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ABSTRACT
Background. Interferometric Synthetic Aperture Radar (InSAR) has become a
promising technique for monitoring wetland water levels. However, its capability in
monitoringwetlandwater level changes with Sentine-1 data has not yet been thoroughly
investigated.
Methods. In this study, we produced a multitemporal Sentinel-1 C-band VV-polarized
SAR backscatter images and generated a total of 28 interferometric coherence maps
for marsh wetlands of China’s Momoge National Nature Reserve to investigate the
interferometric coherence level of Sentinel-1 C-VV data as a function of perpendicular
and temporal baseline, water depth, and SAR backscattering intensity. We also selected
six interferogram pairs acquired within 24 days for quantitative analysis of the accuracy
of water level changes monitored by Sentinel-1 InSAR. The accuracy of water level
changes determined through the Sentinel-1 InSAR technique was calibrated by the
values of six field water level loggers.
Results. Our study showed that (1) the coherence was mainly dependent on the
temporal baseline and was little affected by the perpendicular baseline for Sentinel-
1 C-VV data in marsh wetlands; (2) in the early stage of a growing season, a clear
negative correlation was found between Sentinel-1 coherence and water depth; (3)
there was an almost linear negative correlation between Sentinel-1 C-VV coherence
and backscatter for the marsh wetlands; (4) once the coherence exceeds a threshold of
0.3, the stage during the growing season, rather than the coherence, appeared to be the
primary factor determining the quality of the interferogram for the marsh wetlands,
even though the quality of the interferogram largely depends on the coherence; (5) the
results of water level changes from InSAR processing show no agreement with in-situ
measurements during most growth stages. Based on the findings, we can conclude that
although the interferometric coherence of the Sentinel-1 C-VV data is high enough,
the data is generally unsuitable for monitoring water level changes in marsh wetlands
of China’s Momoge National Nature Reserve.
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INTRODUCTION
Covering between 1–2% of the Earth’s surface, wetlands are among the most productive
ecological systems and perform important eco-hydrological functions such as food supply,
water storage and purification, flood control, climate change mitigation, as well as provide
a desirable habitat for wildlife (Millenium Ecosystem Assessment, 2005; Costanza et al.,
1997; Mitsch & Gosselink, 2015). Unfortunately, according to the latest IPBES assessment
report (Scholes et al., 2018), wetlands are particularly degraded, with 87% lost globally
in the last 300 years, and 54% since 1900. It is widely recognized that wetlands play
an important role in the hydrological cycle, and vice versa, the hydrological conditions
have a crucial impact on the development and degradation of wetlands (Cole, Brooks &
Wardrop, 1997; Hunt, Walker & Krabbenhoft, 1999; Mitsch & Gosselink, 2015). Therefore,
the conservation and restoration of wetlands requires more specific information about
their hydrological conditions. Typically, hydrological monitoring of wetlands is carried
out through stage (water level) stations providing good temporal resolution over a finite
number of observation points (Hong et al., 2010a). However, these in-situ measurements
have limited capability to detect spatial patterns, as gauge stations are usually located
several or even tens of kilometers from each another (Hong et al., 2010a; Wdowinski &
Hong, 2015).

Wetland InSAR technique can be an excellent complementary tool for in-situ ground
observations to better understand and monitor a wide area with high spatial resolution
(Hong & Wdowinski, 2017). Since the first time Alsdorf et al. (2000) and Alsdorf, Smith
& Melack (2001) mapped a spatial detailed image of centimeter-scale variations in the
Amazon floodplain water level response to changing river discharge through InSAR,
innovative applications of InSAR to monitoring hydrologic changes in wetlands have
also been successful in different regions of the world (Kim et al., 2014), including but not
limited to the Everglades (Hong et al., 2010a; Kim et al., 2014; Liao & Wdowinski, 2018;
Wdowinski et al., 2004; Wdowinski et al., 2008), the Louisiana wetlands (Kim et al., 2009;
Kwoun & Lu, 2009; Lu et al., 2005), the Amazon floodplain (Cao et al., 2018), the Sian
Ka’an in Yucatan (Gondwe et al., 2010), the Yellow River Delta (Xie et al., 2013; Xie et al.,
2015; Yuan et al., 2016), the Liaohe River (Zhang et al., 2016), the Great Dismal Swamp
(Kim et al., 2017), the Ciénaga Grande de Santa Marta (Jaramillo et al., 2018), the Yukon
Flats Basin (Pitcher et al., 2019) and, most recently, the Peace-Athabasca Delta (Siles et
al., 2020). Today, wetland InSAR technique has evolved from monitoring relative water
level changes to monitoring absolute water level time series. However, using the InSAR
technique for monitoring wetland water level is still a relatively new research field that
has not yet been fully exploited (Mohammadimanesh et al., 2018b), especially for many
developing and undeveloped countries.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.8616


