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Abstract

Opioid receptors in the central nervous system are important modulators of itch transmission. In 

this study, we examined the effect of mixed-action opioid butorphanol on histamine itch, cowhage 

itch and heat pain in healthy volunteers. Using functional MRI, we investigated significant 

changes in cerebral perfusion to identify the critical brain centers mediating the antipruritic effect 

of butorphanol. Butorphanol suppressed the itch induced experimentally with histamine, reduced 

the intensity of cowhage itch by approximately 35%, and did not affect heat pain sensitivity. In 

comparison with the placebo, butorphanol produced a bilateral deactivation of claustrum, insula 

and putamen, areas activated during itch processing. Analysis of cerebral perfusion patterns of 

brain processing of itch vs. itch inhibition under the effect of the drug, revealed that the reduction 

of cowhage itch by butorphanol was correlated with changes in cerebral perfusion in the midbrain, 

thalamus, S1, insula and cerebellum. The suppression of histamine itch by butorphanol was 

paralleled by the activation of nucleus accumbens and septal nuclei, structures expressing high 

levels of kappa opioid receptors. In conclusion, important relays of the mesolimbic circuit were 

involved in the inhibition of itch by butorphanol and could represent potential targets for the 

development of antipruritic therapy.
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INTRODUCTION

Recent advances in functional MRI have enabled the visualization of brain responses evoked 

by itch stimulation. Arterial Spin Labeling (ASL) is a suitable technique capable of 

capturing the long-lasting effect of itch on cerebral activity. ASL has evolved from a 2-

dimensional to a 3-dimensional technique, such as the 3-D Grase (gradient echo and spin 

echo) - Propeller (periodically rotated parallel lines with enhanced reconstruction) used in 

this study (Tan et al, 2011). Previously, ASL was successfully employed to analyze and 

compare cerebral activations evoked by histamine and cowhage itches (Papoiu et al, 2012), 

or the mechanisms of itch relief provided by active vs. passive scratching (Papoiu et al, 

2013). Moreover, ASL enables the comparative analysis of itch responses evoked in healthy 

individuals and chronic itch sufferers (Ishiuji et al, 2009; Papoiu et al, 2014).

Itch stimulation triggers a complex cerebral response manifested in multiple cortical and 

subcortical regions that process sensory-discriminative, cognitive, affective and memory-

related dimensions of itch. Projected to the cortex by ventrobasal and posterior thalamic 

nuclei (Davidson et al, 2012), itch registers in the primary and secondary somatosensory 

areas (S1 and S2) and engages associative parietal regions of the supramarginal, angular gyri 

and precuneus. Itch stimulation activates insula, a salience and interoceptive center, and 

claustrum, a fast stimuli detector and multisensory integrator. The highly charged emotional 

aspect of itch translates into the activation of deep-seated areas of the cingulate cortex, 

amygdala and hippocampus, situated along the Papez circuit (Papez, 1937). Itch is a primary 

sensation that is not easily suppressible, which explains why many forms of itch, and 

chronic pruritus in particular, remain a clinical challenge. From a therapeutic perspective, 

the crucial question is which areas are involved in the formation of itch sensation, and 

among them, which could be amenable to medical intervention? In previous neuroimaging 

studies, clues have been sought to decipher a central mechanism for itch inhibition, using 

various interventions such as scratching, acupuncture or thermal modulation (Mochizuki et 

al, 2003; Yosipovitch et al, 2008; Vierow et al, 2009; Pfab et al, 2010; Papoiu et al, 2013; 

Napadow et al, 2014). Based on the findings of an fMRI study of active scratching, we 

proposed that the reward-related areas in the midbrain and ventral striatum encode not only 

the pleasurable aspect of scratching, but may hold the key to effectively mediate itch relief 

(Papoiu et al, 2013). This hypothesis is in analogy with the concept of pain and pleasure 

sharing a dual, but common pathway (Leknes & Tracey, 2008). Since reward-related areas 

express high levels of opioid receptors, an alternative experimental approach is to stimulate 

them by pharmacological means. The interaction of opioid signaling pathways with itch 

transduction mechanisms is a topic under active investigation (Kardon et al, 2014).

