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Abstract: Over the last years, extensive motivation has emerged towards the application of super-
critical carbon dioxide (SCCO2) for particle engineering. SCCO2 has great potential for application
as a green and eco-friendly technique to reach small crystalline particles with narrow particle size
distribution. In this paper, an artificial intelligence (AI) method has been used as an efficient and
versatile tool to predict and consequently optimize the solubility of oxaprozin in SCCO2 systems.
Three learning methods, including multi-layer perceptron (MLP), Kriging or Gaussian process re-
gression (GPR), and k-nearest neighbors (KNN) are selected to make models on the tiny dataset.
The dataset includes 32 data points with two input parameters (temperature and pressure) and one
output (solubility). The optimized models were tested with standard metrics. MLP, GPR, and KNN
have error rates of 2.079 × 10−8, 2.173 × 10−9, and 1.372 × 10−8, respectively, using MSE metrics.
Additionally, in terms of R-squared, they have scores of 0.868, 0.997, and 0.999, respectively. The
optimal inputs are the same as the maximum possible values and are paired with a solubility of
1.26 × 10−3 as an output.

Keywords: optimization; solubility; mathematical modeling; green chemistry; machine learning

1. Introduction

In the last years, disparate scientific investigations have been conducted on advanced
targeted drug delivery systems owing to the need of pharmaceutical industries. Indeed,
developing appropriate methodologies for particle engineering with the aim of controlling
particle size is of great importance due to the drastic impact of this parameter on the drug
delivery route [1–3].

A supercritical fluid (SCF) is identified as any fluid above critical pressure/temperature,
where its density follows the behavior of liquids, but its viscosity and diffusivity follow
a manner between liquid and gas. Moreover, SCFs possess a surface tension near zero.
Considering their brilliant transport characteristics, SCFs have been of great interest for
application in various industrial activities like extractions, chromatography, and particle
engineering [4–8]. SCFs can be an appropriate option for poisonous and explosive light
hydrocarbons and organic solvents [9–13]. Amongst various SCFs, it seems that carbon diox-
ide SCF (CO2SCF) can be considered the only commonly applied “green solvent” due to its
very low flammability, inert nature, simplicity of utilization, and low threshold limit value
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(TLV). It is worth noting that the TLV amount of CO2SCF is significantly more eco-friendly
and less poisonous than acetone (TLV = 750 ppm) or pentane (TLV = 600 ppm) [14].

Nowadays, the development of mathematical modeling and numerical simulations to
compare the experimental (real) results with predicted ones is an important and efficient
activity towards moving the quality-by-design (QbD) paradigm in the pharmaceutical
industry [15–17]. Artificial intelligence (AI) is a novel and promising technique for de-
veloping predictive models in disparate industrial processes, such as membrane-based
separation, crystallization, coating, and chemical reactions [18–21].

Machine learning (ML) methods are gradually replacing traditional computing meth-
ods in a variety of scientific disciplines. These problem-solving strategies include neural
networks, ensemble models, and tree-based models. Machine learning models may now be
used to study many difficulties by several initial properties and several final amounts. The
correlation among initial amount and final values are derived by these methods [22–24].
In this work, three distinct methods including GPR, KNN, and MLP are selected to make
models on the available dataset.

GPR has recently gotten much attention as a powerful statistical technique for data-
driven modeling. GPR’s popularity stems partly from its theoretical connection to Bayesian
nonparametric statistics, infinite neural networks, kernel approaches in machine learning,
and spatial statistics [25,26].

The name “MLP” refers to a multi-layer perceptron-based neural network. MLPs are
forward-feeding artificial neural networks. MLP has at least three levels: inputs, outputs,
and hidden layers. The input layer nodes are not active; instead, the input layer nodes
represent the data point. The input layer will have d nodes if the data point is presented by
a d-dimensional vector [27,28].

The central idea of k-nearest neighbors (KNN) models is that they use the similarity
of input data attributes to generate forecasts using other points that are most like the first.
More specifically, it retains the entire training data during the testing phase [29,30].