Radar signal backscattering mechanisms can be simplified into four major categories:
double bounce scattering, surface scattering, volume scattering, and specular scattering
(Kwoun & Lu, 2009). The wetland InSAR technique works where vegetation emerges
above the water surface owing to the double bounce effect, in which the radar signal
is backscattered twice from the water surface and vegetation (Richards, Woodgate &
Skidmore, 1987). Three main sources of losing interferometric coherence, i.e., geometric,
volumetric and temporal decorrelations, are integrated and determine the portion of
the SAR signal that is available to produce double bounce backscattering over wetlands
(Lu & Kwoun, 2008). Furthermore, different wetland classes such as marsh, swamp,
bog, fen, and shallow water have different backscattering behavior depending on SAR
satellites wavelength, polarization, incidence angle, spatial resolution, environmental
variables, and wetland phenology (Mohammadimanesh et al., 2018b). To date, a number
of studies have discussed the potential of using different SAR data sources such as ERS-1/2
(Lu et al., 2005; Lu & Kwoun, 2008), JERS-1 (Wdowinski et al., 2004; Wdowinski et al.,
2008), RADARSAT-1/2 (Brisco et al., 2017; Gondwe et al., 2010; Kim et al., 2017; Kim et al.,
2009; Lu & Kwoun, 2008; Mohammadimanesh et al., 2018a; Siles et al., 2020), ENVISAT
(Wdowinski et al., 2006), ALOS PALSAR-1/2 (Cao et al., 2018; Jaramillo et al., 2018; Kim
et al., 2017; Kim et al., 2014; Kim et al., 2009; Mohammadimanesh et al., 2018a; Palomino-
Ángel et al., 2019; Yuan, Lee & Jung, 2017) and TerraSAR-X (Hong, Wdowinski & Kim,
2010b; Mohammadimanesh et al., 2017) to detect water level changes in different types
of wetlands. However, most SAR satellites that provide data for previous wetland InSAR
studies have a relatively short life span and have been out of operation for years or even two
decades. In addition, most of these SAR satellites have long repeat observation cycle (11–46
days), limited swath (15–80 km), and limited accessibility (often requires payment).

The Sentinel-1 satellite launched in 2014 is the second latest SAR mission operating
at C-band. It provides SAR datasets with a short repeat cycle of 6–12 days and a wide
coverage area (250 km) (Liao & Wdowinski, 2018), while the perpendicular baseline is
well controlled (Torres et al., 2012). The cost-free availability of Sentinel-1 data is also
an encouraging factor to investigate the potential use of such data for wetland InSAR
applications (Mohammadimanesh et al., 2018b). Despite these benefits, there has been little
quantitative analysis of using Sentinel-1 data to monitor wetland water level changes.
Kundu et al. (2017) applied the Sentinel-1 data to estimate water level changes during
the floods in the Lember Basin in October 2016. Hong & Wdowinski (2017) and Liao &
Wdowinski (2018) reported that the interferograms using Sentinel-1 data show distinct
fringe patterns related to water level changes over the Everglades. Zhang et al. (2018)
used the Sentinel-1 data to extend the precise measurement of a single water gauge to
a wide area of 29 km2 in the Palmdale in South Florida. Alexakis, Stavroulaki & Tsanis
(2019) discovered that in Agia Lake and Kournas Lake, low vegetation is the most critical
parameter that causing volume scattering, leading to low interferometric coherence, and
is therefore the limiting factor in estimating water level changes using Sentinel-1 data.
Chen et al. (2019) found that in the marsh wetlands of the Great Lakes, the interferometric
coherence derived from the Sentinel-1 data is highly correlated with its temporal baseline
(i.e., interferogram’s time span). However, in wetlands, the relation between the variation
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of Sentinel-1 interferometric coherence and backscattering intensity is largely unknown. In
addition, given that the use of sentinel-1 data for monitoring wetland water level changes
is limited to specific pilot sites, the potential use of such data in wetlands with different
vegetation characteristics and environmental variables has not been extensively studied.

This study aims to systematically investigate the potential use of Sentinel-1 C-VV data to
detect water level changes in marsh wetlands. We used China’s Momoge National Nature
Reserve as a case study here because it is widely representative of relatively shallowmarshes.
Also, this reserve is recognized by the Ramsar Convention on Wetlands of International
Importance, where each year over 90% of the world’s Siberian Cranes stage on migration
in the large shallow water area. Specifically, the study has the following objectives: (1) to
analyze the response of Sentinel-1 interferometric coherence to the perpendicular and
temporal baseline, and seasonal fluctuation of water depth; (2) to determine the relation
between Sentinel-1 interferometric coherence and backscattering intensity; and (3) to
assess the influence of the coherence level, the stage of the growing season, and the water
depth on the accuracy of monitoring water level changes in marsh wetlands using the
Sentinel-1 InSAR technique.

MATERIALS AND METHODS
Study area
The Momoge National Nature Reserve (MNNR; 45◦42′25′′–46◦18′00′′N, 123◦27′00′′–
124◦04′33.7′′E) is located in the West Jilin Province, Northeast China, covering an area of
1,440 km2 (Fig. 1). The reserve haswetland types that are typical to the biogeographic region,
such as low plain marshes and shallow lakes. Two large rivers flow through the area, the
Nenjiang and Tao’er Rivers, and there are several man-made ditches connecting the water
bodies in the reserve. These habitats provide important refuge for a variety of fish, bird, and
other wildlife populations. In spring 2012, 97% of the world’s population of the critically
endangered Siberian Crane Leucogeranus were recorded at the site, and over 100,000 water
birds were recorded in each year between 2010 and 2012 (https://rsis.ramsar.org/ris/2188).
In the light of the above, the MNNR was included on the List of Wetlands of International
Importance (Ramsar sites) in 2013. The Baihe Lake formerly known as Etou Lake, which
is located in the middle of the MNNR, is the main stopover site for Siberian Cranes (Wang
et al., 2013). The region has a temperate continental monsoon climate with an annual
precipitation of 389.4 mm, an annual temperature of 4.2 ◦C, and an annual evaporation
(E601) rate up to 1,000 mm. Precipitation is concentrated in the summer, making more
than 90% of the annual total precipitation during the period from May to October. Fig. 2
depicts the total precipitation (mm) in the study area for each month in 2016.