In this study we used butorphanol, a mixed action opioid with a pronounced κ receptor 

affinity, to study the mechanism underlying its antipruritic action. Butorphanol is FDA 

approved as an analgesic and is available as a nasal spray or an injectable formulation. 

Intranasal butorphanol has been used successfully to treat severe cases of chronic pruritus 

(Dawn and Yosipovitch, 2006), and administered epidurally, butorphanol blocks the itch 

induced by the epidural injection of morphine (Yokoyama et al, 2009).
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Histamine and cowhage can be used experimentally in humans to induce itch sensations that 

are transmitted via distinct peripheral and spinothalamic pathways which synapse in subtly 

distinct thalamic nuclei (Davidson et al, 2007; 2012). Significant differences in their cortical 

processing have also been described (Papoiu et al, 2012). While histamine is the classical 

experimental pruritogen, the nonhistaminergic PAR2-mediated cowhage itch resembles 

more closely chronic pruritus of pathological origin. Previous studies have implicated PAR2 

itch pathway in atopic eczema (Steinhoff et al, 2003) and stressed the lack of therapeutic 

efficacy of antihistamines in chronic pruritus. Therefore, it is of significant interest to 

investigate whether butorphanol has a differential effect in relieving these two forms of itch. 

In this study, we have used functional MRI to explore the underlying mechanism of 

butorphanol’s antipruritic action. Our aim was to identify the key regions in the brain that 

mediate the inhibition of itch.

RESULTS

1) Psychophysical effects on itch and heat pain perception

Butorphanol completely suppressed the itch induced experimentally with histamine 

(p<0.001), while it only reduced the intensity of cowhage itch by approximately 35% 

(p<0.001; paired t tests, two-tails, Bonferroni corrected for multiple comparisons; see Figure 

2). Butorphanol did not alter sensitivity to heat pain, or the heat-pain associated 

unpleasantness. Therefore, at a 1 mg dose it appeared that the mixed-action opioid exerted a 

differential effect on these 3 sensory modalities.

2) Significant effects of butorphanol on cerebral activity

Butorphanol induced a significant deactivation of the claustrum, putamen, anterior and 

posterior insulae (Fig. 3a, in blue; Table 1), which were activated during itch processing by 

histamine and cowhage. The deactivating effect of butorphanol appeared to overlap to a 

substantial extent with the areas activated by histamine itch in the contralateral insula and 

claustrum (in red, Fig. 3b), but did not fully overlap (i.e. counter) the responses evoked by 

cowhage at the ipsilateral sites (in green, Fig. 3c). Butorphanol induced significant 

activations in the midbrain, in areas consistent with the location of VTA, raphé nucleus, 

substantia nigra, red nucleus and periaqueductal gray matter (PAG), as well as cerebellum, 

precuneus and thalamus, when analyzed in contrast to the placebo (Figure 4, Table 1).

3) Dissection of key brain areas mediating the antipruritic action of butorphanol on 
histamine itch

To identify the key brain areas involved in the mediation of the antipruritic effect of 

butorphanol, we have implemented a study design that allowed us to construct a stepwise 

contrast between active and control states, when itch was induced in the presence of the drug 

vs. placebo (Methods). This global analysis (performed for the whole-brain) revealed that 

nucleus accumbens (NAc), septal nuclei and the adjacent septal area of the anterior cingulate 

cortex were significantly activated during the inhibition of histamine itch (Figure 5, Table 

1). These results suggest that suppression of histamine itch was significantly mediated by 

the activation of these formations. These results were not found in identical contrasts run for 
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the effect of butorphanol on cowhage itch or heat pain (which did not yield significant 

results).

4) Brain responses correlated with the effect of butorphanol on cowhage itch

Since butorphanol was able to attenuate cowhage itch intensity by 35%, we were interested 

to investigate whether significant effects in brain perfusion were correlated with the 

reduction of itch, comparing (cowhage itch + drug) vs. (cowhage + placebo) conditions. 