2. Data Set

The used dataset of this study was taken from [31] which only has 32 data vectors.
Each vector contains two input parameters (temperature and pressure) and one output
(solubility). The dataset is shown in Table 1 and pairwise distribution of parameters is
displayed in Figure 1.
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Table 1. The dataset based on input and output.

No. Temperature (K) Pressure (bar) Solubility (Mole Fraction)

1 3.08 × 102 1.20 × 102 8.19 × 10−5

2 3.08 × 102 1.60 × 102 1.58 × 10−4

3 3.08 × 102 2.00 × 102 2.24 × 10−4

4 3.08 × 102 2.40 × 102 2.80 × 10−4

5 3.08 × 102 2.80 × 102 3.44 × 10−4

6 3.08 × 102 3.20 × 102 4.06 × 10−4

7 3.08 × 102 3.60 × 102 4.73 × 10−4

8 3.08 × 102 4.00 × 102 5.33 × 10−4

9 3.18 × 102 1.20 × 102 7.55 × 10−5

10 3.18 × 102 1.60 × 102 1.41 × 10−4

11 3.18 × 102 2.00 × 102 2.45 × 10−4

12 3.18 × 102 2.40 × 102 3.56 × 10−4

13 3.18 × 102 2.80 × 102 4.64 × 10−4

14 3.18 × 102 3.20 × 102 5.58 × 10−4

15 3.18 × 102 3.60 × 102 6.60E × 10−4

16 3.18 × 102 4.00 × 102 7.66 × 10−4

17 3.28 × 102 1.20 × 102 5.34 × 10−4

18 3.28 × 102 1.60 × 102 1.28 × 10−4

19 3.28 × 102 2.00 × 102 3.02 × 10−4

20 3.28 × 102 2.40 × 102 4.14 × 10−4

21 3.28 × 102 2.80 × 102 5.82 × 10−4

22 3.28 × 102 3.20 × 102 7.87 × 10−4

23 3.28 × 102 3.60 × 102 8.51 × 10−4

24 3.28 × 102 4.00 × 102 1.03 × 10−3

25 3.38 × 102 1.20 × 102 3.3 × 10−5

26 3.38 × 102 1.60 × 102 9.09 × 10−5

27 3.38 × 102 2.00 × 102 2.98 × 10−4

28 3.38 × 102 2.40 × 102 4.81 × 10−4

29 3.38 × 102 2.80 × 102 6.77 × 10−4

30 3.38 × 102 3.20 × 102 8.89 × 10−4

31 3.38 × 102 3.60 × 102 1.08 × 10−3

32 3.38 × 102 4.00 × 102 1.24 × 10−3

3. Methodology
3.1. Gaussian Process Regression

Based on the Bayesian theory, it is possible to consider the GPR as a random process
that employs the Gaussian processes to implement a nonparametric regression [32,33]. In
this case, according to the Gaussian distribution, the probability distribution over function
(x) for each input is determined as follows:

f (x) ∼ GPR
(
m(x), k

(
x, x′

))
(1)
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Here (x) and (x, x′) represent the mean and covariance functions, respectively. These
functions are computed using the following equations:{

m(x) = E( f (x))
k(x, x′) = E[(m(x)− f (x′))(m(x)− f (x′))]

(2)

In which () denotes the expectation value. In practice, the value of (x) is usually
considered equal to zero for simplifying the process of calculation. It should be noted
that this assumption leads to erroneous results [32]. For describing the correlation degree
between an expected target value of the training data set and the predicted target according
to the resemblance of the respective inputs, the (x, x′) is also called the kernel function.

In a regression problem, the prior distribution of outputs y is defined as follows:

y ∼ N
(

0, k
(
x, x′

)
+ σ2

n In

)
(3)

where (), and σn specify a normal distribution and the noise term, respectively. It is assumed
that a similar Gaussian distribution exists between the testing subset x′ and training subset
x. In this case, the forecast outputs y′ would track a joint prior distribution through the
training output y as [34]:[

y
y′

]
∼ N

(
0,

[
k(x, x) + σ2

n In k(x, x′)
k(x, x′)T k(x′, x′)

])
(4)

Here k(x, x), k(x′, x′), and k(x, x′) denote the covariance matrices between input
variables from the training set, testing set, and training-testing sets, correspondingly.

