi-

tal mortality at 1 year. These diagnostic-based risk adjustment tools should enhance

Fig 4. Observed versus predicted risk of inhospital mortality at index [A] and at 1 year [B] for high

risk patients, and inhospital mortality at index [C] and at 1 year [D] for low risk patients. Perfect

calibration is represented by the full line with a slope of 1 starting at the origin. High risk patients had one or

more inpatient stay in the 12 months preceding the index encounter or three or more emergency department

visits in the 3 months preceding the index encounter. Patients that did not satisfy the high-risk criteria were

assigned to the low risk group.

https://doi.org/10.1371/journal.pone.0174379.g004
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capacity for conducting quality observational studies and health services research using

Health Facts1 data.

Supporting information

S1 Fig. AUROC comparison by ECM for predicting inhospital mortality at index [A] and

at 1 Year [B] for index encounters limited to emergency department visits, and inhospital

mortality at index [C] and at 1 Year [D] for index encounters limited to inpatient stays.

AUROC = area under the receiver operating characteristic, ROC = receiver operating charac-

teristic.

(TIF)

S2 Fig. Observed versus predicted risk of inhospital mortality at index [A] and at 1 Year

[B] for index encounters limited to emergency department visits, and inhospital mortality

at index [C] and at 1 year [D] for index encounters limited to inpatient stays. Perfect cali-

bration is represented by the full line with a slope of 1 starting at the origin.

(TIF)

S1 Table. Measures of discrimination and calibration performance for inhospital mortality

by index encounter type, ED visits and inpatient stays. � P-value < 0.001. ED = Index en-

counter is an emergency department visit. IS = Index encounter is an inpatient stay. E =

Events. NE = Non-events. a Area under the Receiver Operating Characteristic (ROC) curve

(AUROC). AUROC is a measure of discrimination ranging from 0.5 (zero discrimination) to

1.0 (perfect discrimination). b Pearson chi-square value derived from the Hosmer–Lemeshow

goodness-of-fit test [32]. c Measure of predictive accuracy, greater accuracy is reflected by

lower score. d Generalized R-squared, explained variation, displayed in percentage. e Category-

free net reclassification improvement with the AHRQ ECM as the reference model. f E–NE,

percentage of events (E) and non-events (NE) correctly reclassified by the Quan ECM com-

pared to the AHRQ ECM. g AUROC curve differed significantly from the baseline model lim-

ited to age and sex (p< 0.0001), and from the competing ECM (p< 0.0001). Differences

between AUROC curves were evaluated with the Mann-Whitney U test approach developed

by DeLong et al. (1988). For ED encounters, the baseline model had an AUROC of 0.804 (95%

CI 0.799–0.810) for inhospital mortality at index, and 0.826 (95% CI 0.822–0.829) for inhospi-

tal mortality at 1 year. For IS encounters, the baseline model had an AUROC of 0.752 (95% CI

0.749–0.754) for inhospital mortality at index, and 0.754 (95% CI 0.752–0.756) for inhospital

mortality at 1 year.

(DOCX)

S2 Table. Adjusted odds ratios (95% CI) of Elixhauser conditions for inpatient mortality

at index and at 1-year by ECM variant, N = 3,273,298. Odds ratios are adjusted for baseline

variables sex and age. The odds ratios reported are those that reached statistical significance

(p<0.05). Abbreviation: CI, confidence intervals.

(DOCX)
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