Differences in cerebral perfusion observed for cowhage itch stimulation after butorphanol 

vs. placebo in S1, insula, thalamus, ventral tegmental area (VTA), posterior cingulate cortex 

(PCC), cerebellum and hippocampus, were significantly correlated with reduction of itch 

(Table 1, Fig. S1), consistent with a mechanism of butorphanol-induced deactivation. These 

areas were notably different from the ones identified during the inhibition of histamine itch, 

which suggests that the inhibition of these 2 itch modalities engages different cerebral 

networks.

DISCUSSION

In this study we used Arterial Spin Labeling fMRI and experimental itch induction to 

investigate the changes in cerebral perfusion occurring under the effect of butorphanol. This 

pharmacological fMRI study enabled us to trace meaningful perfusion changes underlying 

the antipruritic action of this drug in the brain. Due to the particular design of our study, 

contrast analyses enabled us to identify significant cerebral targets of the drug and to 

pinpoint key areas engaged during the suppression of histamine itch.

In order to characterize the effect of butorphanol on cerebral activity, we have analyzed the 

changes in CBF patterns elicited by this opioid drug in contrast with a placebo. Butorphanol 

significantly and extensively deactivated the claustrum, putamen and insula, areas 

previously described to be activated during itch processing. The brain activations induced by 

butorphanol implicated the midbrain (VTA, red nucleus, PAG), cerebellum and precuneus. 

Interestingly, we recently discovered these structures to be associated with itch relief and 

pleasurability provided by self-scratching (Papoiu et al, 2013).

The extensive deactivations induced in a contiguous area lying between the putamen and 

insula, bilaterally, along several coronal planes from z = 12 to z = −8 (MNI space 

coordinates), strikingly coincide with the anatomical location of the claustrum. Claustrum 

is a thin gray matter structure which expresses a very high density of κ-opioid receptors (“+

+++”), as shown by in situ hybridization studies in humans, and labeling studies in primates 

(Peckys et al, 1999; Sim-Selley et al, 1999). The significant deactivation we found is also 

consistent with the mechanism of action of opioids, which induce neuronal inhibition by 

hyperpolarization. Therefore, the present results tracing the effects of butorphanol by fMRI 

are in agreement with the structural data on the expression of its target receptors in the 

human brain, and with its known molecular mechanism. These findings support our previous 

observation that claustrum plays a significant role in itch processing (Papoiu et al, 2012). 

The high density pattern of expression of κ-opioid receptors in the claustrum is consistent 

across species, in primates and rodents (Meng et al, 1993; Mansour et al, 1994).
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The complete inhibition of histamine itch by butorphanol was paralleled by significant 

activations which mapped to nucleus accumbens, septal nuclei, slightly extending laterally 

to the basal nucleus of Meynert, and to the adjacent septal area of subgenual ACC (BA 25), 

which suggests that the antipruritic action of butorphanol is mediated by these formations. 

The identification of structures within the human brain underlying the antipruritic effect of 

an opioid that showed clinical efficacy is to our knowledge previously unreported.

Nucleus accumbens (NAc) has been previously described to play a significant role in 

mediating opioid- and nociceptive stimulus-induced analgesia. In humans, NAc expresses a 

high density of μ, κ and δ opioid receptors at comparable levels (Peckys et al, 1999). A 

complex interplay between μ/ δ and κ receptors has been described in the modulation of 

antinociception mediated by NAc (Schmidt et al, 2002), and dopamine has been proposed as 

the critical mediator in accumbens-mediated antinociception (Altier & Stewart, 1998). In 

nucleus accumbens, μ-receptor activation leads to dopamine release (Yokoo et al, 1994), 

while κ-receptor activation decreases dopamine release (Bals-Kubik et al, 1993). Thus, a 

tempting hypothesis is that κ-mediated antipruritic action depends on decreasing dopamine 

release in nucleus accumbens. However, kappa-opioid mediated activation also decreases 

the release of glutamate and GABA from NAc, using different mechanisms (Hjelmstad and 

Fields, 2003). The κ opioid receptor sits on the presynaptic side of the excitatory synapses 

and dendrites of GABA-ergic spiny neurons of the NAc shell and could be regulated by 

glutamatergic inputs from the prefrontal cortex, amygdala or hippocampus (Schmidt et al, 

2002). Of note, the septal area is directly interconnected with the hippocampus and 

amygdala.