Field data collection
Six experimental Odyssey R© Capacitance water level loggers were installed in the marsh
wetlands of the Baihe Lake to automatically monitor the water level in 2016. The
six automated water level monitoring sites are located at (45◦54′25′′N, 123◦41′08′′E),
(45◦55′59′′N, 123◦37′14′′E), (45◦53′43′′N, 123◦37′22′′E), (45◦54′08′′N, 123◦44′13′′E),
(45◦53′28′′N, 123◦43′19′′E) and (45◦52′56′′N, 123◦44′42′′E), respectively. The water level
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Figure 1 Locationmap of the study area showing the extent and DEM of theMomoge National Nature
Reserve (MNNR) in northeast China. Six experimental Odyssey R© Capacitance water level loggers were in-
stalled in the marsh wetlands of the Baihe Lake in the study area. Data source: NASA Earth data.

Full-size DOI: 10.7717/peerj.8616/fig-1
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Figure 2 Monthly precipitation in the study area in 2016.Data were collected from the China Meteoro-
logical Data Service Center (http://data.cma.cn).

Full-size DOI: 10.7717/peerj.8616/fig-2

loggers at sites 1, 2, 4 and 5 were set to take hourly records for the entire study period from
May 27, 2016 to October 24, 2016, while the logger at site 3 was set to take records at the
same frequency from June 05, 2016 to October 24, 2016. The acquisition time (22:00) of
the water level/depth data we used was closest to the transit time (∼22:00) of the Sentinel-1
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radar satellite. Records from the six field water level loggers were used to calibrate the water
level changes obtained through the Sentinel-1 InSAR technique.

Satellite data collection
Optical satellite image
The Landsat 8 OLI Land Surface Reflectance Level-2 data product at a 30-meter spatial
resolution acquired on October 6, 2016 were gathered from the USGS web portal
(https://earthexplorer.usgs.gov/) and were used to generate the land use and land cover
(LULC) map for the study area.

SAR satellite image
A total number of eight VV-polarized Sentinel-1A/B C-band Level-1 images in
Interferometric Wide Swath Mode (IW) Single Look Complex (SLC) format acquired
on May 27, June 08, July 26, August 07, August 19, September 12, September 30 and
October 24 were downloaded from the ESA web portal (https://scihub.copernicus.eu/).
These images were used to generate backscatter, coherence, interferograms and water
level change maps. The Sentinel-1 synthetic aperture radar (SAR) instrument has a spatial
resolution of 5 m × 20 m. All Sentinel-1 SAR images completely covered the study area.

DEM
A digital elevation model (DEM) with a spatial resolution of 12.5 m derived from ALOS
PALSAR-1 imagery acquired on November 12, 2006 was obtained from the Alaska Satellite
Facility web portal (https://www.asf.alaska.edu/). The DEM was employed to geocode the
SAR images as well as flatten the interferograms.

Methodology
Steps of the methodology
The methods mainly include supervised maximum likelihood classification (MLC), InSAR
technique and least square fit analysis. Fig. 3 describes the detailed steps of themethodology.

LULC classification based on maximum likelihood classifier
LULC classification is the stage of image analysis in which the multivariate quantitative
measurement associated with each pixel is translated into a label from a pre-defined land
use category (Deilmai, Ahmad & Zabihi, 2014). The main steps of LULC classification may
include determination of a suitable classification system, image pre-processing, selection
of training samples, feature extraction, selection of suitable classification approaches,
post-classification processing and accuracy assessment (Deilmai, Ahmad & Zabihi, 2014).
Before classification, eight land cover types were defined for the study area based on

our knowledge of the area, including Marsh, Water, Ditch, Dam, Cropland, Forest,
Residential and Saline Soil. The ENVI software (version 5.5.2, Harris Geospatial Solutions,
Inc., Broomfield, CO, USA) was used for image processing and analysis. During the pre-
processing stage, the seven single-band image files were stacked into one multi-band image
file. Then, the image was cropped to the study area size. After that, band combinations
432, 543, 564 and 654 were used flexibly to make composite images. Due to the lack
of ground truth samples, training samples were interactively created on the composite

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 6/24

https://peerj.com
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://www.asf.alaska.edu/
http://dx.doi.org/10.7717/peerj.8616


LULC classification map 

generation 

Coherence generationReference DEM

Stable areas of 

the marsh wetlands

Optical satellite image

Unstable areas of 

the marsh wetlands

Interferogram generation

Interferogram flattening

Filtering 

Multilooking

Co-registration

Filtering

Multitemporal Sentinel-1 SAR images

Geocoding and 

radiometric calibration

Phase unwrapping

Phase to water level changes 

conversion and geocoding

Water level changes map

generation

Multitemporal backscattering 

coefficient  map generation
Accuracy assessment

Training samples selection

Feature extraction

Classifier selection

Classification system

determination

Image pre-processing

Reference Google Earth 

historical images

Accuracy assessment

Reference 

water level/depth  

measured by logger 

Coherence response to baseline

&  relation between 

coherence and SAR backscatter

Coherence response to  

seasonal water depth fluctuation

Baseline estimation

Systematically investigate the potential of using Sentinel-1 C-VV data to detect water level changes in marsh wetlands  of the China’s Momoge National Nature Reserve

Least square fit analysis

Least square fit analysis

Figure 3 Flowchart of the image processing and data analysis in this study.
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Table 1 Number of ROIs and pixels in each class type used for training theMLC classifier.

Marsh Water Ditch Dam Cropland Forest Residential Saline
soil

Number of ROIs 198 197 48 52 187 156 82 138
Number of pixels 5,781 6,672 553 589 3,274 4,681 2,780 3,810

images using the ‘‘Region of Interest (ROI)’’ tools provided by ENVI Software with the
assistance of the Google Earth historical images acquired in 2016 (Jia et al., 2014). The
spatial resolution of the Google Earth historical images ranged from 0.21 m to13.30 m.
The sizes of the ROIs varied depending on the land cover features. In addition, the ROI
separability (i.e., Jeffries-Matusita and Transformed Divergence) was computed and the
ROIs were re-selected until the value of Jeffries-Matusita and Transformed Divergence was
greater than 1.85. Table 1 summarizes the characteristics of the final ROIs.