In the training process, with the help of the n points, some hyper-parameters θ present
in the covariance function are optimized to warranty the application of GPR. Minimizing
the negative log marginal likelihood L(θ) is a way to reach an optimized answer as [35]:{

L(θ) = 1
2 log[detλ(θ)] + 1

2 yTλ−1(θ)y + n
2 log(2π)

λ(θ) = k(θ) + σ2
n In

(5)

As the optimized settings of the hyper parameters of GPR are determined, the forecast
output y′ is calculated at dataset x′ by determining the related conditional distribution
p(y′|x′, x, y) as:

p(y′
∣∣x′, x, y ∼ N

(
y′
∣∣∣y′, cov

(
y′
))

(6)

with: {
y′ = k(x, x′)T[k(x, x) + σ2

n In
]−1y

cov(y′) = k(x′, x′)− k(x, x′)T[k(x, x) + σ2
n In
]−1k(x, x′)

(7)

In which y′ represents the related mean values of the forecast. (y′) represents a variance
matrix to determine the uncertainty range of these forecasts. These equations of GPR are
explained in detail in [32].

3.2. Multilayer Perceptron Neural Networks

The feed-forward neural networks that include several latent layers are known as the
multi-layer perceptron (MLP). One of the ways to develop the broadly employed MLP is
the training rule of back propagation, which is rooted in the learning rule of error-correction
(it is equivalent to traveling in the minus orientation of the immediate deviation according
to the error function, that decreases the mistakes) [36,37].

The rule of back propagation includes two methods:

• First, the input vector is involved to the multilayer network, and its influences are
transferred to the output levels over the hidden (middle) layers. Then, the final vector
created on the latent class generates the genuine response of MLP.
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• Next, in the backward path, the MLP settings are updated and regulated. The rule of
error-correction will be followed in the implementation of this regulation. Furthermore,
in the middle layers, weights of neurons are adjusted to reduce the difference between
the neural network’s predicted results and its actual results [38,39].

When the ANN is developed, the data will be basically split into two periods of trial.
No rules are available to minimize the size of training and test datasets [40,41].

In MLP, the procedure starts only with initial class and proceeds up to the nerve cells
in the final class to yield some results. A hidden class is any layer that exists between
these two layers (input and output). The activation functions, solver function, and quantity
of hidden layers are hyperparameters in this algorithm that should be optimized. The
output formulation for the MLP model with one hidden layer and a single output is as
follows [42,43]:

~
y = δ2

(
m

∑
i=1

(
w(2)

i δ1(X)
)
+ b(2)

)
X =

n

∑
j=1

(
xjw

(1)
xj

)
+ b(1) (8)

Here,
~
y represents the estimation vector of the MLP model, m indicates the data vector

amount in the entire data set, n denotes initial amount details in the dataset, and xj is jth

feature vector w(2) reflects the weights among the latent class and the final class, whereas
w(1) indicates the weights of initial attributes linked to the latent class. δ2 is the activation
obligation for the final class [44]. In addition, the neurons’ activation function is δ1 in
the latent class. b(2) and b(1) represent the bias vectors in the final class and all latent
classes [45].

3.3. KNN

The KNN regression, starts to learn by contrasting the identified data points with the
training dataset [30]. To explain this method, we assume T = {(x1, y1), . . . , (xN , yN)} is
the training data and xi = (xi1, xi2, . . . , xim) indicates the ith data point with its m input
features and the output is yi. N represents the quantity of data points. It must calculate
the di between a test instance x and every sample xi in T and sort the di distance by its
value for a test sample x. If di rates in the ith position, the di matching sample is referred to
as the ith close to NNi(x), then the target is denoted as yi (x). Lastly, the estimation ŷ of x
denotes the average of the regression outputs of kth close to x, i.e., ŷ = 1

k ∑k
i=1 yi(x). The

KNN workflow regression algorithm is as follows [29,46]:

• Inputs: training input vectors {xi, yi}, xi: input features, yi: real–valued output,
testing point x to predict

• Algorithm:

# calculate distance D(x, xi) to every training example xi

# select kth nearest input vector xi1 . . . xik and their outputs yi1 . . . yik
# output:

ŷ = f (x) =
1
K

k

∑
j=1

yij (9)

4. Results

In this section, after examining the adjusted hyper-parameters stated in the previous
section, the final models will be generated and compared with the criteria in this field to
evaluate and analyze the results of the suggested models with the data. R2-score and MSE
metrics are used in this study:

• For effective regression models, the R-square (R2) score is an actuarial metric. These
graphs demonstrate a varies amount of percentage among related and non-aligned
variables. It is critical to be able to quickly quantify the 0 to 100% difference among
the related vary and the regression model.
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• A mean squared error is one other standard metric for calculating the output of
regression methods. MSE squares the points on the regression line. If the value’s
negative sign is deleted and larger variances are given more weight, the squared value
becomes significant. The lower the mean fault, the better match you will detect. The
sooner, the best.

Table 2 enlists the final outcomes of all developed predictive models. Additionally,
Figures 2–4 schematically compare actual (experimental) and predicted (model-based)
values via three proposed models (MLP, GPR, and KNN). In all diagrams, blue dots show
forestalled amount, red dots show forestalled amount in trial, and the green line shows
the real amount. According to this table and figures, we chose the GPR model as the most
accurate model among these three models. Although the KNN model also shows close and
accurate results, it can be seen in the test data that two points have a distance from the real
values, and it has more MAPE.

Table 2. Outputs based on R2 and MSE.

Models R2 MSE

MLP 0.868 2.079 × 10−08

GPR 0.997 2.173 × 10−09

KNN 0.999 1.372 × 10−08
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The simultaneous influence of input values (temperature and pressure) on the solubil-
ity of oxaprozin is shown in Figure 5. If one of those parameters (temperature or pressure)
keep constant, by changing the other one, two-dimensional Figures 6 and 7, have been
provided can illustrate this fact. The optimized parameters are illustrated in Table 3.
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Table 3. Optimized amount of inputs and output.

Temperature (K) Pressure (bar) Solubility

3.38 × 102 4.00 × 102 1.26 × 10−3

It is clear from Figures 6 and 7 that an increase in the pressure causes a significant
enhancement in the solubility value of a drug, which can be attributed to the increase
of the molecular compression of solvent and improvement in the solubilizing power
of SCCO2 [47–49]. Figure 7 demonstrates approximately five times improvement in the
solubility of drugs by increasing the pressure from 120 to 410 bar. Regarding temperature, it
can be said that this parameter has the opposite effect on the two competing parameters. An
increase of temperature decreases the density of SCCO2, while increasing the sublimation
pressure. Therefore, true analysis of these two parameters at the pressures below and above
the cross-over pressure seems to be vital. At pressures below the cross-over pressure, the
impact of density reduction prevails over the positive role of sublimation pressure and thus,
an increase in temperature is equal to solubility reduction in SCCO2 fluid. By increasing
the pressure to values higher than the cross-over pressure, the positive role of sublimation
pressure prevails over the destructive role of density reduction and thus, an increase in the
temperature considerably increases the oxaprozin solubility in the supercritical solvent. As
presented in Table 3, the optimum values of pressure and temperature to gain the greatest
value of solubility are predicted to be 400 bar and 338 K, respectively.

5. Conclusions

This paper was prominently focused on the prediction of oxaprozin solubility in
SCCO2 fluid. To do this, machine learning (ML) techniques were employed to develop
mathematical modeling and simulations to predict and optimize drug solubility. To make
models on the small dataset, three learning methods were chosen: MLP, KNN, and GPR.
There are 32 data points in the dataset, each with two input parameters (temperature
and pressure) and one output parameter (solubility). Standard metrics were used to test
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the optimized models. Using the MSE metric, MLP, GPR, and KNN have error rates
of 2.079 × 10−8, 2.173 × 10−9, and 1.372 × 10−8, respectively. In addition, they have
R-squared scores of 0.868, 0.997, and 0.999, respectively. The optimal inputs are identical to
the maximum possible values, and the output is a solubility of 1.26 × 10−3.
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