Septal nuclei (SN) are discrete gray matter structures that include the medial nucleus of 

septum and the diagonal band of Broca, mostly composed of cholinergic, GABA-ergic and 

glutamatergic neurons. Notably, SN drive the hippocampal theta rhythm and are highly 

synchronized with hippocampal activity (Petsche et al, 1962; Vertes and Kocsis, 1997; 

Hangya et al, 2009). An interesting observation that could be relevant to itch processing is 

that sensory stimulation resets the pace of theta oscillations in the septal nuclei (Buzsáki et 

al, 1979). Neurons operating in phase-lock with the hippocampal theta oscillation were 

found in the ventral tegmentum and dorsal raphé nucleus (Bland 1986). These structures 

were implicated in the relief of itch induced by self-scratching (Papoiu et al, 2013), and were 

activated by butorphanol in this study (Figure 4). The medial septal region has been 

proposed to function as a node for the ascending brainstem pathways, sending inputs to the 

posterior cingulate, enthorinal cortex and hippocampus (Bland et al, 2000). Recent studies 

have implicated the medial septal nucleus in general anesthesia (Ma et al, 2002; Leung et al 

2013, Tai et al, 2014). The septal area has also been associated with analgesia induced by 

acupuncture (Xiong and Zheng 1990; Zhao 2008). A classical electrophysiological 

experiment using implanted electrodes linked SN with reward processing and highly 

pleasurable experiences (Olds and Milner, 1954). The septal area of ACC is connected with 

NAc and has been associated with emotional-affective functions. Taken together, these 

findings suggest that a central mechanism of antipruriception is associated with the cerebral 

areas involved in reward processing.
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Butorphanol activated the periaqueductal gray matter (PAG), VTA and the dorsal nucleus of 

raphé, areas also rich in opioid receptors, which may suggest that a descending modulatory 

pathway could be ultimately engaged to exert inhibitory action on spinal centers. In this 

context, the implication of the medial dorsal nucleus of the thalamus may indicate the co-

operation of a gating mechanism in the modulation of itch intensity.

The effects of butorphanol on cerebral perfusion in the cerebellum and midbrain (VTA) 

were correlated with cowhage itch reduction. These areas are similar with the areas 

deactivated by self-scratching and correlated with the pleasurability of scratching, when itch 

was induced using cowhage (Papoiu et al, 2013). The responses observed in the thalamus 

are in agreement with the areas activated by cowhage itch, identified by antidromic 

stimulation (Davidson et al., 2012) or mapped by neuroimaging (Papoiu et al, 2012).

The lack of effect of intranasal butorphanol on heat pain is not entirely surprising, as this 

opioid has a limited clinical use as an analgesic. A previous study with the TRK-820 kappa 

agonist also showed a modest to inexistent analgesic action vs. heat pain, depending on the 

temperature tested (Endoh et al, 1999). The lack of effect on heat pain may stem from the 

weak μ-agonist properties of butorphanol, which could be suboptimal for analgesia at a 1 mg 

dose, and its dominant kappa-agonist action. Recent findings support the concept that kappa 

mediated effects centrally antagonize the μ-dependent analgesia (Pan, 1998).

To conclude, we identified distinct stations of the reward (mesolimbic) circuit as potential 

key centers mediating antipruritic action. Intriguingly, butorphanol exerted this complete 

suppression selectively on the histamine itch pathway. A regression analysis performed for 

the partial effect of butorphanol on cowhage itch yielded different areas correlated with itch 

attenuation, suggestive of mechanistic differences in the inhibition of these pathways. With 

the potential limitation that these differential responses may be dose dependent, our results 

appear to suggest that κ-opioid receptors are differentially involved in the processing of 

these itch modalities. The clinical applicability of these findings requires further study.

Despite certain limitations of functional brain imaging to establish causality and dissect 

cellular or molecular events, mechanistic inferences can be derived from the analysis of 

changes in cerebral perfusion patterns using symmetrical designs. Although functional MRI 

does not directly trace the effect of a drug on molecular targets, the results of this study 

support the notion that well-defined significant changes in perfusion can provide insight into 

the mechanism of action. These results suggest that the central inhibition of histamine itch is 

coupled with κ-opioid receptor signaling, leading to the activation of nucleus accumbens 

and septal nuclei, and to the deactivation of the claustrum. Butorphanol was less effective in 

relieving PAR2-induced itch and did not exert a significant effect on thermal nociception.