MLC is especially suitable for the classification of moderate resolution remote sensing
images (e.g., Landsat 8 OLI images with a spatial resolution of 30 m in this study) and
has a high overall accuracy (mostly over 80%) (Deilmai, Ahmad & Zabihi, 2014). For this
reason, we used MLC rule for the spectral classification of the Landsat 8 OLI images.
After classification, the ‘‘Edit Classification Image’’ tools were used for post-classification
processing refers to the process of removing the noise and improving the quality of the
classified output. After post-classification processing, the accuracy of the classified images
was assessed using reference data (i.e., the previously mentioned Google Earth historical
images of year 2016). A total of 240 points were selected from the Google Earth historical
images generating via a stratified random sampling method. Precision (user’s accuracy),
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recall (producer’s accuracy), F1, overall accuracy, and the Kappa statistics were derived
from the confusion matrix to find the accuracy and reliability of the maps produced (Islam
et al., 2018; Tharwat, 2018).

Backscatter generation
The SARscape (version 5.5.2) which is a modular set of ENVI software was applied to
generate backscatter for the multitemporal SAR images. The processing consisted of several
steps, including reading the Sentinel-1 SLC time series images, generating the ‘four range
and one azimuth’ multilook intensity images to enhance the radiometric resolution of
the radar signal and the signal/noise ratio, co-registration, filtering through a Gaussian
Gamma MAP filter with a kernel of 5×5 pixels to decrease the speckle, and using the
Range-Doppler approach for geocoding. After that, the obtained intensity values were
converted into normalized backscattering coefficient (σ 0) values in decibel.

After producing SAR backscatter images, an analysis of σ 0 variation was carried out
for the marsh wetlands. We use a multitemporal backscattering response for Sentinel-1
C-VV to identify stable/unstable areas in time. Using all available imagery, we calculated
backscatter standard deviation values (SDσ 0) in dB. We selected threshold value of 2 dB
(Kim et al., 2013) for sentinel-1 to determine stable/unstable backscatter areas. Pixels with
SDσ 0 lower than 2 dB were considered as stable scatters areas, while with SDσ 0 higher than
2 dB were considered as unstable scatters areas. The marsh wetlands were further divided
into two categories: stable areas of the marsh wetlands and unstable areas of the marsh
wetlands accordingly. In the next section, some analyses were carried out in stable areas of
the marsh wetlands to minimize seasonal effects associated with the changes of seasonal
water level and vegetation, some analyses were carried out in unstable areas of the marsh
wetlands to investigate the seasonal effects, and the rest analyses were carried out in the
whole marsh wetlands. ArcGIS software (version 10.7, ESRI Inc., Redlands, CA, USA) was
applied for the above processing.

InSAR processing
The InSAR Processing includes coherence generation, interferogram generation, and water
level changes map generation.

Interferometric coherence calculation is a well-known method to examine the quality
of the interferograms and represents the degree of similarity of the same pixel in the
time span between two SAR acquisitions (i.e., the so-called master and slave SAR images)
(Brisco et al., 2015; Guarnieri & Prati, 1997; Mohammadimanesh et al., 2018a). Coherence
is calculated by cross-correlation of the master and slave SAR images over a small window
of pixels (Ferretti et al., 2007):

γ =

〈
s1s∗2

〉√〈
s1s∗1

〉〈
s2s∗2

〉 (1)

where S1 and S2 denote the complex pixel values of backscattering coefficient, ∗ refers to
the complex conjugate, and pixel values within <> denote their spatial averaging over a
selected window size. γ ranges from 0 (low) to 1 (high); γ is equal to 1 when the two images
are exactly the same, whereas γ is equal to 1 when the two images are do not correspond.
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In this study, all interferometric processing was carried out using the SARscape module.
We started with a baseline estimation to obtain information about both the perpendicular
and the temporal baseline values in a multi-temporal SAR acquisitions series. The values
for all possible interferometric pair combinations were calculated. After that, we generated
‘‘four range and one azimuth’’ multilook images to enhance the radiometric resolution
of the radar signal and the signal/noise ratio, increase the interferometric coherence, and
speed up the computing process. A digital elevation model with a spatial resolution of
12.5 m was employed to flatten the interferograms through the removal of the constant
phase due to the acquisition geometry. Interferograms were filtered for visual inspection
and for identification of fringe patterns through a Goldstein filter (Goldstein & Werner,
1998) with a 5× 5 size filtering moving window for the coherence estimation. Given
that the interferometric phase could not be maintained in herbaceous wetlands when the
interferometric coherence was lower than 0.2 (Kim et al., 2013), we subsequently selected
threshold of coherence as 0.2 for unwrapping this phase change with the minimum cost
flow unwrapping algorithm and using the Range-Doppler approach for geocoding. It is
worth noting that, coherence lower than the unwrapping threshold value (0.2) had not
transformed from phase into water level change. At last, we converted the unwrapped
phase change to water level change (1h) employing the following equation:

1h=−
λ1φ

4πcosθ
+n (2)

In this equation, λ and θ are the Sentinel-1 C-VV SAR wavelength (0.055 m) and
incidence angle (39.1◦) respectively, 1φ forms the extracted phase change along the
line-of-sight of the satellite in each pixel of the entire study area (in terms of 2π), and n
is the noise mainly caused by the above mentioned decorrelation effects. Each color cycle
corresponded to approximately 0.035 m of water level changes in vertical direction, that is
1h.

Least square fit analysis
We used a least square fit analysis to evaluate the relationship between Sentinel-1
interferometric coherence and backscatter variation. The relation was described by the
following equation:

y = a+bx (3)

where a and b denote the offset and slope, respectively. Only interferometric coherence
pairs with the smallest temporal baselines were used and the mean backscatter images were
generated by averaging two SAR images, which produced the corresponding coherence
images (Mohammadimanesh et al., 2018a).

In order to assess the accuracy of the InSAR-observed water level changes, we used a
least square fit between InSAR and logger observations with the line passed through as
many points as possible. Because the InSAR and logger observations differ by unknown
offset, we addressed the problem by assuming a slope of 1 between two observations (Hong
et al., 2010a;Wdowinski et al., 2008). The relation was described by the following equation:
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Figure 4 Land use and land cover (LULC) distribution in theMomoge National Nature Reserve,
Northeast China. The map was created with the supervised classification based on satellite image acquired
in 2016. Data source: Earth Explorer USGS data.

Full-size DOI: 10.7717/peerj.8616/fig-4

y = x+offset (4)

Origin software (version 2018C, Origin Lab Corporation, Northampton, MA, USA) was
applied for the above processing.

RESULTS
Land use land cover analysis
Much of the Momoge National Nature Reserve in 2016 was covered by cropland (Fig. 4),
which contributed 37.0% of the total area. With 28.9%, marsh wetlands in the reserve were
the second largest cover type. The other cover types included 18.9% for water, 7.6% for
bare saline soil, 4.9% for forest, and 1.5% for residential area. Furthermore, in addition to
water surface area of the two natural rivers, man-made ditches accounted for 0.64% of the
reserve area; the dam class that obstructed hydrological connectivity accounted for 0.59%.
Tables 2 and 3 summarize the results of the confusion matrix and the classification metrics,
respectively. As seen, the classification accuracy was high and reliable.
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Table 2 Summary of confusionmatrix.

Reference Data

Marsh Water Ditch Dam Cropland Forest Residential Saline
Soil

Marsh 23 1 0 0 1 1 0 0
Water 3 33 0 0 1 0 0 3
Ditch 0 0 20 0 0 0 0 1
Dam 0 0 2 18 0 0 0 0
Cropland 0 1 0 0 36 2 0 0
Forest 0 0 0 0 1 21 0 0

Classified
data

Residential 0 0 0 0 0 1 44 0
Saline Soil 2 1 0 0 1 0 1 22

Table 3 Summary of accuracy (%) and Kappa statistics of MLCmap.

Classification metric Marsh Water Ditch Dam Cropland Forest Residential Saline
soil

Precision
(User’s accuracy)

88.5 82.5 95.2 90.0 92.3 95.5 97.8 81.5

Recall
(Producer’s accuracy)

82.1 91.7 90.9 100.0 90.0 84.0 97.8 84.6

F1 85.2 86.8 93.0 94.7 91.1 89.4 97.8 83.0
Overall accuracy 90.4
Kappa statistics 88.9

Backscatter analysis
Figure 5 depicts stable and unstable backscatter areas of the marsh wetlands. The stable
and unstable areas of the marsh wetlands cover 249.72 km2 and 172.49 km2, respectively.
In fact, fieldwork evidence suggests that the vegetation types of the stable areas were mainly
Carex tato and Calamagrostis angustifolia communities that widely distributed along the
west bank of Nenjiang River, while the unstable areas were mainly Phragmites australis and
Scripus triqueter communities.

Coherence analysis
Based on analysis of 28 coherence maps, we found that the perpendicular (geometrical)
baseline varies within the range between 4.85 m and 146.26 m (Fig. 6), far less than the
critical perpendicular baseline which was about 5188 m. The well controlled perpendicular
baseline makes the Sentinel-1 C-VV interferometric coherence independent of the
perpendicular baseline (Fig. 6). We also found that the temporal baseline ranges from
12 days to 150 days (Fig. 6). Besides, the coherence was high (higher than 0.3 in most
cases) over the relatively short temporal baseline (i.e., <24 days) and low (lower than 0.3 in
most cases) over the relatively long temporal baseline (i.e., >24 days) (Fig. 6). The results
indicate that the Sentinel-1 C-VV interferometric coherence is strongly dependent on the
temporal baseline.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.8616


Figure 5 Marsh wetlands distribution in theMomoge National Nature Reserve, Northeast China, clas-
sified with Sentinel-1multitemporal SAR images fromMay 2016 to October 2016. Pixels with backscat-
tering standard deviation value lower than 2 dB were considered as stable scatters, while with backscatter-
ing standard deviation value higher than 2 dB were considered as unstable scatters. Data source: Coperni-
cus.

Full-size DOI: 10.7717/peerj.8616/fig-5

Comparing Figs. 7 and 8 shows the response of Sentinel-1 C-VV interferometric
coherence to the changes of seasonal water depth. As seen in Fig. 7, in general, the mean
coherence value decreased dramatically from the interferometric pair of May 27, 2016 and
June 08, 2016 to the interferometric pair of August 19, 2016 and September 12, 2016 and
reached its minimum value (0.31), while increased greatly from the interferometric pair
of August 19, 2016 and September 12, 2016 to the interferometric pair of September 30,
2016 and October 24, 2016 and reached its maximum value (0.50). As seen in Fig. 8, most
of the average water depth on the acquired dates of the interferometric pairs were lower
than 1 m, except for all of the interferometric pairs at site 1, the interferometric pair of
August 19, 2016 and September 12, 2016 at sites 5 and 6, as well as the interferometric pair
of September 12, 2016 and September 30, 2016 and the interferometric pair of September
30, 2016 and October 24, 2016 at sites 3, 5 and 6, which were higher than 1 m. It is worth
noting that, in general, the mean water depth presented an opposite variation characteristic
compared with the mean coherence value from the interferometric pair of May 27, 2016
and June 08, 2016 to the interferometric pair of August 19, 2016 and September 12, 2016
(see Figs. 7 and 8), indicate that the coherence is strongly influenced by the changes of
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Figure 6 Temporal vs. perpendicular baselines in the Sentinel-1 coherence analysis for stable areas of
the marsh wetlands in theMomoge National Nature Reserve, Northeast China.Dot sizes and colors are
proportional to different coherence values.