MATERIALS AND METHODS

Functional MRI cerebral perfusion images were acquired by Arterial Spin Labeling, using a 

3-D Grase-Propeller protocol (Tan et al, 2011). Perfusion images were acquired at rest prior 

to drug (or placebo) administration, and 40 minutes after drug/placebo to capture the effect 

on cerebral perfusion prior to itch/pain stimulation. Images were subsequently acquired 
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immediately after itch/pain induction, after an interval of 45 minutes post-treatment (Fig. 1). 

This was carefully chosen to coincide exactly with the moment when the pharmacodynamic 

effect of butorphanol was at its peak (Davis et al, 2004).

Study design

This study employed a blinded, placebo controlled, randomized, crossover design. The 

placebo consisted of a 0.9 % isotonic saline solution delivered as an intranasal spray, using a 

standardized dispenser delivering a volume of 0.1 ml, in an identical manner with the 

dispenser delivering the pharmacologically active compound. Butorphanol was formulated 

as a 10 mg/ml solution (Apotex; Toronto, Ontario, Canada). A spray volume of 0.1 ml 

delivered a single dose of 1 mg butorphanol in one nostril. A screening visit was employed 

to investigate whether participants could detect perceptual or organoleptic differences 

between the two intranasal spray solutions administered in nebulized form, to assess 

potential side effects and tolerability, and to evaluate the effect of butorphanol on itch and 

heat pain. Study participants were not able to detect any differences between the two 

solutions.

Sequence and randomization

The study had two arms: a placebo arm and a butorphanol arm, which were crossed over. 

Subjects were assigned to go into either the placebo or the butorphanol part first, following a 

simple randomization scheme, and then they switched. These two parts of the experiment 

were performed on different dates, 7 days apart (Fig. 1). There was no repetition of the same 

stimulus in the same fMRI experiment. Sensory modalities were randomized for each 

experiment and were always given following the administration of the drug or placebo, 

starting 45 minutes post-administration. We did not observe any residual or order effects. 

Histamine and cowhage itch stimulation were performed on the dominant (right) forearm 5 

cm apart, while heat pain was performed applying the Peltier thermode on the right lower 

extremity in the middle of the calf area, over the gastronecmius muscle. No significant 

psychophysical effects of butorphanol or of the placebo were observed on heat pain.

Itch and heat pain stimulation details are described in the Supplementary material.

Subjects

24 healthy volunteers, all right-handed, with ages between 21-35, participated in this study 

(11 males, 13 females; average age 26.5) and signed a written informed consent. The study 

was approved by the Internal Review Board of Wake Forest University Health Sciences and 

was conducted in accordance with the principles of Declaration of Helsinki. Subjects were 

free of skin or neurological disease and were not currently using centrally acting 

medications, antihistamines, corticosteroids or analgesics.

Psychophysical measures

Itch or heat pain intensity ratings were taken on a Visual Analog Scale (VAS) anchored 

between 0 (no sensation) and 10 (maximum, unbearable itch or pain).
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Functional MRI

All experiments were carried out on a GE 1.5T TwinSpeed scanner (GE Healthcare, 

Milwaukee, WI) with an eight-channel phased array receive-only head coil (Invivo Devices, 

Gainesville, FL) for data collection. For technical details on fMRI sequence and image 

acquisition, see Supplementary Material.