Full-size DOI: 10.7717/peerj.8616/fig-6

seasonal water depth. However, the mean coherence value presented an similar variation
characteristics compared with the mean water depth between the interferometric pair of
August 19, 2016 and September 12, 2016 and the interferometric pair of September 12,
2016 and September 30, 2016, this is because the mean water depth is not the only factor
affecting the coherence, vegetation canopy could also influence the coherence and maybe
the dominant factor from late August to the end of September in the study area.

Figure 9 analysis indicates a negative linear relationship between Sentinel-1 C-VV
interferometric coherence and backscattering, suggesting that a high coherence is a good
indicator of a low backscattering response for the marsh wetlands. It is worth noting that,
although the temporal baseline was within 24 days, the mean coherence was lower than
0.55. Besides, the mean backscatter coefficient shows a relatively narrow range of variation
between −11.74 and −10.58.

Interferogram analysis
Interferograms of phase changes are listed in Fig. 10. Comparing Figs. 7 and 10, it can be
found that although the mean coherence of the interferometric pairs was high, most of the
interferograms did not exhibit distinct fringes except for the interferometric pair of July 26,
2016 and August 07, 2016 (see Fig. 10B). In addition, the phase changes did not complete
a full phase change (i.e., <2π) in most areas for the interferometric pair of July 26, 2016
and August 07, 2016, indicate that the water level change was less than 0.035 m in vertical
direction in most areas.
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Figure 7 Sentinel-1 coherence analysis results for unstable areas of the marsh wetlands. The x-axis
shows the six interferometric pairs with a short temporal baseline as no more than 24 days.
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Figure 8 Mean water depths recorded by field water loggers at six monitoring sites in the marsh wet-
lands of the Baihe Lake, Northeast China. The x-axis shows the acquisition dates of the six interferomet-
ric pairs with a short temporal baseline as no more than 24 days.
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Figure 9 Relation betweenmean interferometric coherence andmean SAR backscatter for stable ar-
eas of the marsh wetlands in theMomoge National Nature Reserve, Northeast China with the Sentinel-
1 data.

Full-size DOI: 10.7717/peerj.8616/fig-9

Water level change analysis
The calibration was conducted between the InSAR data and the logger data (Fig. 11).
The calibration plots show poor agreement between InSAR and logger data for all
interferometric pairs, no matter in relatively shallow flooding marsh wetlands (water
depth lower than 1 m) (Fig. 11A), or in relatively deep flooding marsh wetlands (water
depth higher than 1 m) (Fig. 11B). When the calibration plot shows a good agreement
between InSAR and in-situ data for the interferometric pair of July 26, 2016 and August
07, 2016, only four observations are available (Fig. 11C).

DISCUSSION
As expected, no dependency of the interferometric coherence was found with the
perpendicular baseline for Sentinel-1 C-VV data. However, interferometric coherence
appeared to be strongly dependent on the temporal baseline (Fig. 6), which agrees with
that reported by Chen et al. (2019). It is also worth noting that a temporal baseline of no
more than 24 days is required to maintain a coherence of greater than 0.3 for Sentinel-1
C-VV data, while the coherence would be lower than 0.3 if the temporal baseline exceeds
24 days in most cases (Fig. 6). Currently, the Sentinel-1 A and B constellation can deliver
a six-day repeat cycle in Europe. Besides, a new generation of SAR satellites, the C-band
RADARSAT Constellation Mission (RSM) with a resolution of 1 m × 3 m and a repeat
cycle of 4 days, was launched by the Canadian Space Agency in June 2019. Thus, more
work is needed to investigate whether a better coherence could be obtained in the even
shorter temporal baselines (i.e., six days and four days interval) for C-band SAR data.

The negative correlation between Sentinel-1 coherence and water depth during the early
stage of growing season (Figs. 7 and 8) indicates the importance of considering seasonality
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Figure 10 Interferograms of phase changes in the Momoge National Nature Reserve, Northeast
China. Each interferometric pair has a short temporal baseline as nomore than 24 days.
(A) Interferogram of 20160527_20160608. (B) Interferogram of 20160726_20160807. (C)
Interferogram of 20160807_20160819. (D) Interferogram of 20160819_20160912. (E) Interferogram
of 20160912_20160930. (F) Interferogram of 20160930_20161024. Data source: Copernicus.

Full-size DOI: 10.7717/peerj.8616/fig-10
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Figure 11 Calibration plots for estimating the offsets between InSAR observations and logger observa-
tions for (A) all interferometric pairs in relatively shallow flooding marsh wetlands (water depth lower
than 1m); (B) all interferometric pairs in relatively deep flooding marsh wetlands (water depth higher
than 1m); and (C) the interferometric pair of July 26, 2016 and August 07, 2016 in relatively shallow
flooding marsh wetlands (water depth lower than 1m). The symbol ‘‘+’’ marks outliers that are omitted
from the calibration offset calculations.

Full-size DOI: 10.7717/peerj.8616/fig-11

in wetland InSAR analysis. This is because the deeper a water body is and the larger the
water surface area is, the lower the double bounce scattering will be during the early
growth stage of emerging vegetation when plants have a less developed canopy. However,
during the late stage of the growing season (from middle September to late October), the
Sentinel-1 coherence has no close relationship with water depth (Figs. 7 and 8). This may
probably be due to the developed vegetation canopy, which led to high double bounce
scattering, making it the main factor determining interferometric coherence. This finding
is different than that reported by Alexakis, Stavroulaki & Tsanis (2019) who found that
coherence values decreased with increasing NDVI in Agia Lake in Greece during a summer
period.
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Figure 12 Mean interferometric coherence of the marsh wetlands. The x-axis shows the six interfero-
metric pairs with a short temporal baseline as no more than 24 days.

Full-size DOI: 10.7717/peerj.8616/fig-12

A nearly linear negative correlation was found between Sentinel-1 C-VV interferometric
coherence and backscatter for the marsh wetlands in China’s Momoge National Nature
Reserve (Fig. 9), indicating that a high coherence is a good indicator of a low Sentinel-
1 backscattering response for the marsh wetlands. Our finding differs from previous
studies (Kim et al., 2013; Mohammadimanesh et al., 2018a) which found that there is no
linear correlation between interferometric coherence and backscattering for the marsh
wetlands when using JERS-1, RADARSAT-1/2, ERS-1/2, ALOS PALSAR-1 and TerraSAR-
X data. In addition, the range of the Sentinel-1 C-VV backscatter was relatively narrow
for the stable areas of the marsh wetlands (i.e., mainly Carex tato and Calamagrostis
angustifolia communities) in the MNNR (Fig. 9) as compared to that of reed marshes in
Balikdami wetland in Turkey (Kaplan & Avdan, 2018). More work is needed in the future
to distinguish whether the main backscattering mechanism in the MNNR is double bounce
scattering or volume scattering.

For the first time, we have found that once the coherence exceeds a certain threshold
(0.3 in this study), the stage during the growing season, rather than the coherence, is the
primary factor determining the quality of the interferogram for the marsh wetlands, even
though the quality of the interferogram largely depends on the coherence. Comparing
Figs. 10 and 12, it can be found that the interferometric pair of July 26, 2016 and August
07, 2016 exhibits the best quality of the interferogram but the third highest coherence.
However, most of the interferograms in the study area did not exhibit distinct fringes,
which is contrary to that reported by Hong & Wdowinski (2017) and Liao & Wdowinski
(2018) for the Florida Everglades.
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If the Sentinel-1 data has a potential to be used for monitoring wetland water levels in
the study area, it will be able to guide the conservation and restoration of the habitat of
endangered Siberian Cranes. However, unfortunately, the Sentinel-1 C-VV data did not
perform well in monitoring the water level changes in the marsh wetlands in the study area,
although its coherence was high enough (Figs. 11 and 12). A possible explanation for this
is that the specific vegetation characteristics and environmental variables in the study area
may have caused insufficient double bounce backscattering. In addition, due to the limited
calibration data, we are not sure whether Sentinel-1 data has a good performance in the
interferometric pair of July 26, 2016 and August 07, 2016. Our finding is contrary to those
from several previous studies (Alexakis, Stavroulaki & Tsanis, 2019; Hong & Wdowinski,
2017; Kundu et al., 2017; Liao & Wdowinski, 2018; Zhang et al., 2018) which have shown
that the Sentinel-1 C-band data can be used to monitor wetland water level changes in
other regions. Nevertheless, the analysis of the potential use of Sentinel-1 C-VV data for
detecting wetland water level changes undertaken here, has extended our knowledge of
the applicability of such data. Further studies are needed in the future to discern whether
a better accuracy could be obtained in other stopover sites for Siberian Cranes with
different vegetation characteristics and environmental variables when using Sentinel-1
InSAR technique for detecting water level changes.

CONCLUSIONS
This study utilized 28 repeat-pass Sentinel-1 imagery to comprehensively investigate SAR
backscatter and coherence variation for marsh wetlands in China’s Momoge National
Nature Reserve, a Ramsar recognized wetland site of international importance. The higher
temporal resolution of the Sentinel-1 images allowed us assessing the potential of using
InSAR applications for wetland dynamic analysis. Our study showed that coherence was
mainly dependent on the temporal baseline, not affected by the perpendicular baseline for
Sentinel-1 C-VV data collected over the marsh wetlands. A negative correlation between
Sentinel-1 coherence and water depth was found for the marsh wetlands during the early
growth stage of vegetation, indicating the role of water depth in determining the coherence
during the early growth stage of vegetation. For the late growth stage, marsh vegetation
canopy can play a key role in determining the coherence. A nearly linear negative relation
between Sentinel-1 C-VV coherence and backscatter were found for the marsh wetlands,
suggesting that a high coherence is a good indicator of a low Sentinel-1 backscattering
response for the marsh wetlands. We found that although the quality of the interferogram
largely depends on the coherence, the stage during the growing season, rather than the
coherence, is the primary factor in determining the quality of the interferogram for the
marsh wetlands. Our findings demonstrate that Sentinel-1 C-VV data is generally not
suitable to be used for monitoring water level changes through InSAR technique in marsh
wetlands of the China’s Momoge National Nature Reserve because of its poor accuracy.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.8616