Analysis of changes in cerebral blood perfusion (CBF) was performed with FSL (FMRIB, 

Oxford, UK). Each condition was first analyzed in contrast with two reference perfusion 

scans at baseline. Cerebral perfusion maps were analyzed using General Linear Model 

(GLM) using FEAT (FMRI expert analysis tool) of FSL 5.98, part of FMRIB’s Software 

Library (www.fmrib.ox.ac.uk/fsl), using as first-level analysis parameters: noise level: 

0.66%, 12 degrees of freedom for registration to the high-resolution structural image; Z 

threshold for design efficiency 5.3; temporal smoothness 0.34; cluster threshold Z score > 

2.3, p<0.05. Z (Gaussianised True/False) statistic images were thresholded using clusters 

determined by Z>2.3 and a corrected cluster significance threshold of p=0.05 (Worsley, 

2001). Contrasts between different conditions were studied via paired t tests, with a 

statistical significance set at Z score > 2.3 and p < 0.05. Butorphanol effect on itch was 

analyzed by General Linear Model paired t tests of perfusion weighted images, as follows. 

First, we contrasted the CBF patterns of the itch condition (or no itch post-drug state in the 

case of histamine) with the control condition represented by drug (or placebo) alone, 

respectively. The CBF maps corresponding to these states were compared at the first level 

(e.g. histamine itch + drug) vs. (drug alone) and (histamine itch +placebo) vs. (placebo 

alone). At the second level, these two results were contrasted with each other via a paired t 

test:

[Histamine itch + drug) vs. (drug alone)] vs. [(Histamine itch + placebo) vs. (placebo 

alone)], in order to identify drug-specific effects that can provide insight into the mechanism 

of action. This design allowed us to use as controls for the dynamic effect of the drug (or 

placebo) in the presence of stimuli, the drug effect on perfusion alone (or the effect of the 

placebo). Regression analysis for the effect on butorphanol on cowhage-induced itch was 

performed in respect to drug’s effect on itch intensity. To identify brain areas where changes 

in cerebral perfusion were significantly correlated with changes in cowhage itch intensity, 

brain responses were contrasted in drug and placebo conditions, using as covariates of 

interest the ratio: ΔVAS (placebo − drug) / control VAS, which gave a proportional measure 

of drug’s effect, proportionally referenced to the amplitude of response in each subject. The 

contrast was set up as a pairwise t test, using Z threshold > 2.3, and p < 0.05, for a whole-

brain analysis. Anatomical mapping of septal nuclei was performed according to the MNI 

coordinates described by Zaborszky et al (2008), Butler et al (2012–2014) and Li et al 

(2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Timeline of experimental interventions and functional MRI sessions. Subjects were assigned 

to go into either the placebo or the butorphanol arm first, following a randomization scheme, 

and then they switched to the other arm. The two parts of the experiment were performed 7 

days apart. The post-treatment perfusion scan was started 40 minutes after drug (or placebo) 

administration. The stimulation sequence using the three sensory modalities was randomized 

for each experiment. Perfusion scans following itch or pain interventions were started 

approximately 45 minutes post-drug (or placebo) administration, at the peak of the 

pharmacological action of intranasal butorphanol. Each perfusion ASL scan lasted 4 min 54 

s.
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Figure 2. 
Psychophysical data. Butorphanol completely suppressed itch induced with histamine 

(p<0.001)***, and reduced the intensity of cowhage itch by approximately 35% 

(p<0.001)***.
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Figure 3. 
a) The effect of intranasal butorphanol (1 mg) on cerebral activity was analyzed in 

comparison to a placebo (0.9% intranasal saline). Butorphanol extensively deactivated 

bilaterally an area situated between the insular cortex and putamen, which coincides with the 

anatomical location of the claustrum, while also deactivating the left insular cortex and the 

putamen. b) The activations induced by histamine itch (red) are overlaid with the 

deactivations induced by butorphanol (blue; vs. placebo), displaying a significant 

conjunction in the contralateral insula, claustrum and putamen. c) Overlay of brain 

responses induced by histamine itch (red), cowhage itch (green) and the deactivations 

induced by butorphanol (blue). x, y, z - Montreal Neurological Institute (MNI) standard 

space coordinates. Z score > 2.3, p<0.05.
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Figure 4. 
The brain activations induced by butorphanol, analyzed in comparison with placebo were 

found in the midbrain: ventral tegmental area (VTA), periaqueductal gray (PAG), raphé 

nucleus; in the thalamus, precuneus and cerebellum. x, y, z – MNI standard space 

coordinates.
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Figure 5. 
The cerebral mechanism underlying butorphanol’s suppression of histamine itch was 

analyzed by a General Linear Model paired t test (contrast) of perfusion weighted images 

between the following states: [(histamine + drug) vs. drug] vs. [(histamine + placebo) vs. 