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by the National Key R & D Program of China (grant number
2017YFC0406003) the National Natural Science Foundation of China (grant number
41701395, 41877160 and 41671476) the Featured Institute Project 4, the Northeast Institute
of Geography and Agroecology, Chinese Academy of Sciences (grant number IGA-135-05)
and the Nanhu Scholars Program for Young Scholars of XYNU. During the preparation
of the article, Yijun Xu received funding support from a U.S. Department of Agriculture
Hatch Fund project (project number: LAB94459). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key R & D Program of China: 2017YFC0406003.
National Natural Science Foundation of China: 41701395, 41877160, 41671476.
Featured Institute Project 4.
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences: IGA-
135-05.
Nanhu Scholars Program for Young Scholars of XYNU.
U.S. Department of Agriculture Hatch Fund project: LAB94459.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yueqing Chen and Lili Wu conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.
• Sijia Qiao and Liwen Chen performed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.
• Guangxin Zhang conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.
• Y. Jun Xu conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data are available in a Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8616#supplemental-information.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.8616#supplemental-information
http://dx.doi.org/10.7717/peerj.8616#supplemental-information
http://dx.doi.org/10.7717/peerj.8616#supplemental-information
http://dx.doi.org/10.7717/peerj.8616


REFERENCES
Alexakis D, Stavroulaki E, Tsanis I. 2019. Using sentinel-1A DInSAR interferometry

and landsat 8 data for monitoring water level changes in two lakes in Crete, Greece.
Geocarto International 34:703–721 DOI 10.1080/10106049.2018.1434685.

Alsdorf DE, Melack JM, Dunne T, Mertes LA, Hess LL, Smith LC. 2000. Interferometric
radar measurements of water level changes on the Amazon flood plain. Nature
404:174–177 DOI 10.1038/35004560.

Alsdorf DE, Smith LC, Melack JM. 2001. Amazon floodplain water level changes
measured with interferometric SIR-C radar. IEEE Transactions on Geoscience and
Remote Sensing 39:423–431 DOI 10.1109/36.905250.

Brisco B, Ahern F, Murnaghan K,White L, Canisus F, Lancaster P. 2017. Seasonal
change in wetland coherence as an aid to wetland monitoring. Remote Sensing
9:Article 158 DOI 10.3390/rs9020158.

Brisco B, Murnaghan K,Wdowinski S, Hong S-H. 2015. Evaluation of RADARSAT-2
acquisition modes for wetland monitoring applications. Canadian Journal of Remote
Sensing 41:431–439 DOI 10.1080/07038992.2015.1104636.

Cao N, Lee H, Jung H, Yu H. 2018. Estimation of water level changes of large-scale
Amazon wetlands using ALOS2 ScanSAR differential interferometry. Remote Sensing
10:Article 966 DOI 10.3390/rs10060966.

Chen Z,White L, Banks S, Behnamian A, Montpetit B, Pasher J, Duffe J. 2019. InSAR
monitoring of marsh wetlands flow dynamics in Great Lakes. In: IGARSS 2019–2019.
IEEE international geoscience and remote sensing symposium. IEEE, 6848–6851.

Cole CA, Brooks RP,Wardrop DH. 1997.Wetland hydrology as a function of hydrogeo-
morphic (HGM) subclass.Wetlands 17:456–467 DOI 10.1007/BF03161511.

Costanza R, D’Arge R, De Groot R, Farber S, GrassoM, Hannon B, Limburg K, Naeem
S, O’neill RV, Paruelo J. 1997. The value of the world’s ecosystem services and
natural capital. Nature 387:253–260 DOI 10.1038/387253a0.

Deilmai BR, Ahmad BB, Zabihi H. 2014. Comparison of two classification methods
(MLC and SVM) to extract land use and land cover in Johor Malaysia. In: IOP
conference series: Earth and environmental science, vol. 20. Kuala Lumpur, Malaysia:
IOP Publishing, 012052.

Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, Massonet D. 2007. InSAR principles-
guidelines for SAR interferometry processing and interpretation, TM-19. The Nether-
lands: ESA Publications.

Goldstein RM,Werner CL. 1998. Radar interferogram filtering for geophysical applica-
tions. Geophysical Research Letters 25:4035–4038 DOI 10.1029/1998GL900033.

Gondwe BRN, Hong S-H,Wdowinski S, Bauer-Gottwein P. 2010.Hydrologic dynamics
of the ground-water-dependent Sian Ka’an Wetlands, Mexico, derived from InSAR
and SAR data.Wetlands 30:1–13 DOI 10.1007/s13157-009-0016-z.

Guarnieri AM, Prati C. 1997. SAR interferometry: a ‘quick and dirty’ coherence
estimator for data browsing. IEEE Transactions on Geoscience and Remote Sensing
35:660–669 DOI 10.1109/36.581984.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.8616 21/24

https://peerj.com
http://dx.doi.org/10.1080/10106049.2018.1434685
http://dx.doi.org/10.1038/35004560
http://dx.doi.org/10.1109/36.905250
http://dx.doi.org/10.3390/rs9020158
http://dx.doi.org/10.1080/07038992.2015.1104636
http://dx.doi.org/10.3390/rs10060966
http://dx.doi.org/10.1007/BF03161511
http://dx.doi.org/10.1038/387253a0
http://dx.doi.org/10.1029/1998GL900033
http://dx.doi.org/10.1007/s13157-009-0016-z
http://dx.doi.org/10.1109/36.581984
http://dx.doi.org/10.7717/peerj.8616


Hong S,Wdowinski S, Kim S. 2010b. Evaluation of TerraSAR-X observations for
wetland InSAR application. IEEE Transactions on Geoscience and Remote Sensing
48:864–873 DOI 10.1109/TGRS.2009.2026895.

Hong S-H,Wdowinski S. 2017. A review on monitoring the everglades wetlands in the
southern florida using space-based synthetic aperture radar (sar) observations. 대한
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