placebo]. This analysis showed that the inhibition of histamine itch by butorphanol was 

paralleled by the activation of nucleus accumbens and septal nuclei. x, y, z – MNI standard 

space coordinates.
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Table 1

A) The main effects of intranasal butorphanol on cerebral perfusion, analyzed in contrast with a placebo. B) 

Principal areas mediating the antipruritic action of butorphanol on histamine itch, whose activation paralleled 

itch suppression. C) Results of GLM regression analysis identify deactivation areas correlated with the 

attenuation of cowhage itch by butorphanol (inhibited approximately 35%). MNI coordinates.

Brain area x y z Z score

A1. Significant activations induced by butorphanol in comparison with placebo

Midbrain

VTA 4 −22 −14 2.78

6 −20 −18 2.90

 Red nucleus 6 −20 10 2.31

 Sb. nigra 14 −16 −10 2.91

 Dorsal nucleus of raphé 2 −24 −16 2.55

 PAG 8 −26 −4 2.53

Cerebellum (posterior lobe, uvula) 8 −66 −36 2.76

 Semilunar lobule 34 −66 −44 2.86

 Posterior lobe (cerebellar tonsil) 18 −46 −44 2.59

Precuneus (BA31) −14 −74 32 3.28

−4 −74 52 2.93

Cuneus −4 −84 26 3.44

Thalamus (MDNc) 4 −18 6 2.70

6 −18 4 2.76

A2. Significant deactivations induced by butorphanol

Claustrum (L) −36 −6 −4 2.87

−38 −10 −4 3.01

−32 −10 8 2.51

−32 −10 10 2.44

−32 −6 8 2.81

−30 18 −6 3.28

Claustrum (R) 32 18 4 3.01

30 20 4 2.77

34 16 −6 2.86

Anterior insula −42 −4 −4 2.45

−38 18 4 2.68

−38 16 −8 3.84

−38 14 −10 3.72

−36 16 −6 3.41

Posterior insula 42 −22 2 3.01

−38 −2 −4 2.96

Putamen 26 10 4 2.39
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Brain area x y z Z score

22 8 4 2.36

−30 −4 4 3.71

−20 18 4 2.98

−18 10 4 3.18

B. Areas significantly activated during the suppression of histamine itch by butorphanol

Nc. accumbens (L) −10 8 −8 3.01

−10 8 −10 3.16

  (R) 6 6 −6 2.43

8 8 −4 2.31

Medial nucleus of septum 2 8 −4 3.02

2 10 0 3.27

2 10 −2 2.57

2 8 −2 3.08

Nuclei of the diagonal band of Broca 4 10 −6 2.35

4 6 −6 2.55

2 6 −8 2.53

2 8 −6 2.99

−6 8 −18 3.76

Basal nucleus of Meynert −16 10 −16 2.50

−18 10 −18 2.42

−14 10 −18 2.66

Septal area of ACC (subgenual ACC; BA 25) 2 18 −6 3.05

2 18 −14 2.92

C. Deactivation areas significantly correlated with the reduction of cowhage itch

S1 −34 −32 58 3.26

Insula 38 −6 −12 2.31

Claustrum 38 −8 −10 2.66

Midbrain (sb. nigra) 12 −22 −12 3.04

Midbrain (VTA) 2 −20 −10 3.21

2 −20 −12 6.31

Midbrain (red nucleus) −2 −22 −12 2.38

Thalamus (medial dorsal nucleus) −4 −18 2 2.83

Pulvinar −22 −26 4 2.92

PCC −2 −18 38 4.83

Uncus −28 −12 −32 4.92

Hippocampus −30 −12 −30 6.10

Parahippocampus 34 −12 −22 4.79

Amygdala −16 −12 −16 3.31

Cerebellum Culmen −10 −50 −22 4.81
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Brain area x y z Z score

 Dentate gyrus 18 −58 −22 4.87

 Declive 20 −76 −22 4.14

Fusiform gyrus 48 −50 −10 3.00
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